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Abstract
In this paper, we study discrepancy questions for spanning subgraphs of k-uniform hypergraphs. Our
main result is that, for any integers k≥ 3 and r≥ 2, any r-colouring of the edges of a k-uniform n-vertex
hypergraph G with minimum (k− 1)-degree δ(G)≥ (1/2+ o(1))n contains a tight Hamilton cycle with
high discrepancy, that is, with at least n/r+�(n) edges of one colour. The minimum degree condition is
asymptotically best possible and our theorem also implies a corresponding result for perfect matchings.
Our tools combine various structural techniques such as Turán-type problems and hypergraph shad-
ows with probabilistic techniques such as random walks and the nibble method. We also propose several
intriguing problems for future research.
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1. Introduction
In discrepancy theory, the basic question is whether a structure can be partitioned in a balanced
way, or if there is always some ‘discrepancy’ no matter how the partition is made. Formally, let
H be a hypergraph and let f :V(H)→{red, blue} be a 2-colouring of its vertices. For an edge
e ∈ E(H) and a colour c, let c(e) := {x ∈ e : f (x)= c}. The discrepancy of e is defined as Df (e) :=∣∣|red(e)| − |blue(e)|∣∣= 2 ·maxc∈{red, blue}

(
|c(e)| − |e|2

)
; the larger Df (e) is, the less balanced is the

colouring of e. The discrepancy of H is then defined as minf maxe Df (e). In other words, the
discrepancy measures the maximum imbalance that is guaranteed to occur in every 2-colouring
of V(H). Discrepancy of hypergraphs is a classical topic in combinatorics; we refer the reader to
[2, Chapter 13] for an introduction. The notion of discrepancy naturally generalises to more than
2 colours: For a hypergraph H, an r-colouring f :V(H)→ [r] and an edge e ∈ E(H), define the
discrepancy of e as Df (e) := r ·maxc∈[r]

(
|c(e)| − |e|r

)
. This coincides with the above definition of

Df (e) for the case r= 2. The r-colour discrepancy ofH is then defined as minf maxe Df (e).
There are many works studying discrepancy problems for hypergraphs arising from graphs,

namely, when V(H) is the edge set of a graph G and E(H) is a family of subgraphs of G. Two
early results of this type are the theorem of Erdős and Spencer [12] on the discrepancy of cliques
in the complete graph, and the work of Erdős, Füredi, Loebl and Sós [11] on the discrepancy
of copies of a given spanning tree in the complete graph. In recent years there has been a lot of
interest in discrepancy problems in general graphs, and there are by now many works studying
conditions that guarantee the existence of high-discrepancy subgraphs of various types, such as
perfect matchings and Hamilton cycles [3, 14, 16, 17], spanning trees [17], H-factors [4, 7] and
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powers of Hamilton cycles [6]. See also [15, 18] for an oriented analogue. Many of the results
study minimum degree thresholds for linear discrepancy, namely, they determine how large the
minimum degree of G should (asymptotically) be so that G is guaranteed to contain a subgraph of
a certain type with discrepancy �(n). For example, in [3, 14, 17], it is shown that for every ε > 0,
every r-edge-colouring of an n-vertex graph with minimum degree ( r+12r + ε)n has a Hamilton
cycle and a perfect matching with linear discrepancy, and the constant r+1

2r is best possible. We
will often say high discrepancy to mean linear discrepancy, i.e., discrepancy �(n).

In this work, we study discrepancy problems in k-uniform hypergraphs (short: k-graphs), in
analogy to the aforementioned works for graphs. In this context, it is worth mentioning the sem-
inal result of Alon, Frankl, and Lovász [1] in which they proved, using topological methods, the
following conjecture of Erdős: If the edges of the complete n-vertex k-graphK(k)

n are coloured with
r colours, and n≥ (r− 1)(s− 1)+ sk, then there exists a monochromatic matching of size s. This
generalises Kneser’s conjecture which corresponds to the case k= 2 and was resolved by Lovász
[25]. The Alon–Frankl–Lovász result implies in particular that any 2-edge-colouring of K(k)

n con-
tains a monochromatic matching of size at least � n

k+1� and, by arbitrarily adding edges, this can
be extended to a perfect matching with high discrepancy (assuming k | n of course).

Our main result is the determination of the minimum (k− 1)-degree threshold for the dis-
crepancy of perfect matchings and tight Hamilton cycles in k-graphs, thereby establishing a
discrepancy version of the celebrated theorem of Rödl, Ruciński and Szemerédi [29]. Recall that
a tight Hamilton cycle of a k-graph G is a cyclic ordering v1, . . . , vn of the vertices of G such that
vivi+1 . . . vi+k−1 is an edge for every 1≤ i≤ n, with indices taken modulo n. Before stating our
main result, let us give some background on perfect matchings and Hamilton cycles in hyper-
graphs of large minimum degree. For a k-graph G and a set S⊆V(G), we say that the degree of S
in G, denoted by dG(S), is the number of edges containing S. We use δ(G) to denote theminimum
(k− 1)-degree, which is the minimum of dG(S) over all (k− 1)-sets S⊆V(G). In their seminal
paper which introduced the absorbing method systematically, Rödl, Ruciński, and Szemerédi
[29] showed that for every ε > 0, any n-vertex k-graph G with δ(G)≥ (1/2+ ε)n contains a tight
Hamilton cycle. Moreover, this is best possible, as there are k-graphs G with δ(G)= n/2−O(1)
and no tight Hamilton cycle (see [21, Theorem 3]).

Let us now consider discrepancy of tight Hamilton cycles.Mansilla Brito [27] showed that if a 3-
graphG satisfies δ(G)≥ (5/6+ ε)n, then it contains a tight Hamilton cycle with high discrepancy.
We improve this to δ(G)≥ (1/2+ ε)n and show that this holds for any uniformity k≥ 3 and
any (fixed) number of colours r≥ 2. This result is best possible since δ(G)≥ n

2 −O(1) is needed
even to guarantee the existence of a tight Hamilton cycle. Thus, for k≥ 3, the threshold for the
discrepancy of Hamilton cycles is the same as the existence threshold, and does not depend on
the number of colours r. This is in contrast to the graph case, where the discrepancy threshold is
strictly larger than the existence threshold and decreases as r increases (see [3, 14, 17]).

Theorem 1.1. For all k, r ∈N with k≥ 3 and r≥ 2, and all ε > 0, there exists μ > 0 such that the
following holds for all sufficiently large n. Let G be an n-vertex k-graph with δ(G)≥ (1/2+ ε)n
whose edges are r-coloured. Then there exists a tight Hamilton cycle in G which contains at least
(1+μ)nr edges of the same colour.

Note that if n is divisible by k, then a tight Hamilton cycle decomposes into k perfect matchings.
So by using Theorem 1.1 and averaging, we obtain the following corollary, which was proved
independently by Balogh, Treglown and Zárate-Guerén [5].

Corollary 1.2. For all k, r ∈N with k≥ 3 and r≥ 2, and all ε > 0, there exists μ > 0 such that the
following holds for all sufficiently large n divisible by k. Let G be an n-vertex k-graph with δ(G)≥
(1/2+ ε)n whose edges are r-coloured. Then there exists a perfect matching in G which contains at
least (1+μ) nrk edges of the same colour.

https://doi.org/10.1017/S0963548325000057 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548325000057


Combinatorics, Probability and Computing 567

The constant 1/2 in Corollary 1.2 is tight, as there exist n-vertex k-graphs with δ(G)= n/2−
O(1) and no perfect matching (see [24, 30]).

