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ABSTRACT

In this paper, we consider a Markov-modulated risk model (also called Marko-
vian regime switching insurance risk model). Follow Asmussen (2000, 2003),
by using the theory of Markov additive process, an exponential martingale is
constructed and Lundberg-type upper bounds for the joint distribution of sur-
plus immediately before and at ruin are obtained. As a natural corollary, bounds
for the distribution of the deficit at ruin are obtained. We also present some
numerical results to illustrate the tightness of the bound obtained in this paper.
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1. INTRODUCTION

In the classical insurance risk model, compound Poisson process is used to
model the surplus process. There is a huge amount of literature devoted to
the generalization of the classical model in different ways. For more detailed
discussions, see Gerber (1979), Grandell (1990), Rolski et al. (1999), Asmussen
(2000) and the references therein.

Asmussen (1989) proposed a Markov-modulated risk model; and ruin prob-
ability was studied under the proposed model. This model is also called Mar-
kovian regime switching model in the finance and actuarial science literature.
This model can capture the feature that insurance policies may need to change
if economical or political environment changes.

The deficit at ruin has obvious financial impact to the insurance company
if ruin has occurred. The distribution of surplus immediately before ruin provides
us some idea about the company’s financial situation before ruin is going to
happen, therefore it is also an interesting quantity to study. The surplus at ruin,
the surplus immediately before ruin and the joint distribution of the surplus
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immediately before and at ruin have been investigated by many authors recently.
Gerber, Goovaerts and Kaas (1987) considered the distribution of the severity
of ruin for the classical compound Poisson risk model. In their paper, an inte-
gral equation satisfied by the distribution of the severity of ruin was obtained.
In the case of claim sizes following a mixture of exponential distributions or
a mixture of Gamma distributions, closed form solutions were obtained. Later,
Dufresne and Gerber (1988) introduced the distribution of the surplus imme-
diately before ruin in the compound Poisson model. Similar results to those in
Gerber, Goovaerts and Kaas (1987) were obtained in that paper. Dickson
(1992) used a different way to deal with the distribution of surplus immediately
before ruin. Dickson and Dos Reis (1994) extended the method of Dickson
(1992) by using dual events to explain the relationship between the density of
the surplus immediately before ruin, and the joint density of the surplus imme-
diately before ruin and the severity of ruin. Schmidli (1999) considered the
compound Poisson model with positive, negative or zero loading. Explicit
expressions for the distributions of the surplus prior and at ruin were given in
terms of ruin probability. Some asymptotic results for these distributions were
obtained. Gerber and Shiu (1997, 1998) examined the joint distribution of the
time of ruin, the surplus immediately before ruin and the deficit at ruin. They
showed that the expected discounted penalty, considered as a function of the
initial surplus, satisfies a renewal equation. Explicit solutions were obtained for
some special cases. Gerber and Shiu (2005) studied the expected discounted
penalty at ruin in a Sparre Andersen model and an integro-differential equa-
tion was obtained; the solution of this equation was given in terms of Laplace
transforms. A closed form expression for the joint distribution of surplus imme-
diately before and at ruin was obtained when the initial surplus is zero. In Ng
and Yang (2005), the closed form solutions for the joint distribution of surplus
immediately before and at ruin when the initial surplus is zero or when the claim
size distributions are phase-type distributed are obtained under the Markov-
modulated risk model.

In this paper, using the approach in Asmussen (2000, 2003), Lundberg-type
upper bounds for the joint distribution are obtained. As some natural corolla-
ries, bounds for the distribution of the deficit at ruin are obtained. We also pre-
sent some numerical results to illustrate the tightness of the bound obtained
in this paper.

2. THE INSURANCE RISK MODEL

Let {Jt}t ≥ 0 be a homogenous continuous-time Markov chain taking values in
a finite set M = {1,2,…,d} with generator L = [lij]. L is assumed to be irre-
ducible with stationary distribution p = (p1,p2,…,pd). In this paper, only expo-
nentially bounded claim distributions, i.e. small claims, are considered. When
Jt = i, the claim size distribution is Bi with moment generating function Bi (s) and
mean mi, the arrival intensity is bi and the premium rate is ci. Claims at different
regimes are independent, and claims at the same regime are i.i.d. The initial
surplus is u ≥ 0.

A way to describe Rt precisely is to first set up d independent risk process
{R1

t},{R2
t},…,{Rd

t}. Each {Ri
t} is a classical compound Poisson risk process with
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premium rate ci, claim arrival rate bi, claim sizes distribution Bi and zero initial
surplus. Then the risk process {Rt} is given by

sR u J i Rd1
t

i

d

s
01

= + =
=

t
i#! ] g

where 1(A) is the indicator function of event A. We then define the claim sur-
plus process {St} as

St = u – Rt.

