PRESENTATIONS OF THE TREFOIL GROUP

BY
M. J. DUNWOODY AND A. PIETROWSKI

Introduction. A presentation of a group G is an exact sequence of groups

$$
1 \rightarrow R \subseteq F \rightarrow G \rightarrow 1
$$

where F is a free group. Let $1 \rightarrow S \subseteq F \rightarrow G \rightarrow 1$ be another presentation of G involving the same free group F. The two presentations are said to be F-equivalent if there exist automorphisms α, β of F, G respectively making the diagram

$$
\begin{aligned}
& 1 \rightarrow R \subseteq \underset{\downarrow \alpha}{F \rightarrow G \rightarrow 1} \\
& 1 \rightarrow S \subseteq F \rightarrow G \rightarrow 1
\end{aligned}
$$

commutative. If F has n free generators, then every ordered n-tuple of generators of G determines a presentation of G. Two such n-tuples of generators determine F equivalent presentations if and only if they belong to the same T-system (see [4] or [2]). In this paper it is shown that if G is the trefoil group, i.e.

$$
G=g p\left(a, b \mid a^{2}=b^{3}\right)
$$

then G has an infinite number of F-equivalence classes of presentations.
If F has n generators and r is the smallest number of elements whose normal closure in F is R, then the presentation

$$
1 \rightarrow R \subseteq F \rightarrow G \rightarrow 1
$$

is said to have deficiency $n-r$. It is asserted in [1] that the group

$$
G=g p\left(a, b \mid a^{-1} b^{2} a=b^{3}\right)
$$

has a presentation in which the deficiency is not 1 . It is stated that Graham Higman has shown that the presentation determined by the pair of generators a, b^{4} requires two relators.

It will be shown in this paper that if $G=g p\left(a, b \mid a^{2}=b^{3}\right)$, and i is a positive integer, then $a^{2 i+1}, b^{3 i+1}$ is a pair of generators for G requiring more than one defining relator.

The results can easily be generalized to groups of the form $G=g p\left(a, b \mid a^{r}=b^{s}\right)$ where r, s are coprime.

Received by the editors December 8, 1971.

Nielsen transformations. Let $G p$ be the category of groups. Let $G p^{n}$ be the subcategory of $G p$ consisting of all groups
and maps

$$
G \times G \times \cdots \times G \quad(n \text { copies })
$$

$$
\theta \times \theta \times \cdots \times \theta: G \times G \times \cdots \times G \rightarrow H \times H \times \cdots \times H
$$

where $\theta: G \rightarrow H$ is a homomorphism.
An n-transformation α is defined to be a natural transformation of the identity functor from $G p^{n}$ to $G p^{n}$. Let F_{n} be the free group on x_{1}, \ldots, x_{n}. It is easy to see that there are fixed words $w_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, w_{n}\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
\left(g_{1}, \ldots, g_{n}\right) \alpha=\left(w_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, w_{n}\left(g_{1}, \ldots, g_{n}\right)\right)
$$

A Nielsen transformation is an n-transformation α such that $\left(x_{1}, \ldots, x_{n}\right) \alpha$ is a set of generators for F_{n}. Thus there exists an automorphism $\gamma: F_{n} \rightarrow F_{n}$ such that

$$
\left(x_{1}, \ldots, x_{n}\right) \alpha=\left(x_{1} \gamma, \ldots, x_{n} \gamma\right)
$$

If $\theta: G \rightarrow H$ is a mapping, we write $\left(g_{1} \theta, \ldots, g_{n} \theta\right)$ as $\left(g_{1}, \ldots, g_{n}\right) \theta$.
Theorem 1. The set of all Nielsen transformations forms a group N under composition. The mapping

$$
\begin{gathered}
\rho: N \rightarrow \text { Aut } F_{n} \\
\alpha \rho=\gamma
\end{gathered}
$$

is an anti-isomorphism.
Proof. Clearly ρ is bijective. If α_{1}, α_{2} are Nielsen transformations