Similarly, Theorem 1.1 also implies an upper bound of 1/2 for the discrepancy threshold of
Hamilton �-cycles, where, for 1≤ �≤ k− 1 and for n divisible by k− �, a Hamilton �-cycle on n
vertices is a cyclic order v1, . . . , vn of the vertices such that vivi+1 . . . vi+k−1 is an edge for every
i divisible by k− � (so any two such consecutive edges intersect in exactly � vertices). Note that
the case �= k− 1 corresponds to a tight Hamilton cycle. Observe indeed that if n is divisible by
k− �, then a tight Hamilton cycle on n vertices decomposes into k− � Hamilton �-cycles. Thus,
by using Theorem 1.1 and averaging, we get that in every r-edge-colouring of a k-graph G on
n vertices, with n divisible by k− � and δ(G)≥ (1/2+ ε)n, there is a Hamilton �-cycle with at
least (1+μ) n

r(k−�) edges of the same colour. Unlike Theorem 1.1 and Corollary 1.2, here we do
not know whether the constant 1

2 is tight, i.e., whether minimum degree n
2 is necessary. See the

concluding remarks for more on this.

1.1 Organisation of the paper
In Section 2, we provide an overview of the key steps of our proof. In Section 3, we summerise
some known tools. Section 4 contains our key structural lemma which is already sufficient to
prove the case of perfect matchings, i.e., Corollary 1.2. In Sections 5–7, we use additional methods
to deal with Hamilton cycles. In the final section, we collect various other problems concern-
ing discrepancy of spanning structures in hypergraphs which seem very interesting for further
research.

1.2 Notation
For a set V and a natural numberm, we write

(V
m
)
to denote the set of allm-subsets of V . We write

(V)m to denote the set of all ordered m-tuples of distinct elements of V . We use capital letters
with arrows above to denote ordered tuples −→S ∈ (V)m. We shall subsequently drop the arrow to
denote the unordered version of thism-tuple, so that if−→S := (v1, v2, . . . , vm), then S denotes the
set {v1, . . . , vm}. Moreover, we write←−S to denote the ordered m-tuple obtained by reversing the
ordering of−→S , so that←−S := (vm, vm−1, . . . , v1).

Let G be a k-graph. For v ∈V(G) and a (k− 1)-set S⊆V(G), we say that v is a neighbour of S
in G if S∪ {v} is an edge in G, and we denote the set of neighbours of S in G by NG(S). The shadow
of G is the (k− 1)-graph on V(G) whose edges are the (k− 1)-sets which are contained in at least
one edge of G.

Given a tight path P= v1v2 . . . v� on �≥ k− 1 vertices in a k-graph, we say that P connects
the ordered (k− 1)-sets (v1, v2, . . . , vk−1) and (v�, v�−1, . . . , v�−k+2), which we call the ends of P.
The choice of taking (v�, v�−1, . . . , v�−k+2) rather than (v�−k+2, v�−k+3, . . . , v�) as an end of P is
intentional and due to the fact that P is an undirected path. We call � the order of P.

Given a 2-edge-colouring of G where we allow edges to receive multiple colours, we call the
edges receiving both colours double-coloured.

For a, b, c ∈ (0, 1], we write a� b� c in our statements to mean that there are increasing
functions f , g : (0, 1]→ (0, 1] such that whenever a≤ f (b) and b≤ g(c), then the subsequent result
holds. Moreover, when using the Landau symbolsO( · ),�( · ), subscripts denote variables that the
implicit constant may depend on.

We say that an event holds with high probability (w.h.p.) if the probability that it holds tends to
1 as the number of vertices n tends to infinity.
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Figure 1. An alternating 2-grid on vertices {x11, x12, x21, x22} and a near-alternating 3-grid on vertices
{x11, x12, x13, x21, x22, x23, x31, x32, x33}. The grey edges stand for edges whose colour is arbitrary.

2. Proof overview
Throughout this section, we let G be an r-edge-coloured n-vertex k-graph with δ(G)≥ (1/2+
ε)n. We will first sketch a proof that G contains a perfect matching with high discrepancy.
Subsequently we will discuss what more needs to be done in order to find a tight Hamilton cycle
with high discrepancy.

2.1 Perfect matchings
We start by assuming that r= 2; we will handle the case of an arbitrary number of colours later
on.

We aim to find an (edge-coloured) ‘gadget’ in G with the property that it contains a perfect
matching where the majority colour is red and a perfect matching where the majority colour is
blue. Such a gadget can then be used to ‘push’ the majority colour. A natural candidate is the
alternating k-grid, which is defined as follows. A k-grid is the k-graph on vertices {xij : 1≤ i, j≤ k}
and with edges xi1 · · · xik for each i ∈ [k] (which we will call horizontal edges) and x1j · · · xkj for
each j ∈ [k] (which we will call vertical edges). An alternating k-grid is a 2-edge-coloured k-grid
with all horizontal edges red and all vertical edges blue (cf. Figure 1). Observe that the horizontal
edges form a red perfect matching and the vertical edges form a blue perfect matching. If we
can find linearly many such vertex-disjoint gadgets, say εn/2k2 many, then, after removing them,
the resulting k-graph G′ still has δ(G′)≥ (1/2+ ε/2)|V(G′)| and hence has a perfect matching
M′ (cf. [24, 30]). Without loss of generality, assume that at least half of the edges of M′ are red.
Then, for each of the gadgets, take the red perfect matching. The union of all such matchings
gives a perfect matching of G with at least (1− ε

2 )
n
2k + ε

2kn= (1+ ε
2 )

n
2k red edges, thus providing

a perfect matching with high discrepancy.
Unfortunately, an alternating k-grid does not necessarily exist in G, not even if G is complete

and has many edges of both colours. (For instance, if we choose a subset A⊆V(G) and colour all
edges which intersect A blue and all edges which do not intersect A red, then it is easily verified
that there is no alternating k-grid.) However, our key lemma says that, unless the colouring is
almost monochromatic, we can guarantee a near-alternating k-grid, namely, a 2-edge-coloured
k-grid such that all horizontal edges but at most one are red, and all vertical edges but at most one
are blue (cf. Figure 1).

(L1) If δ(G)≥ (1/2+ ε)n, then either G contains a near-alternating k-grid, or G is almost
monochromatic.

The formal statement of (L1) is offered by Lemma 4.1. We defer a proof sketch of this result
to Section 4. Applying (L1) repeatedly gives that either G contains linearly many vertex-disjoint
near-alternating k-grids, or its colouring is almost monochromatic. In the first case, one can apply
the same argument as above, with alternating k-grids replaced by near-alternating k-grids: this
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still works since, for each gadget, we can decide to cover its k2 vertices with a perfect match-
ing containing more red edges or more blue edges (as k≥ 3). In the second case, when almost
all edges of G have the same colour, one can use standard methods to show that G contains an
almost-monochromatic perfect matching. We remark this here for the benefit of the reader, but
will actually not implement these steps since the result for perfect matchings will follow from the
more general theorem about tight Hamilton cycles.

