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Abstract. We examine the bar instability in models with an exponential disk and a cuspy
NFW-like dark matter (DM) halo inspired by cosmological simulations. Bar evolution is studied
as a function of numerical resolution in a sequence of models spanning 104 − 108 DM particles -
including a multi-mass model with an effective resolution of 1010 . The goal is to find convergence
in dynamical behaviour. We characterize the bar growth, the buckling instability, pattern speed
decay through resonant transfer of angular momentum, and possible destruction of the DM halo
cusp. Overall, most characteristics converge in behaviour for halos containing more than 107

particles in detail. Notably, the formation of the bar does not destroy the density cusp in this
case. These higher resolution simulations clearly illustrate the importance of discrete resonances
in transporting angular momentum from the bar to the halo.
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1. Introduction
The bar instability in a cold gravitating disk plays a major role in a spiral galaxy’s dy-

namical evolution. At least 2/3 of spiral galaxies host bars (Knappen et al. 2000) and the
fraction has not evolved significantly since z ∼ 1 (Jogee et al. 2004; Sheth et al. 2008).
As models of galaxy formation become more sophisticated and reveal complex dynam-
ical behaviour, it is important to understand the details of different physical processes
that shape their morphology as well as to verify that numerical resolution is in fact ad-
equate to follow their evolution. The bar-halo interaction is the driving mechanism in
disk galaxy evolution. As a bar churns through the DM halo with a pattern speed Ωb

resonant interactions with halo orbits – a form of dynamical friction – transfer angular
momentum from the bar to the halo and cause it to spin down (Tremaine & Weinberg
1984). This process was first pointed out by Lynden-Bell & Kalnajs (1972) and has
been studied in models with idealized rigid bars (Weinberg 1985; Hernquist & Weinberg
1992; Weinberg & Katz 2002; Weinberg & Katz 2007) as well as in models in which a
stellar bar forms self-consistently in an unstable disk (e.g., Sellwood 1980; Debattista
& Sellwood 1998; O’Neill & Dubinski 2003; Holley-Bockelmann et al. 2005; Martinez-
Valpuesta et al. 2006). There has been some concern that the process is too efficient,
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leading to bars that are much smaller than their corotation radii and so discrepant with
observed bar galaxies (Debattista & Sellwood 2000). More recent studies with greater
resolution suggest that the bars tend to lengthen moving out to their co-rotation radii as
they slow down and so perhaps they are not inconsistent with reality (O’Neill & Dubinski
2003; Martinez-Valpuesta et al. 2006). Weinberg & Katz (2002) hold a cautious view that
lower resolution simulations can lead to spurious results because of the diffusive nature
of noise that may move orbits into and out of resonances artificially while insufficient
particle numbers may also underpopulate the resonant regions of phase space. While
most current work to date has used ∼106 particles, they claim that as many as 108

DM particles (or more) may be needed to simulate the resonant process with N -body
methods.

In this study, we attempt to clear up the inconsistencies of current work and address
the problem of numerical resolution hoping to converge to the correct physical behaviour.
We present a series of bar-unstable disk+halo N -body models with increasing resolution
spanning a range Nh = 104 − 108 DM particles with Nd = 1.8 × 103−7 disk particles.
One further simulation uses a multi-mass method that increases the halo particle num-
ber density by 200× in the halo centre so giving an effective Nh ∼ 1010 . The mass
model is constructed from a 3-integral distribution function (Widrow & Dubinski 2005)
describing an exponential disk embedded within a tidally truncated NFW halo and is
similar to the model studied by Martinez-Valpuesta et al. (2006). Natural units for the
simulations are D = 10 kpc, M = 1011 M�, V = 208 km/s, and T = 47.2 Myr. We
discuss results both in simulation and physical units throughout and clarify when nec-
essary. (For further details on the models and simulations see Dubinski, Berentzen &
Shlosman 2008). Animations of the simulations are available for viewing at the URL:
www.cita.utoronto.ca/~dubinski/IAU254 along with higher-resolution figures.

Animation 1 shows the evolution of the disks in six models with increasing resolution in
face-on and edge-on views. The lowest resolution simulations with Nh � 105 are clearly
deficient and either lose the bar or suffer from heating affects. At higher resolution,
the behaviour is similar exhibiting the buckling instability and relaxation to a bar in
quasi-equilibrium that gradually lengthens and slows down. Animations 2 & 3 show the
multi-mass model with Nh = 108 in an inertial and corotating frame and illustrate how
the bar grows from noise from the inside out saturating as a thin bar on reaching the
corotation radius and then evolving into a fatter bar with a peanut-shaped bulge after
the buckling instability.