This is the same model as in Asmussen (1989).

Following the proof of Theorem 12.3.2 of Rolski et al. (1999), it is easy to show
that

lim t
R cp b m

t
i i i i

i

d

1

= -
" 3

=

t ! ^ h. (1)

Let �i (·) = �(· |J0 = i). From the above, the net profit condition, that is, the con-
dition such that the ruin probability is strictly less than one starting with any
state of economy, is 

> .cp b m 0i i i i
i

d

1

-
=

! ^ h (2)

Let t(u) = inf{t : St > u} = inf{t : Rt < 0} be the time of ruin with initial sur-
plus u. For i, j ∈ M,u,x,y ≥ 0, let

Fi (u,x,y) = �i (t(u) < ∞, Rt(u)– ≤ x, Rt(u) ≥ –y |R0 = u)

be the joint distribution of surplus immediately before and at ruin with initial
surplus u and initial state of economy i. The joint distribution of surplus imme-
diately before and at ruin with initial surplus u and initial state of economy i
and fixing the state of economy at the time of ruin to be j is denoted by 

Fij (u,x,y) = �i (t(u) < ∞, Jt(u) = j, Rt(u)– ≤ x, Rt(u) ≥ –y |R0 = u).

We assume in the following that the net profit condition (2) holds and ci = 1 for
all i ∈ M since we only deal with events in infinite horizon. Indeed for any sets
of premium rate {ci}i ∈M , the transformation

lij = c
l

i

ij , bi = c
b

i

i , ci = 1

yields a process {St} such that the joint distributions of the surplus before
and after ruin with initial surplus u for the corresponding {Rt} and {Rt} are the
same.
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3. CHANGE OF PROBABILITY MEASURE

Gerber (1973, 1979) advocated the use of martingales in ruin theory. By using
martingale methods, Lundberg bounds for ruin probabilities in many insurance
risk models, including the classical model, the Sparre Andersen model, the
Markov-modulated risk model and the periodic risk model, can be obtained.

Let E be a complete and separable space equipped with the natural filtration
{Ft}t ≥ 0 on the space DE of all real-valued functions which are right-continuous
with left limit and Borel sigma-field F, and let � be a given probability measure
on (DE,F). Suppose that {Mt}t ≥ 0 is a non-negative martingale with respect to
({Ft}t ≥ 0,�) and �M0 = 1. Denote � [X1(A)] by � [X; A].

Since the bivariate process {(Jt, St)}t ≥ 0 is Markov, one can construct a mar-
tingale by the theory of Markov process. Asmussen (2000) constructed an
exponential martingale for the Markov-modulated risk process by using the the-
ory of Markov additive process. For general theory of Markov additive process,
one can refer to Asmussen (2003). Consider the probability space (W, {Ft}, �i),
where Ft = s{(Jv, Sv) : v ≤ t} is the s-field generated by the Markov-modula-
ted risk process. Let s0 be chosen such that the moment generating functions
Bi (s0) < ∞ for all i ∈M. Let K(a) = L + diag(bi (Bi (a) – 1)) – aI. By the Perron-
Frobenius thoerem (see, for example, Corollary A4.8 of Asmussen (2000)), the
eigenvalue k(a) of K(a) with maximal real part is simple and real, and the
corresponding right eigenvector h(a) can be chosen with all entries strictly pos-
itive. Here the normalization is ph(a) = 1.

It can be shown that {Mt}t ≥ 0 defined by

M
h

h
e( )

( )

( )
a

a

a a
t

J

J S t kt t

0

= -

is a non-negative martingale with �iM0 = 1 and �i
(a) defined by �i

(a)(A) = �i [Mt;
A] for any A ∈ Ft is a probability measure.

Under �i
(a),{Rt}t ≥ 0 is still a Markov-modulated risk process with intensity

matrix L(a) = [lij
(a)], claim arrival rates bj

(a) and claim size distributions Bj
(a)(x)

for all j ∈ M where

!
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Also, k(a)(q) = k(a + q) – k(a).
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From Theorem 12.3.4 of Rolski et al. (1999), k(a) is convex on (–∞, s0) and

k�(0) = j j
!

p b m1 j
j M

- - !f p < 0

by the net profit condition (2), hence there may exist a unique positive solu-
tion g of the equation k(a) = 0 and g is the adjustment coefficient.

To obtain an exponential bound for the joint distribution of surplus imme-
diately before and at ruin, we use the probability measure �L,i = �i

(g). By diffe-
rentiating with respect to s, k(q)�(s) = k�(s + q) and hence k(g)�(0) = k�(g) > 0 by
the convexity of k(s). Then by

k(g)�(0) =
!

p b m1 j j j
j

g g g

M

- - ! ] ] ]
f

g g g
p,

it is obvious that

<p b m1 0j j j
j E

g g g
-

!

