The expansions of $\sin x$ and $\cos x_{n}-\mathrm{Dr}$ Stokes has already shown (Mathematical Notes, No. 13, p. 143) how the summation of series may be put to its proper use in elementary mathematics, namely, to provide a sequence of approximations to a limit. The method may be used to give a sequence of approximations to $\sin x$ and $\cos x$.

It is unnecessary to show in detail how, by means of summation of series of the type

$$
\sin _{\cos } \alpha+\frac{\sin }{\cos }(\alpha+\beta)+\frac{\sin }{\cos }(\alpha+2 \beta)+\ldots
$$

approximations are found to the areas under the graphs of $\sin x$ and $\cos x$, giving finally
area under graph of $\sin x$ from origin to abscissa $x=1-\cos x$,
area under graph of $\cos x$ from origin to abscissa $x=\sin x$.
From the well-known inequality

$$
\begin{equation*}
\sin x<x \tag{1}
\end{equation*}
$$

we see that
area under graph of $\sin x<$ area under graph of x

$$
\begin{align*}
& \therefore \quad 1-\cos x<\frac{x^{2}}{2} \\
& \therefore \quad \cos x>1-\frac{x^{2}}{2} . \tag{1}
\end{align*}
$$

Hence
area under graph of $\cos x>$ area under graph of $\left(1-\frac{x^{2}}{2}\right)$,

$$
\begin{equation*}
\therefore \quad \sin x>x-\frac{x^{3}}{3} . \tag{2}
\end{equation*}
$$

Hence
area under graph of $\sin x>$ area under graph of $\left(x-\frac{x^{3}}{\mid 3}\right)$

$$
\begin{align*}
& \therefore \quad 1-\cos x>\frac{x^{2}}{\underline{\mid 2}}-\frac{x^{4}}{\underline{14}} \\
& \therefore \quad \cos x<1-\frac{x^{2}}{\underline{1}}+\frac{x^{4}}{\underline{14}} . \tag{2}
\end{align*}
$$

THE EXPANSION OF SINX AND COSX.

Proceeding in this way, we get in order

$$
\begin{align*}
& \sin x<x-\frac{x^{3}}{13}+\frac{x^{5}}{\underline{15}} \tag{3}\\
& \cos x>1-\frac{x^{2}}{\underline{\underline{12}}}+\frac{x^{4}}{\underline{14}}-\frac{x^{6}}{\underline{6}} \tag{3}\\
& \sin x>x-\frac{x^{3}}{\underline{13}}+\frac{x^{5}}{\underline{15}}-\frac{x^{4}}{\underline{17}} \tag{4}\\
& \cos x<1-\frac{x^{2}}{\underline{12}}+\frac{x^{4}}{\underline{14}}-\frac{x^{6}}{\underline{16}}+\frac{x^{8}}{\underline{18}} \cdots
\end{align*}
$$

and so on.
These inequalities are true for all positive values of x, since (1) is true for all positive values of x. If x is negative, the signs of inequality are reversed. Hence follow the infinite series for $\sin x$ and $\cos x$.
P. Pinkerton.