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}\right) \alpha_{1} \alpha_{2} & =\left(x_{1}, \ldots, x_{n}\right) \alpha_{1} \rho \alpha_{2} \\
& =\left(x_{1}, \ldots, x_{n}\right) \alpha_{2} \alpha_{1} \rho
\end{aligned}
$$

since α_{2} is a natural transformation. Hence

$$
\left(x_{1}, \ldots, x_{n}\right) \alpha_{1} \alpha_{2}=\left(x_{1}, \ldots, x_{n}\right) \alpha_{2} \rho \alpha_{1} \rho,
$$

and so $\left(\alpha_{1} \alpha_{2}\right) \rho=\alpha_{2} \rho \alpha_{1} \rho$, which proves the theorem.
Every ordered n-tuple $\underline{\underline{g}}=\left(g_{1}, \ldots, g_{n}\right)$ of generators of a group G determines a presentation

$$
1 \rightarrow R \subseteq F_{n} \xrightarrow{\theta} G \rightarrow 1
$$

in which $x_{i} \theta=g_{i}, i=1, \ldots, n$. Let $1 \rightarrow S \subseteq F_{n} \xrightarrow{\phi} G \rightarrow 1$ be another presentation of G. If these presentations are F_{n}-equivalent, $\phi=\gamma \theta \beta$ where γ, β are automorphisms of F_{n} and G respectively. Let $\alpha=\gamma \rho^{-1}$, then

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}\right) \gamma \theta \beta & =\left(x_{1}, \ldots, x_{n}\right) \alpha \theta \beta \\
& =\left(x_{1}, \ldots, x_{n}\right) \theta \alpha \beta \\
& =\left(g_{1}, \ldots, g_{n}\right) \alpha \beta .
\end{aligned}
$$

Thus the n-tuple corresponding to ϕ can be obtained from $\left(g_{1}, \ldots, g_{n}\right)$ by a Nielsen transformation and an automorphism of G.

Let A be the free abelian group (written multiplicatively) on free generators a_{1}, a_{2}. Let α be a Nielsen transformation for which $\left(a_{1}, 1\right) \alpha=\left(a_{1}, 1\right)$. Clearly then

$$
\left(a_{1}, a_{2}\right) \alpha=\left(a_{1} a_{2}^{i}, a_{2}^{j}\right)
$$

where $j= \pm 1$. It follows that if τ, μ are the Nielsen transformations such that

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right) \tau=\left(x_{1} x_{2}, x_{2}\right) \\
& \left(x_{1}, x_{2}\right) \mu=\left(x_{1}, x_{2}^{-1}\right),
\end{aligned}
$$

then multiplying α by a suitable power of τ and also by μ if $j=-1$ we obtain a Nielsen transformation α^{\prime} for which $\left(a_{1}, a_{2}\right) \alpha^{\prime}=\left(a_{1}, a_{2}\right)$. Thus $\left(x_{1}, x_{2}\right) \alpha^{\prime}=\left(x_{1} \gamma, x_{2} \gamma\right)$ where γ is an automorphism of F_{2} which induces the identity automorphism on F_{2} / F_{2}^{\prime}. It is proved in [5] that γ is an inner automorphism. Let G be an arbitrary group and let $g_{1}, g_{2} \in G$, then the second component of $\left(g_{1}, g_{2}\right) \alpha^{\prime}$ is a conjugate of g_{2}. But the second component of $\left(g_{1}, g_{2}\right) \alpha^{\prime}$ is either the same as or the inverse of the second component of $\left(g_{1}, g_{2}\right) \alpha$. Thus we have proved the following lemma.

Lemma 1. Let G be an arbitary group and let $g_{1}, g_{2} \in G$. Let $C=g p(c)$ be the infinite cyclic group. If α is a Nielsen transformation such that $(c, 1) \alpha=(c, 1)$, then the second component of $\left(g_{1}, g_{2}\right) \alpha$ is a conjugate of g_{2} or g_{2}^{-1}.