The case of an arbitrary number r of colours can be handled by identifying the first r− 1 colours
into one colour (say ‘blue’) and applying the 2-colour argument outlined above. The key point is
that it suffices to find a perfect matching of G that either has at least n

rk +�(n) edges in the rth
colour or at least (r−1)n

rk +�(n) edges in blue, because in the latter case, averaging gives that one of
the first r− 1 colours appears at least n

rk +�(n) times. Such a perfect matching can be found using
the same strategy as above, consisting of first removing near-alternating grids and then covering
the rest with a perfect matchingM′, and by applying a ‘biased’ case distinction forM′. Namely, in
M′, either a (1− 1

r )-fraction of edges is blue or a 1
r -fraction has the rth colour, and whichever case

holds, we can use the gadgets to ‘push’ the relevant colour(s).

2.2 Tight Hamilton cycles
We now discuss how to find a tight Hamilton cycle with high discrepancy. For hypergraphs with
minimum degree above 1/2 (to which we refer informally as Dirac hypergraphs), there are well-
known tools which allow one to connect a given set of disjoint tight paths into a tight Hamilton
cycle (see Section 3.1). Therefore, if these paths are of high discrepancy and only ‘miss’ a small
number of edges to close a Hamilton cycle, then we are done as, no matter which colours are used
in the completion, the discrepancy cannot be ruined anymore. A crucial step of our argument is
to find such paths (the formal statement is offered by Lemma 6.1).

(L2) If δ(G)≥ (1/2+ ε)n, then G contains a collection of vertex-disjoint tight paths, whose
union contains (1− o(1))n edges and has high discrepancy.

In order to show the above, we proceed as follows. We use our key lemma to find a perfect
fractional matching x such that x is ‘normal’, i.e. each edge has weight �(n−k+1), and such that x
has high discrepancy, in the sense that the total weight received by some colour class (say ‘red’) is
significantly above the average, i.e. larger than n/(rk)+�(n) (see Lemma 5.2, and see Section 3.1
for the definition of a perfect fractional matching). We then use x to define a random walk Y
on V(G), such that a path of order t sampled according to the first t vertices of Y (conditioning
on being self avoiding) has the following properties: Every vertex is approximately equally likely
to be contained in the path and the probability of an edge e appearing in the path is roughly
proportional to x(e) (see Lemma 5.3).

We sample N paths of order t independently, where t is a sufficiently large constant and
N := nt−1/2. Finally, we define an auxiliary t-uniform hypergraph H with vertex set V(G) and
edges corresponding to the vertex sets of the sampled paths. (The choice of N ensures that this
hypergraph is rather dense, but still we do not expect too many parallel edges.) Owing to the first
property of Y mentioned above, the t-graph H is almost-regular and, obviously, its maximum 2-
degree is at most nt−2. By a fundamental theorem of Frankl, Rödl [13], and Pippenger (see [28]),
we can then establish that H contains an almost-perfect matching, which corresponds to a col-
lection of vertex-disjoint tight paths of order t covering almost all the vertices. However, our goal
is to find such a collection with high discrepancy. Owing to the second property of Y mentioned
above and the fact that the weight of red edges is significantly above the average, the paths in G
which correspond to the edges in H are likely to contain many red edges. A result concerning
finding hypergraph matchings with pseudorandom properties due to Ehard, Glock, and Joos [9]
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(see Theorem 3.5) then allows us to find an almost-perfect matching in H such that the corre-
sponding collection of vertex-disjoint paths indeed has high discrepancy. This proves (L2) and
establishes Theorem 1.1.

3. Preliminaries
In this section, we collect some preliminary results.

3.1 Dirac hypergraphs
In this subsection we state three results concerning hypergraphs with minimum (k− 1)-degree
above n/2. The first is the so-called ‘Connecting Lemma’ which allows to connect any two disjoint
ordered (k− 1)-tuples of vertices by a tight path of bounded length.

Lemma 3.1 (Lemma 2.4 in [29]). Let 1/n� ε� 1/k with k ∈N and k≥ 3. Let G be a k-graph on
n vertices with δ(G)≥ (1/2+ ε)n. Then for every two disjoint ordered (k− 1)-subsets of vertices of
G, there is a tight path in G of order at most 2k/ε2 which connects them.

The second result is the so-called ‘Absorbing Lemma’ and shows the existence of an absorber
for tight paths in Dirac hypergraphs.

Lemma 3.2 (Lemma 2.1 in [29]). Let 1/n� β�μ� ε, 1/k, with k ∈N and k≥ 3. Let G be a
k-graph on n vertices with δ(G)≥ (1/2+ ε)n. Then there exists a tight path P with |V(P)| ≤μn
such that for every subset W ⊆V(G) \V(P) of size |W| ≤ βn, there is a tight path P̃ in G with
V(P̃)=V(P)∪W and such that P̃ has the same ends as P.

The third result concerns the existence of ‘balanced’ perfect fractional matchings. Let us intro-
duce the relevant definitions. Let G be an n-vertex k-graph. A perfect fractional matching of G is
a function x : E(G)→ [0, 1] such that, for every vertex v ∈V(G), we have ∑

e�v x(e)= 1. Observe
that this implies that

∑
e∈E(G) x(e)= n/k, which we will use throughout without mention. For

μ ∈ (0, 1], a perfect fractional matching x is said to be μ-normal if μn−k+1 ≤ x(e)≤μ−1n−k+1
for all e ∈ E(G). The following result states that Dirac hypergraphs have normal perfect fractional
matchings.

Lemma 3.3 (Lemma 4.2 in [19]). Let 1/n�μ� ε, 1/k with k ∈N and k≥ 2. Let G be an n-vertex
k-graph with δ(G)≥ (1/2+ ε)n. Then G has a μ-normal perfect fractional matching.

3.2 Probabilistic tools
We will often apply the following standard Chernoff-type concentration inequality (see [8,
Theorem 1.1]).

Lemma 3.4 (Chernoff’s inequality). Let X1, . . . , XN be independent random variables taking values
in [0, 1], and let X=∑N

i=1 Xi. Then for every 0< β < 1,

P

[
|X−E[X]| ≥ βE[X]

]
≤ 2 exp

(
−β2

3
E[X]

)
.

As explained at the end of Section 2, our proof will use a hypergraph matching argument
and will need the matching to look random-like with respect to some properties. In order
to achieve that, we use a nibble-type result due to Ehard, Glock, and Joos [9]. For a hyper-
graph H, define �(H) := maxv∈V(H) dH({v}) and �c(H) := max{u,v}⊆V(H) dH({u, v}). We will
consider edge weight functions w : E(H)→R≥0 and, for a set A⊆ E(H), we use the notation
w(A) := ∑

e∈A w(e).
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Theorem 3.5 (Theorem 1.2 in [9]). Suppose δ ∈ (0, 1) and t ∈N with t≥ 2, and set γ := δ/50t2.
Then there exists �0 such that for all �≥�0, the following holds. LetH be a t-uniform hypergraph
satisfying �(H)≤�, �c(H)≤�1−δ and e(H)≤ exp (�γ 2 ). Let W be a set of at most exp (�γ 2 )
weight functions on E(H) such that w(E(H))≥maxe∈E(H) w(e)�1+δ for every w ∈W. Then there
exists a matchingM inH such that w(M)= (1±�−γ )w(E(H))/� for every w ∈W.

4. Key lemma
In this section, we state and prove our key structural lemma. Recall from Section 2 that a k-grid
is the k-graph on vertices {xij : 1≤ i, j≤ k} and with edges xi1 · · · xik for each i ∈ [k] (which we
will call horizontal edges) and x1j · · · xkj for each j ∈ [k] (which we will call vertical edges). An
alternating k-grid is a 2-edge-coloured k-grid with all the horizontal edges red and all vertical
edges blue. A near-alternating k-grid is a 2-edge-coloured k-grid such that all horizontal edges
but (at most) one are red, and all vertical edges but (at most) one are blue. Thus, the difference
between a near-alternating k-grid and an alternating k-grid lies in not prescribing the colour of
one horizontal and one vertical edge (cf. Figure 1).