! ] ] ]g g g .

Hence the net profit condition does not hold under �L,i and �L,i(t(u) < ∞) = 1
for any u ≥ 0, i ∈ M.

In the following the adjustment coefficient g is assumed to exist. Let h =
h(g) and BL, j (x) = Bj

(g)(x).

4. LUNDBERG BOUNDS

In this section we shall derive exponential upper bounds for the joint distribu-
tion of surplus immediately before and at ruin and the distribution of the
deficit at ruin using change of probability measure.

Theorem 1. Assume the net profit condition (2) holds and the adjustment coef-
ficient g exists. The Lundberg-type upper bound for the joint distribution of surplus
immediately before and at ruin starting with initial surplus u, state of economy
i and ruin in state of economy j is given by

i , , supF u x y h
h e

e B z

B v y B v

d
j

j

u

v x z v
j

v

j jg
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and the Lundberg-type upper bound for the joint distribution of surplus immedi-
ately before and at ruin starting with initial surplus u and state of economy i is
given by

i
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Proof: Let z(u) = St(u) – u = |Rt(u) | be the overshoot above level u when ruin
occurs,
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which is the Lundberg-type upper bound for Fij(u,x,y).
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Theorem 2. Assume the net profit condition (2) holds and the adjustment coef-
ficient g exists. The two-sided Lundberg bound for the distribution of the deficit
at ruin starting with initial surplus u and state of economy i is given by
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and the two-sided Lundberg bound for the deficit at ruin starting with initial sur-
plus u and state of economy i is given by
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which shows the first result.

The second result follows by a similar argument. ¡

Letting y goes to infinity in the first result of Theorem 2, the two-sided Lundberg
bound for the ruin probability same as that of Theorem VI.3.11 in Asmussen
(2000) is obtained.

5. NUMERICAL ILLUSTRATION

For a simple illustration, we calculate the two-sided bounds for the distribution
of the deficit at ruin and compare them with the theoretical value.

Consider a Markov-modulated risk model with three states of economy.
Suppose that

L
0

3
1

9
1

6
1

9
1

3
1

9
2

9
2

6
1

=

-

-

-

R

T

S
S
SS

V

X

W
W
WW

and   .b
1

2
1

3
1=

R

T

S
S
SS

V

X

W
W
WW

In state of economy 1, the claims sizes are exponentially distributed with mean 1.
In state of economy 2, the claim sizes are exponentially distributed with mean 6.
In state of economy 3, the claim sizes are hyperexponentially distributed with two
channels and the density is

.e e
4
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2
1x x2+- -

The stationary distribution of the continuous-time Markov chain is found to be
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28
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and pii 1

3

=
! bi mBi

= 8
7 which means that the relative security loading is 7

1 . The
unique positive solution of the equation k(a) = 0 is g = 0.038215. The right
eigenvector h = h(g) with the normalization ph(g) = 1 is

.
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0 989849
1 194539
0 969234
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V
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For phase-type claims closed-form solution of Fi (u,∞,y) has been obtained by
Ng and Yang (2005).

The following shows the theoretical value and the two-sided Lundberg bounds
for some combinations of u, y and i.

For u = 1, i = 1:

y F1(1,∞,y) lower bound upper bound

0.5 0.20586 0.04731 0.41435
1 0.33604 0.09083 0.63118
2 0.47964 0.16771 0.81742
4 0.59543 0.28789 0.90178
6 0.64902 0.37310 0.91272
8 0.68346 0.43569 0.91419

For u = 2, i = 3:

y F3(2,∞,y) lower bound upper bound

0.5 0.20936 0.04632 0.40572
1 0.33900 0.08894 0.61804
2 0.47854 0.16421 0.80039
4 0.58635 0.28189 0.88300
6 0.63412 0.36621 0.89371
8 0.66441 0.42662 0.89515

For u = 6, i = 1:

y F1(6,∞,y) lower bound upper bound

0.5 0.09430 0.04060 0.35562
1 0.16044 0.07795 0.54171
2 0.24777 0.14394 0.70155
4 0.34771 0.24708 0.77395
6 0.40952 0.32098 0.78334
8 0.45249 0.37393 0.78460
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For u = 10, i = 2:

y F2 (10,∞,y) lower bound upper bound

0.5 0.07629 0.04205 0.36832
1 0.13330 0.08074 0.56107
2 0.21520 0.14908 0.72661
4 0.31998 0.25591 0.80160
6 0.38882 0.33245 0.81136
8 0.43731 0.38729 0.81263

As in the case of the two-sided Lundberg bounds for the ruin probability, the
bounds are not very tight because of the various supremums and infimums.
But it can be seen that the bounds still give a rough idea of the true value in
many cases.
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