Presentations of the trefoil group. Let $G=g p\left(a, b \mid a^{2}=b^{3}\right)$. The automorphism group of G is generated by inner automorphisms and the automorphism

$$
\begin{gathered}
v: G \rightarrow G \\
a v=a^{-1}, \quad b v=b^{-1} .
\end{gathered}
$$

Suppose (g, h) is an ordered pair of generators for G. By an extension of Gruschko's theorem (see [3]), it follows that there is a Nielsen transformation α_{1} for which $(g, h) \alpha_{1}=\left(a^{m}, b^{n}\right)$ for some integers m, n. If σ is the Nielsen transformation such that $\left(x_{1}, x_{2}\right)=\left(x_{1}^{-1}, x_{2}^{-1}\right)$, then $(g, h) v \alpha_{1}=(g, h) \alpha_{1} \nu=\left(a^{m}, b^{n}\right) \nu=\left(a^{-m}, b^{-n}\right)=(g, h) \alpha_{1} \sigma$. Hence $(g, h) v=(g, h) \alpha_{1} \sigma \alpha_{1}^{-1}$. If β is an inner automorphism of G, then clearly there is a Nielsen transformation α for which $(g, h) \beta=(g, h) \alpha$. Hence for any pair of generators (g, h) of G and any automorphism β of G, there is a Nielsen transformation α for which $(g, h) \beta=(g, h) \alpha$. It follows from the previous section therefore that two ordered pairs of generators $\underline{\underline{g}}, \underline{\underline{\underline{g^{\prime}}}}$ of G determine F_{2}-equivalent presentations if and only if there is a Nielsen transformation α for which $g \alpha=g^{\prime}$.

Let $\underset{=}{g_{i}}=\left(a^{2 i+1}, b^{3 i+1}\right)$. It follows from [3] that ${\underset{\underline{g}}{i}}^{g_{i}}$ is an ordered pair of generators for G. Now

$$
\underline{\underline{g}}_{i} \tau^{-1}=\left(a b^{-1}, b^{3 i+1}\right)
$$

and so clearly there is a Nielsen transformation α_{i} for which

$$
\underline{\underline{g}}_{i} \alpha_{i}=\left(a b^{-1}, b^{3 i+1}\left(a b^{-1}\right)^{-6 i-2}\right)
$$

Let C be the infinite cyclic group generated by c, then there is a homomorphism $\theta: G \rightarrow C$ such that $\left(a b^{-1}\right) \theta=c$ and $\left(b^{3 i+1}\left(a b^{-1}\right)^{-6 i-2}\right) \theta=1$. Suppose that there were a Nielsen transformation α for which $g_{i} \alpha_{i} \alpha=g_{j} \alpha_{j}$. Then since α is a natural transformation $(c, 1) \alpha=(c, 1)$, and so by Lemma $1, b^{3 i+1}\left(a b^{-1}\right)^{-6 i-2}$ is a conjugate of $b^{3 j+1}\left(a b^{-1}\right)^{-6 j-2}$ or its inverse. It is easy to verify that this is true if and only if $i=j$.

In her paper [6], E. S. Rapaport proves that any two presentations of the trefoil group involving F_{2} and one relator are F_{2}-equivalent. It follows that the presentation of G determined by $\underset{\underline{g}}{g_{i}}=\left(a^{2 i+1}, b^{3 i+1}\right), i \neq 0$, requires more than one relator. Thus we have proved the following theorem.

THEOREM 2. If $G=g p\left(a, b \mid a^{2}=b^{3}\right)$ and $\underline{\underline{g}}_{i}=\left(a^{2 i+1}, b^{3 i+1}\right)$, then the presentations of G determined by $\underline{\underline{g}}_{i}$ and $\underset{=}{g_{j}}$ are F_{2}-equivalent only if $i=j$. For $i \neq 0$ the presentation determined by $\underline{\underline{g}}_{i}$ requires more than one relator.

References

1. Gilbert Baumslag and Donald Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1952), 199-201.
2. M. J. Dunwoody, On T-systems of groups, J. Austral. Math. Soc. 3 (1963), 172-179.
3. James McCool and Alfred Pietrowski, On free products with amalgamation of two infinite cyclic groups, J. Algebra 18 (1971), 377-383.
4. Bernhard H. Neumann und Hanna Neumann, Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen, Math. Nachr. 4 (1951), 106-125.
5. J. Nielsen, Isomorphie der allgemeinen unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1917), 385-397.
6. Elvira Strasser Rapaport, Note on Nielsen transformations, Proc. Amer. Math. Soc. 10 (1959), 228-235.

University of Sussex, Falmer, Brighton, U.K.

University of Toronto, Toronto, Ontario