Our key lemma exploits the specific structure of the given colouring and shows that either it
contains a near-alternating k-grid or the colouring is almost monochromatic. While our main
result applies to hypergraphs coloured with any number of colours, it suffices to handle here the
case of only two colours.

Lemma 4.1 (Key lemma). Let 1/n� ζ � ε, ρ, 1/k with k ∈N and k≥ 3. Let G be an n-vertex
k-graph whose edges are 2-coloured. Assume that all but at most ζnk−1 (k− 1)-subsets S of V(G)
satisfy dG(S)≥ (1/2+ ε)n. Then either there exists a near-alternating k-grid, or one of the colour
classes has size at most ρnk.

As explained in Section 2, Lemma 4.1 is enough to derive Corollary 1.2. Moreover, it is easy to
see that the lemma also holds for k= 2, but then a near-alternating grid is not a suitable gadget,
because such a grid (which is a 4-cycle) might only have perfect matchings with one red edge and
one blue edge, so that no colour appears more often. Hence we ignore this case here.

We now sketch the proof of Lemma 4.1. It is helpful to first guarantee that if a (k− 1)-set of
vertices is contained in an edge of a certain colour, then it is actually contained in many edges of
this colour. While this is not true for an arbitrary edge-colouring, we canmake sure this is the case
after deleting only few edges. The required cleaning procedure is given by the following standard
tool. We provide the short proof for the convenience of the reader.

Proposition 4.2. Let G be a k-graph on n vertices. Then by removing at most t
( n
k−1

)
edges, one can

ensure that in the resulting subhypergraph, every (k− 1)-set has degree either 0 or at least t.

Proof. As long as there is a (k− 1)-set S with degree between 1 and t, delete all edges containing
S. Obviously, every (k− 1)-set is considered at most once during this process, and when it is
considered, we delete at most t edges. �

Once G has been cleaned (with respect to both colours and to a suitable choice of t), we obtain
a subhypergraph G′ with the desired property for both colours. Observe that, since we removed
only few edges, for most of the (k− 1)-subsets of V(G), their degree in G′ will still be linearly
above n/2.

Let H be the (k− 1)-shadow of G′, and equip H with the following 2-colouring of its edges:
Colour an edge ofH with colour c if it is contained in at least one edge ofG′ of colour c (and hence
at least t such edges). We note that an edge of H can receive both colours (if it is contained in an
edge of G′ of each of the colours). As we will show, by choosing t appropriately, it suffices to find
an alternating (k− 1)-grid in H in order to obtain a near-alternating k-grid in G (see Claim 1).
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If H contains many double-coloured edges, then we can easily find an alternating (k− 1)-grid.
In fact, we can use the following classical result of Erdős [10], which states that the Turán density
of k-partite k-graphs is 0.

Theorem 4.3 ([10]). Let 1/n� η, 1/� with � ∈N. Let L be any k-partite k-graph with � vertices.
Then any k-graph with n vertices and at least ηnk edges contains L as a subgraph.

Call an edge of H bad if it is double-coloured or has small degree in G′. Then by Theorem 4.3
and what we observed above, we can assume that only few edges of H are bad. We would like to
argue that all the edges of H which are not bad are then coloured with the same unique colour,
which in turn will imply that G itself is almost-monochromatic.

We proceed as follows: Let
−→
T1 and

−→
T2 be arbitrary orderings of any two edges T1, T2 ∈ E(H)

which are not bad. The key observation we use is the following: Suppose there is a tight walk in
G′ connecting −→T1 and

−→
T2 such that any (k− 1) consecutive vertices of the walk give an edge of H

which is not bad. The power of the cleaning procedure then comes in handy, as we can claim that
each (k− 1)-set along the walk is contained in edges of G′ of the same unique colour. Therefore
the colour information propagates from T1 to T2 and the tight walk must be monochromatic,
implying that T1 and T2 must have the same colour.

To utilise the above observation, we want to be able to connect every (or almost every) pair
of ordered edges

−→
T1 ,
−→
T2 , as above. The standard tool to obtain this connection is Lemma 3.1.

However, we cannot apply this lemma directly, as the required minimum degree does not hold in
G′. Nevertheless, by randomly sampling a small set of vertices, we can avoid all the bad (k− 1)-sets
(as these are few) and thus apply Lemma 3.1 within the sample. To make this work, we perform
another cleaning step which removes (k− 1)-sets that intersect with too many bad sets.

We are now ready to prove the key lemma.

Proof of Lemma 4.1. Let k ∈N with k≥ 3 and ε, ρ > 0 be given, and observe that we can assume
ε to be small enough for Lemma 3.1 to hold. Let

1/n� ζ � η� ε, ρ, 1/k .

Let G be a 2-edge-coloured (with red and blue) n-vertex k-graph on V such that all but at
most ζnk−1 of the (k− 1)-subsets of V satisfy dG(S)≥ (1/2+ ε)n. We apply Proposition 4.2 with
parameter t := ηεn twice, once to the subhypergraph induced by the red edges and once to the
subhypergraph induced by the blue edges. This gives a subhypergraphG′ ofGwith e(G′)≥ e(G)−
2ηεnk such that each (k− 1)-set S satisfies the following condition for each of the colours: either
S is not contained in any edge of G′ of this colour, or it is contained in at least ηεn edges of G′ of
this colour.

Let H be the (k− 1)-uniform shadow of G′, equipped with the following 2-colouring of its
edges: Colour an edge of H red (resp. blue) if it is contained in at least one red (resp. blue) edge
of G′ (and hence at least ηεn such edges), noting that we allow edges ofH to receive both colours.
For the purpose of finding coloured structures in H, an edge that has both colours can be used
either way. �
Claim 1. If H contains an alternating (k− 1)-grid, then G contains a near-alternating k-grid.

Proof of Claim 1. Suppose H contains an alternating (k− 1)-grid. Then there exists W :=
{xij : 1≤ i, j≤ k− 1} ⊆V such that xi1 · · · xi(k−1) is a red edge of H for each i ∈ [k− 1] and
x1j · · · x(k−1)j is a blue edge of H for each j ∈ [k− 1]. Let R be the set of ordered tuples
(x1k, x2k, . . . , x(k−1)k) such that x1k, x2k, . . . , x(k−1)k ∈V \W are pairwise distinct, {xi1 · · · xik} is
a red edge of G for each i ∈ [k− 1], and dG({x1k, x2k, . . . , x(k−1)k})≥ (1/2+ ε)n. Owing to the
fact that a red edge of H can be extended to a red edge of G′ (and hence G) in at least ηεn ways
and that for all but ζnk−1 of the (k− 1)-subsets S of V it holds that dG(S)≥ (1/2+ ε)n, we have
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|R| ≥ (ηεn)k−1 − nk−2 − (k− 1)! · ζnk−1 ≥ (ηεn)k−1/2, where we used ζ � η, ε, 1/k (and the
nk−2 term accounts for the choices of x1k, . . . , x(k−1)k which are not pairwise distinct).
Similarly, let B be the set of ordered tuples (xk1, xk2, . . . , xk(k−1)) such that xk1, xk2, . . . , xk(k−1) ∈
V \W are pairwise distinct, {x1j · · · xkj} is a blue edge of G for each j ∈ [k− 1], and
dG({xk1, xk2, . . . , xk(k−1)})≥ (1/2+ ε)n. As above for R, we have |B| ≥ (ηεn)k−1/2. Therefore,
there exist vertex-disjoint R ∈R and B ∈ B. As dG(R), dG(B)≥ (1/2+ ε)n, we have |NG(R)∩
NG(B)| ≥ 2(1/2+ ε)n− n= 2εn. Hence, there exists xkk ∈ (NG(R)∩NG(B)) \W, i.e. a vertex xkk
which forms an edge of G with both R and B (although we have no control of the colours of these
edges). This gives a near-alternating k-grid in G, as desired. �

Owing to Claim 1, from now on we can assume thatH does not contain an alternating (k− 1)-
grid. We show that then H (and thus G) must be almost monochromatic. A (k− 1)-subset S of V
is called bad if dG′(S)< (1/2+ ε/2)n or if, seen as an edge of H, S is coloured with both colours.
We bound the number of bad sets as follows.