2. Bar Growth and Pattern Speed Evolution
We study bar growth using the normalized Fourier amplitude |A2 | of the m = 2

disturbance in the plane of the disk within a fixed radius R < 0.5 (5 kpc). Figure 1
shown the exponential growth of |A2 | before saturation. Higher resolution simulations
reach saturation at later times. This time delay is the result of the lower amplitude of the
Poisson fluctuations that seed the bar. Since the instability grows from these fluctuations
if takes longer for them to saturate if the initial amplitude is lower. We estimate the time
delays from the peak in |A2 | and synchronize the simulations for comparison of various
evolutionary characteristics.

We can also use A2 to measure the phase angle of the m = 2 mode and so estimate the
pattern speed by taking the difference between subsequent snapshots. Figure 2 shows the
pattern speed evolution as a function of numerical resolution. There is some scatter in
behaviour that can be accounted for from the expected variance introduced by different
initial conditions but overall the agreement is good. The highest resolution simulations
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Figure 1. Initial growth of the m = 2 Fourier component |A2 | for stars with R < 0.5 for
two model sequences using Nd = 18K, 180K, 1.8M, 18M with Nh = 100K, 1M, 10M, 100M re-
spectively. The ln |A2 | grows approximately linearly with time independent of the choice of Nd

and Nh showing the exponential growth of the bar mode. The dashed line shows an exponen-
tial timescale that is approximately τ = 8 (370 Myr). Since the bar grows from the Poisson
noise within the disk then we expect the noise amplitude to be proportional to N 1/2 so larger
simulations will saturate at later times.

Figure 2. Evolution of the pattern speed Ωb for two model sequences at different resolution.
The curves have been shifted in time so that the bar growth evolution is coincident with the
1M particle model.

show a modulation of the pattern speed at a frequency close to Ωb itself. This probably
indicates an interaction between the bar and the gravitational wake in the halo that only
shows up with sufficient numerical resolution.

3. Halo Density Profile
We also measured the evolution of the halo density profile over the course of the

simulation. Previous work has shown both preservation and destruction of the density
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Figure 3. A comparison of density profiles at t = 7.08 Gyr for different halo particle numbers
Nh . We also show the initial density profile (dashed line) and the best fit NFW model curve
(dotted line) to the initial profile over the range 0 < r < 100 kpc. The NFW parameters for
the fit are rs = 4.3 kpc, vm ax = 160 km s−1 , where vm ax is the maximum circular velocity
at r = 2.16rs = 9.3 kpc. Note that this halo is more concentrated than the typical galactic
dark matter halos in cosmological simulations to model the contraction expected during dissi-
pative galaxy formation. The dotted vertical lines show the softening length ε used at different
resolutions.

cusp so we focus on the processes in the central regions. Only studies using the self-
consistent field N -body method (SCF) lead to a core (Holley-Bockelmann et al. 2005;
Weinberg & Katz 2007b) and there has been some concern about numerical instabilities
that arise in those methods (Selwood 2003). Figure 3 exhibits the final density profile
along with the difference from the initial profile as a function of halo particle number.
The profiles agree well to within the limit of their gravitational softening radius and
show convergent behaviour. The cusp is not destroyed in this case but rather the central
density increases modestly, by a factor of 2, as a result of the bar evolution, following its
buckling, which leads to an increase in the central stellar density (Sellwood 2003).

The bar that forms in this simulation has a similar mass ratio Mb/Mhalo ≈ 0.6 but
is much thicker than the fiducial rigid bar simulation in Weinberg et al. (2007b) that
destroys the cusp. Their study also included thick bars which did not destroy the cusps
and the bar that forms here overlaps with those in their study. We conclude that there is
no direct contradiction with the most recent results of Weinberg et al. (2007b) but would
argue that the thicker bar models are probably more relevant to real galaxies. Thin bars
do not persist for long before responding to the buckling instability and so the rigid bar
approximation is not applicable over a Hubble time and probably not relevant to most
galaxies (Martinez-Valpuesta & Shlosman 2004).