Claim 2. There are at most 5kηnk−1 bad sets.
Proof of Claim 2. We begin by bounding the number of (k− 1)-sets Swith dG′(S)< (1/2+ ε/2)n.
Observe that if dG′(S)< (1/2+ ε/2)n, then either dG(S)< (1/2+ ε)n (i.e. S has small degree
already in G), or we removed at least εn/2 edges of G containing S during the cleaning process
(i.e. when obtaining G′ from G). The former case holds for at most ζnk−1 sets S, by assumption.
Let us now bound the number of S in the latter case. Since removing an edge of G decreases (by
one) the degree of precisely k (k− 1)-sets, and as the total number of removed edges is at most
2ηεnk, the number of such sets S is at most k·2ηεnk

εn/2 = 4kηnk−1.
Next, we bound the number of double-coloured edges of H. Let H̃ be the subhypergraph of H

on V induced by the double-coloured edges. Then e(H̃)≤ ηnk−1. Indeed, otherwise H̃ contains a
copy of the (k− 1)-grid by Theorem 4.3, since the (k− 1)-grid is a (k− 1)-partite (k− 1)-graph
(with each vertex class of size k− 1). However, as each edge of H̃ receives both colours, this gives
an alternating (k− 1)-grid, which is a contradiction.

Summarising, the number of bad sets is at most (ζ + 4kη+ η)nk−1 ≤ 5kηnk−1, where we used
ζ � η. �

Given a (k− 1)-subset S ofV , we say that S is clean if, for every 0≤ j≤ k− 1, the number of bad
sets T with |S∩ T| = j is at most η1/2nk−1−j. We remark that for j= k− 1 the condition means
that S itself is not bad.

Claim 3. All but at most η1/3nk−1 of the (k− 1)-subsets of V are clean.

Proof of Claim 3. For each 0≤ j≤ k− 1, we bound the number of (k− 1)-sets S for which the
number of bad sets T with |S∩ T| = j is more than η1/2nk−1−j. If j= 0, this cannot happen by
Claim 2, so we can assume 0< j≤ k− 1. Given a bad set T, the number of (k− 1)-sets S intersect-
ing T in j vertices is at most

(k−1
j

)
nk−1−j. Therefore, using the bound in Claim 2, the number of

(k− 1)-subsets of V which are not clean is at most

k−1∑
j=1

(k−1
j

)
nk−1−j · 5kηnk−1
η1/2nk−1−j

≤ η1/3nk−1 .

�
Let H′ be the (k− 1)-subhypergraph of H consisting of the edges which are clean (k− 1)-sets.

Observe in particular that each edge of H′ has a unique colour (because double-coloured edges
are bad).

Claim 4. All edges of H′ have the same colour.
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Using Claim 4, we can easily complete the proof of the lemma. Indeed, suppose without loss of
generality that the edges ofH′ are red. Then for an edge of G to be blue, it has to be either an edge
of G \G′, or an edge of G′ none of whose (k− 1)-subsets belongs toH′. Using that e(G)− e(G′)≤
2ηεnk and e(H)− e(H′)≤ η1/3nk−1 (by Claim 3), we get that the number of blue edges of G is at
most 2ηεnk + n · η1/3nk−1 ≤ ρnk, as wanted. We are left to prove Claim 4.

Proof of Claim 4. Consider two arbitrary edges T1, T2 ∈ E(H′). We will show that they have the
same colour. Fix C, β with η� 1/C� β� ε, ρ, 1/k. We claim that there exists a set R⊆V such
that

(i) |R| ≥ C/2;
(ii) for i= 1, 2, for every (k− 1)-set S which is contained in R∪ Ti and is not bad, it holds that
|NG′(S)∩ R| ≥ (1/2+ ε/8)|R∪ Ti|;

(iii) no (k− 1)-subset contained in R∪ T1 or R∪ T2 is bad.

Let R⊆V be obtained by independently including each vertex of V with probability C/n. We
show that such R satisfies (i), (ii) and (iii) with positive probability.

SinceE[|R|]= C and 1/C� β , an easy application of Chernoff’s inequality (Lemma 3.4) shows
that (1− β)C≤ |R| ≤ (1+ β)C with probability at least 0.9.

Fix i ∈ {1, 2}, let S⊆V be a (k− 1)-set which is not bad, and define the events AS := {S⊆ R∪
Ti} and BS := {XS < (1/2+ ε/4)C}, where XS := |NG′(S)∩ R|. Furthermore, let j= jS := |S∩ Ti|,
so 0≤ j≤ k− 1. We are going to show that with probability at least 0.9, the event AS ∩ BS does
not hold for any such S. Note that AS and BS are independent, and P[AS]=

(C
n
)k−1−j.

Since S is not bad, we have E[XS]= |NG′(S)| · Cn ≥ (1/2+ ε/2)C and, using Chernoff’s inequal-
ity (Lemma 3.4), we conclude that P[BS]≤ 2 exp

(
− (ε/4)2

3 E[XS]
)
= exp (−�ε(C)). Therefore,

P[AS ∩ BS]≤
(C
n
)k−1−j · exp (−�ε(C)). By taking the union bound over the at most 2k−1nk−1−j

(k− 1)-sets S⊆V with jS = j, we see that the probability that AS ∩ BS holds for some such S is
at most

(C
n
)k−1−j · exp (−�ε(C)) · 2k−1nk−1−j ≤ 0.1k−1, where we used that 1/C� ε, 1/k. The

conclusion now follows by taking another union bound over the k choices for j.
Next, let Y be the random variable counting the number of bad sets contained in R∪ Ti, and

observe that Y =∑k−1
j=0 Yj, where Yj counts the number of bad sets T ⊆ R∪ Ti with |T ∩ Ti| = j.

Since Ti is a clean set, the number of bad sets T with |T ∩ Ti| = j is at most η1/2nk−1−j. Therefore,
E[Yj]≤ η1/2nk−1−j · (Cn )k−1−j ≤ η1/2Ck−1 and henceE[Y]≤ kη1/2Ck−1 ≤ 0.1, using η� 1/C. By
Markov’s inequality, we have that Y = 0 with probability at least 0.9.

Therefore, with positive probability we have that (1− β)C≤ |R| ≤ (1+ β)C, the event AS ∩
BS does not hold for any (k− 1)-set which is not bad (for both i= 1, 2), and no (k− 1)-subset
contained in R∪ T1 or R∪ T2 is bad. These in turn imply properties (i)-(iii). Indeed, (i) and (iii)
follow directly from the above, and for (ii) it is enough to observe that if S is not bad and is
contained in R∪ Ti (i.e. AS holds), then BS cannot hold and thus XS ≥ (1/2+ ε/4)C≥ (1/2+
ε/8)|R∪ Ti|, where the first inequality follows from the definition of BS, and the second inequality
uses |R| ≤ (1+ β)C, |Ti| = k− 1, and 1/C, β� ε, 1/k.

We conclude that a set R satisfying (i), (ii) and (iii) does indeed exist. Note that (ii)–(iii) imply
that δ(G′[R∪ Ti])≥ (1/2+ ε/8)|R∪ Ti|. Moreover, by (i), |R| is large enough to apply Lemma 3.1
to G′[R∪ T1] and G′[R∪ T2]. Now, fix two arbitrary orderings

−→
T1 and

−→
T2 of T1, T2, respectively,

and let
−→
T be an arbitrary ordering of a (k− 1)-set T ⊆ R \ (T1 ∪ T2). Using Lemma 3.1 twice, we

find a tight path P1 connecting
−→
T1 and

−→
T in G′[R∪ T1] and a tight path P2 connecting

−→
T2 and−→

T in G′[R∪ T2]. Owing to (iii), we know that every k− 1 consecutive vertices in P1 form a set
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which is not bad, which means that all edges of G′ containing this set have the same colour. By the
definition of the colouring ofH, every such (k− 1)-set has the same colour and, in particular, this
holds for T1 and T. By repeating the same argument for P2, this holds for T2 and T. We conclude
that T1 and T2 have the same colour, as desired.

This concludes the proof of Lemma 4.1. �

5. Perfect fractional matchings with high discrepancy
In this section we focus on the random walk which we will use to sample a collection of
paths of high discrepancy. But first, recalling the definition of perfect fractional matchings from
Section 3.1, we introduce the following notation: For a perfect fractional matching x : E(G)→
[0, 1] of a k-graph G, and for a set S⊆V(G) with |S| ≤ k, define x(S) := ∑

e∈E(G) : S⊆e x(e). Note
that x({v})= 1 for all v ∈V(G) and x(S)= 0 for all S⊆V(G) with |S| = k and S �∈ E(G).

We define the following random walk Y= (Y1, Y2, . . . ) on V := V(G). It begins with an
ordered (k− 1)-tuple (Y1, . . . , Yk−1) ∈ (V)k−1 chosen according to the following initial distri-
bution π : (V)k−1→ [0, 1]. Pick an ordered (k− 1)-set (Y1, . . . , Yk−1) ∈ (V)k−1 at random with
probability proportional to x( · ), that is, for any−→S ∈ (V)k−1,

π(−→S ) := x(S)∑−→
S′ ∈(V)k−1 x(S

′)
. (5.1)

Observe that the denominator of (5.1) can be rewritten as∑
−→
S′ ∈(V)k−1

x(S′)= k! ·
∑

e∈E(G)
x(e)= (k− 1)! · n , (5.2)

where we used that every edge contains k! ordered (k− 1)-sets. The transition probability will also
be defined according to x. For all i≥ k− 1, conditional on the outcome of Yi−(k−2), . . . , Yi, we
choose the next vertex Yi+1 as follows: Let

−→
Zi := (Yi−(k−2), . . . , Yi) be the ordered set of the last

k− 1 vertices in the sequence and choose Yi+1 with probability proportional to x(Zi ∪ {·}), that is,
for any v ∈V \ Zi,

Pr[Yi+1 = v|Yi−(k−2), . . . , Yi]= x(Zi ∪ {v})∑
v′∈V\Zi x(Zi ∪ {v′})

= x(Zi ∪ {v})
x(Zi)

, (5.3)

and for any v ∈ Zi the transition probability is 0. Observe that Y is equivalent to the random walk
Z := (

−−→
Zk−1,

−→
Zk , . . . ), and we can refer to both. In fact, with (V)k−1 viewed as the state space, Z is

a Markov chain and it is then easy to check that the distribution π defined in (5.1) is stationary (cf.
[19, Proposition 5.5]). The important fact of defining the transition probabilities in terms of the
perfect fractional matching x is that then the random walk behaves uniformly with respect to the
visited vertices, in the sense that the distribution of the vertices for Y to visit at any step is uniform
over V(G) as proved below.

Fact 5.1. For each integer i≥ 1 and v ∈V(G), we have that Pr[Yi = v]= 1/n. Moreover, for each
k≤ i≤ t, with ei := {Yi−k+1, . . . , Yi} denoting the (i− k+ 1)-st edge of Y, the following holds: For
each e ∈ E(G), we have that Pr[ei = e]= k

nx(e).

Proof. Let v ∈V . For 1≤ i≤ k− 1, observe the following identity where the first sum runs over
all −→S ∈ (V)k−1 such that v is the i-th element of −→S , and the second sum runs over all S ∈ ( V

k−1
)

with v ∈ S: ∑
−→S =(v1,...,vk−1)vi=v

x(S)= (k− 2)! ·
∑

S∈( V
k−1) : v∈S

x(S)= (k− 1)! ·
∑
e : e�v

x(e)= (k− 1)! .
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Together with (5.2), we get Pr[Yi = v]= 1/n.
Since π as defined in (5.1) is the stationary distribution ofZ, it holds that Pr[−→Zi =−→S ]= π(−→S )

for each i≥ k− 1. Let i≥ k. Then by the law of total probability we have

Pr[Yi = v]=
∑

−→S ∈(V)k−1
Pr

[
Yi = v|−−→Zi−1 =−→S

]
· Pr

[−−→
Zi−1 =−→S

]

=
∑

−→S ∈(V)k−1
Pr

[
Yi = v|−−→Zi−1 =−→S

]
· π(−→S )

=
∑

−→S ∈(V)k−1:
v �∈S

x(S∪ {v})
��x(S)

· ��x(S)
(k− 1)! · n =

(k− 1)! ·∑e�v x(e)
(k− 1)! · n = 1

n
,

where we used (5.2), that for an edge e with e � v there are (k− 1)! choices for −→S ∈ (V)k−1 such
that S∪ {v} = e, and that x is a perfect fractional matching.

For the ‘moreover’-part of Fact 5.1, let k≤ i≤ t and e ∈ E(G). Then
Pr [ei = e]=

∑
−→S ∈(V)k−1

Pr
[
ei = e|−−→Zi−1 =−→S

] · Pr[−−→Zi−1 =−→S ]

=
∑

−→S ∈(V)k−1 : S⊆e

x(e)
��x(S)
· ��x(S)
(k− 1)! · n =

k
n
· x(e) ,

where we used (5.2) and that there are k! ways to choose−→S ∈ (V)k−1 such that S⊆e. �
Despite Fact 5.1, for an arbitrary perfect fractional matching x, the behaviour of the random

walk Y can still be quite trivial. For instance, suppose that x is indeed a perfect matching M, that
is x(e)= 1(e ∈M). Then, once the first ordered (k− 1)-set

−−→
Zk−1 is chosen, the walk is completely

deterministic (and uses the same edge in each step). In order to avoid this in a robust way, we will
assume that x is μ-normal for some (small) constant μ > 0 (see Section 3.1 for the definition).