4. Orbital Resonances
The bar slowdown is the result of dynamical friction that leads to angular momen-

tum transport to the DM halo. The process is due to resonant interactions between the
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rotating bar’s pattern speed and the halo particles’ azimuthal and radial orbital frequen-
cies. When l1Ωr + l2Ωφ = mΩb then orbital resonances occur and halo particles torque
or are torqued by the bar leading to a change in angular momentum. We can estimate
the orbital frequencies at a specific time by freezing the potential and integrating the
orbits of particles in this potential rotating with the pattern speed at that time (e.g.,
Athanassoula 2002; Martinez-Valpuesta et al. 2006). Spectral analysis can then be ap-
plied to the orbital time series to determine the fundamental orbital frequencies Ωr and
Ωφ (Binney & Spergel 1982). (Note we label these frequencies with the usual epicyclic
variables κ ≡ Ωr and Ω ≡ Ωφ in our figures below.) The dimensionless frequency
η = (Ω−Ωb)/κ is a useful way to characterize resonances since the values η = 1/2, 0,−1/2
correspond to the inner Lindblad, corotation, and outer Lindblad resonances for m = 2.
Further negative half-integer values correspond to higher order resonances that can also
absorb the angular momentum.

Figure 4. The distribution in the change in the z angular momentum ΔJz between t = 100 (4.7
Gyr) and t = 150 (7 Gyr) plotted as a function of the dimensionless frequency η = (Ω − Ωb )/κ
measured at t = 100. The spikes at η = 0.5, 0.0,−0.5 correspond to the ILR, COR, and OLR
respectively while other spikes refer to higher order resonances. This plot shows how halo par-
ticles in resonant orbits are the main sink of angular momentum. The detailed distributions are
converging for Nh > 107 particles while lower resolution simulation miss some of the higher
order resonances.

Figure 4 shows the change in the z component of the angular momentum Jz for particles
binned as a function η between t = 100 and t = 150 at different numerical resolution.
The spikes at the half-integer values reveal the resonances. Most angular momentum is
transferred through the corotation resonance though it is also appears to be transferred at
other frequencies, but more randomly – this difference is probably the result of particles
in resonance before or after t = 100. The detailed behaviour of the distributions seem to
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Figure 5. Change in particle number density in (E, Lz ) space between t = 0 and t = 150 (7.0
Gyr) for the Nh = 108 single mass model. The resonant regions show up clearly as peaks (red
regions) in phase space in the left panel. In the right panel, we overplot the (E, Lz ) coordinates
of a random subset of particles located at discrete resonances at t = 150 within δη = ±0.05
(black-ILR-η = 0.5, red-COR-η = 0.0, green-OLR-η = −0.5, blue-η = −1.0, magenta-η = −1.5,
and cyan-η = −2.0.

converge for Nh � 107. At lower resolutions, the resonant spikes have a smaller amplitude
and higher order resonant interactions are missing.

Finally, we examine the change in halo phase space density by computing the particle
number density in (E,Lz ) space and computing the difference between t = 0 and t = 150
in a similar way to Holley-Bockelmann et al. (2005). In this way, we clearly see the
resonant regions visible as discrete islands of particle overdensity in (E,Lz ) space (Fig. 5).
We can also overplot the values of (E,Lz ) for the particles found in the resonant spikes
in the analysis to see where they lie in phase space. The right panel of Figure 5 clearly
shows that these islands are directly related to the discrete resonances extracted in our
spectral analysis. Animation 4 describes the time evolution of the differential number
density in phase space and reveals how the resonances move through a large fraction of
the halo mass. By counting particles in resonant peaks at different times we estimate
that roughly 30% of the halo particles are affected.

We conclude that the resonances are broader than thought and so simulations with
more than 1M halo particles do a reasonable job of tracking bar evolution. However, a look
at the distribution of orbital frequencies reveals that higher order resonances are missed
at lower resolution with less than 10M particles. This effect could account for the different
rate of angular momentum loss at higher resolution. Future studies should examine the
bar instability self-consistently using the same initial conditions with different N -body
methods to resolve current inconsistent results on the cusp/core evolution of DM halos.
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John Dubinski explaining a fine point in his simulations.
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Beatriz Barbuy illustrating the view of the Bulge through Baade’s window.

Olga Sil’chenko fielding a question after her talk, with chairman Burkhard Fuchs.

https://doi.org/10.1017/S1743921308027555 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921308027555