Ultimately, we would like to use the random walk Y to sample a collection of tight paths which
cover almost all the vertices of G and have high discrepancy. As proved in Fact 5.1, the probability
that Y sees a certain edge e is proportional to x(e). Therefore, in order to guarantee that Y sees
a substantial number of edges of the same colour, it will be enough that x is a normal perfect
fractional matching with high discrepancy. Recall that the total weight assigned by any perfect
fractional matching is n/k, so, just by averaging, some colour will receive a total weight of at
least n/(rk). By combining Lemma 3.3 with our key lemma (Lemma 4.1), we are able to boost
the discrepancy. Starting with a perfect fractional matching given by Lemma 3.3, if we can find a
near-alternating k-grid (which we refer to as a gadget from now on), then by increasing the weight
of the red matching, say, and decreasing the weight of the blue matching by the same amount, the
total weight of each vertex remains unchanged, but the total weight of the red edges has increased.
Obviously, one gadget will only allow us to perform an insignificant perturbation, but by applying
the key lemma iteratively, we can find many edge-disjoint gadgets and together they allow us to
perturb the initial perfect fractional matching by a significant amount.

Lemma 5.2. Let 1/n�μ� ε, 1/r, 1/k with k, r ∈N, k≥ 3 and r≥ 2. Let G be an n-vertex k-
graph with δ(G)≥ (1/2+ ε)n whose edges are r-coloured. Then G has aμ-normal perfect fractional
matching such that the total weight received by some colour class is at least (1+μ) nrk .

Proof. Let

1/n�μ� η� ζ � ρ�μ0� ε, 1/r, 1/k ,
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where μ0 is small enough for Lemma 3.3 to hold on input k and ε, and ζ is small enough for
Lemma 4.1 to hold on input k, ε/2 and ρ/2. Let x0 be a μ0-normal perfect fractional matching as
given by Lemma 3.3.

Let c1, . . . , cr be the r colours used in the edge-colouring of G. Since Lemma 4.1 is only stated
for 2-edge-coloured graphs, we will now consider the following 2-edge-colouring of G, obtained
by identifying r− 1 of the colours to a unique colour: Colour by ‘red’ any edge coloured by c1, and
by ‘blue’ every other edge.

We claim that either G contains ηnk edge-disjoint gadgets or one of the colour classes of G has
size at most ρnk. This follows by applying Lemma 4.1 iteratively. Suppose indeed that a maximal
collection of edge-disjoint gadgets has size � < ηnk, and letG′ be the subhypergraph ofG obtained
by removing all the edges of such gadgets. Let S be the collection of the (k− 1)-subsets S ofV with
dG′(S)< (1/2+ ε/2)n. We now bound the size of S. The total number of removed edges is 2k� <

2kηnk. In order to have S ∈ S, we must have removed at least εn/2 edges containing S, and each
removed edge decreases the degree of k (k− 1)-sets by one. Therefore |S| ≤ 2k2ηnk

εn/2 ≤ ζnk−1, where
we used η� ζ , ε for the last inequality. Since the collection was maximal, invoking Lemma 4.1,
we get that one of the colour classes of G′ has size at most ρnk/2. Therefore one of the colour
classes of G has size at most ρnk/2+ 2k · � < ρnk, where we used � < ηnk and η� ρ.

If one of the colour classes of G, say C, has size at most ρnk, then, since x0 is μ0-normal,
this colour class gets a total weight of at most

∑
e∈C x0(e)≤ |C|μ−10 n−k+1 ≤μ−10 ρn. Then the

other colour class gets a total weight of at least (1/k−μ−10 ρ)n. By averaging, x0 assigns to one

of the colour classes of the original r-edge-colouring of G a total weight of at least (1/k−μ−10 ρ)n
r−1 ≥

(1+μ) nrk , where we used ρ�μ0, 1/r, 1/k. In particular, x0 is already a desired μ-normal perfect
fractional matching with high discrepancy.

We are left with the case where there exists a collectionL := {Li : i ∈ [ηnk]} of ηnk edge-disjoint
gadgets. Now, either the total weight assigned by x0 to the red edges is at least n

rk , or the total weight
assigned by x0 to the blue edges is at least (r−1)n

rk .
Suppose we are in the first case. We will modify x0 on the edges of each gadget in L to

obtain a μ-normal perfect fractional matching x with high discrepancy in colour c1. For L ∈L,
let eL1, . . . , e

L
k (resp. f L1 , . . . , f

L
k ) be the horizontal (resp. vertical) edges of L, and recall these are

pairwise distinct. By the definition of a near-alternating k-grid, all edges eL1, . . . , e
L
k but at most

one are red, and all edges f L1 , . . . , f
L
k but at most one are blue. Define x : E(G)→ [0, 1] as fol-

lows: x(eLi )= x0(eLi )+μ0n−k+1/2 and x(f Li )= x0(f Li )−μ0n−k+1/2 for each i ∈ [k] and L ∈L.
Moreover, set x(e)= x0(e) for any other edge e ∈ E(G). In other words, x is obtained from x0 by
decreasing the weight of each vertical edge by μ0n−k+1/2 and increasing the weight of each hori-
zontal edge by the same quantity, in each of the gadgets in L. Observe that if a vertex is contained
in a gadget, then it belongs to precisely one horizontal edge and one vertical edge of this gad-
get. Therefore for every vertex v ∈V(G) we have that ∑e�v x(e)=

∑
e�v x0(e)= 1. Also, for every

e ∈ E(G) we have μn−k+1 ≤ x0(e)−μ0n−k+1/2≤ x(e)≤ x0(e)+μ0n−k+1/2≤μ−1n−k+1, where
we used that μ0n−k+1 ≤ x0(e)≤μ−10 n−k+1 and μ�μ0. This shows that x is a μ-normal perfect
fractional matching. Moreover, for each L ∈L, the weight given by x to the red edges in L is bigger
by at least μ0n−k+1/2 than the weight given by x0 to these edges. This is because we increased (by
μ0n−k+1/2) the weight of at least k− 1≥ 2 red edges, and decreased (by the same amount) the
weight of at most one such edge. As the gadgets in L are edge-disjoint and |L| = ηnk, we conclude
that the total weight assigned by x to the red edges is at least n

rk + ηnkμ0n−k+1/2≥ (1+μ) nrk ,
using that μ� η,μ0. Therefore, the total weight assigned by x to the colour class of c1 in the
original edge-colouring of G is at least (1+μ) nrk .
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Suppose now that we are in the second case, namely, that the total weight assigned by x0 to the
blue edges is at least (r−1)n

rk . We then use the same argument as above to find a μ-normal perfect
fractional matching x which assigns a total weight of at least (r− 1)(1+μ) nrk to the blue edges.
Recall that the blue edges are precisely those coloured by c2, . . . , cr in the original colouring of G,
and thus, by averaging, there is 2≤ i≤ r such that the total weight assigned by x to the colour class
of ci in the original colouring of G is at least (1+μ) nrk . �

Ideally, we would like to use the random walk Y and Lemma 5.2 to obtain long tight paths with
high discrepancy. However, one remaining problem is that, if we let the randomwalk continue for
too many steps, then with high probability, it will not be self-avoiding anymore. It might be possi-
ble to analyse the ’self-avoiding‘ version of this random walk and show that with high probability,
it will cover almost all the vertices andwill have high discrepancy. However, such an analysis might
be very intricate. To circumvent this, we prove the following ’sampling lemma’ which allows us,
using the random walk, to sample from the set of all tight paths in G of order t, where t is a (large)
constant, in such a way that every vertex appears in the chosen path with approximately the same
probability, and we expect more edges of one specific colour. In Section 6, we will then produce a
large collection of paths sampled from this distribution, and then use a nibble-type argument to
select from this collection a large linear forest with high discrepancy.

Lemma 5.3. Let 1/n� 1/t,μ� ε, 1/k, 1/r with k, r, t ∈N, k≥ 3 and r≥ 2. Let G be an n-vertex k-
graph with δ(G)≥ (1/2+ ε)n whose edges are r-coloured. Let � be the set of all tight paths of order
t in G. Then, there exists a colour ‘red’ and a probability distribution on � such that a randomly
chosen element P ∈� has the following properties:

(1) for any given tight path Q, we have P [P=Q]≤Ot,μ(n−t);

(2) for every v ∈V(G), we have
∣∣∣P [v ∈V(P)]− t

n

∣∣∣≤Ot,μ
(
n−2

)
;

(3) the expected number of red edges in P is at least 1+μ
r · (t− k+ 1)−Ot,μ(n−1).

Proof. Let x be a μ-normal perfect fractional matching of G such that the total weight received by
some colour class, say ‘red’, is at least (1+μ) nrk . This exists by Lemma 5.2. Let Y= (Y1, Y2, . . . )
be the random walk defined via x, with notation as introduced at the beginning of this section. (In
particular, we use Pr as the probability measure corresponding to the randomwalk, whereas Pwill
denote the desired probability measure on�.) Here, we will only be interested in the first t vertices
of Y and we note that those form a tight walk of order t. Now, sample elements of � according
to the first t vertices of Y, conditioned on Y being self-avoiding up to Yt . More precisely, let B
be the event that Y1, . . . , Yt are pairwise distinct, and denote by Q any tight path of order t and
by q1, . . . , qt the vertices of Q (appearing in this order). Then take the distribution on � where a
randomly chosen element P ∈� satisfies

P[P=Q]= Pr
[
{Y1 = q1, . . . , Yt = qt} ∪ {Y1 = qt , . . . , Yt = q1} | B

]
,

where we considered both orders of Q since the elements of � are unordered. We claim that this
distribution on � has the desired properties. Before proving that this is the case, we need some
preliminary observations.

Since x is μ-normal, the probability that the walk starts with−→S = (q1, . . . , qk−1) is

π(−→S )= x(S)∑−→
S′ ∈(V)k−1 x(S

′)
≤ n ·μ−1n−k+1

(k− 1)! · n =Oμ(n−k+1) ,

where we used (5.2). By using in addition that δ(G)≥ (1/2+ ε)n, we can show that the transition
probabilities of Y are Oμ(n−1). Indeed, with

−→
Zi = (Yi−(k−2), . . . , Yi) being the ordered set of the
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last k− 1 vertices of Y, for v ∈V(G) \ Zi we have

Pr[Yi+1 = v|Yi−(k−2), . . . , Yi]= x(Zi ∪ {v})
x(Zi)

≤ μ−1n−k+1

1/2 · n ·μn−k+1 =Oμ(n−1) ,

while for v ∈ Zi we have Pr[Yi+1 = v|Yi−(k−2), . . . , Yi]= 0. Therefore, by applying the chain rule,
Pr[Y1 = q1, . . . , Yt = qt]=Ot,μ(n−t). Moreover, the number of walks of order t which are not
self-avoiding is Ot(nt−1) and thus Pr[Bc]=Ot(nt−1) ·Ot,μ(n−t)=Ot,μ(n−1).

Now Item (1) follows easily as we have

P[P=Q]≤ Pr[Y1 = q1, . . . , Yt = qt]+ Pr[Y1 = qt , . . . , Yt = q1]
Pr[B] =Ot,μ(n−t),

where we used that Pr[B]= 1−Ot,μ(n−1)≥ 1/2.
Fix v ∈V(G) and 1≤ i≤ t. The number of walks of order t which are not self-avoiding and

whose i-th vertex is v is Ot(nt−2) and thus Pr [{Yi = v} ∩ Bc]=Ot(nt−2) ·Ot,μ(n−t)=Ot,μ(n−2).
Therefore,

P[v ∈V(P)]= Pr

⎡
⎣⋃
i∈[t]
{Yi = v} | B

⎤
⎦=∑

i∈[t]

Pr
[{Yi = v} ∩ B]

Pr[B] ≥ tn−1 −Ot,μ(n−2) ,

where we used that the events {Yi = v} ∩ B with i ∈ [t] are pairwise disjoint, that Pr[{Yi = v}]=
n−1 by Fact 5.1, that

Pr
[{Yi = v} ∩ B]= Pr

[
Yi = v

]− Pr
[{Yi = v} ∩ Bc]= n−1 −Ot,μ(n−2),

and that Pr[B]≤ 1. Similarly, by using Pr[B]= 1−Ot,μ(n−1), we get that P[v ∈V(P)]≤ tn−1 +
Ot,μ(n−2). This proves Item (2).

For a given k≤ i≤ t, denote by ei := {Yi−k+1, . . . , Yi} the (i− k+ 1)-st edge ofY. Let e ∈ E(G).
Similarly as above, Pr[{ei = e} ∩ Bc]=Ot,μ(n−k−1) because there are Ot(nt−k−1) tight walks
which are not self-avoiding and satisfy ei = e, and each such walk has probabilityOt,μ(n−t). Thus,

Pr
[
ei = e | B

]
= Pr

[
ei = e

]− Pr
[{ei = e} ∩ Bc]

Pr[B] ≥ k
n
· x(e)−Ot,μ(n−k−1) ,

where we used Fact 5.1 and Pr[B]≤ 1. LetR be the set of edges ofGwhich are coloured red. Then

Pr
[
ei ∈R | B

]
≥

∑
e∈R

(
k
n
· x(e)−Ot,μ(n−k−1)

)
≥ 1+μ

r
−Ot,μ(n−1) ,

where we used that |R| ≤ nk and
∑

e∈R x(e)≥ (1+μ) nrk . Since P is a path of order t, it has t−
k+ 1 edges, and thus Item (3) follows by linearity of expectation. �

6. Finding a linear forest with high discrepancy
The goal of this section is to prove the following result.

Lemma 6.1. Let 1/n� 1/t� β�μ� ε, 1/k, 1/r with k, r, t ∈N, k≥ 3, r≥ 2. Let G be an n-
vertex k-graph with δ(G)≥ (1/2+ ε)n whose edges are r-coloured. Then G contains a collection of
vertex-disjoint tight paths of order t such that their union covers all but at most βn vertices of G and
there is some colour which appears on at least (1+μ)nr edges in the paths.

Proof. Let
1/n� δ� 1/t� β�μ� ε, 1/k, 1/r ,
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where 2μ is given by Lemma 5.3 on input ε, r, k, and set γ := δ/(50t2) and V := V(G).
Set N := nt−1/2 and let P := {Pi:i ∈ [N]} be a collection of N tight paths of order t indepen-

dently sampled according to the distribution given by Lemma 5.3. For a given v ∈V , define Xv :=
{i ∈ [N] : v ∈V(Pi)}. Using Item (2) in Lemma 5.3, we haveE[|Xv|]=N · tn−1 · [1±Ot,μ(n−1)

]=
tnt−3/2 · [1±Ot,μ(n−1)

]
. Therefore, by Chernoff’s inequality (Lemma 3.4) and a union bound

over v ∈V , w.h.p. we have
|Xv| = (1± β/3)tnt−3/2 (6.1)

for every v ∈V . For a path P ∈P, let red(P) be the number of red edges of P, and note
that 0≤ red(P)≤ t− k+ 1. Let R := ∑N

i=1 red(Pi). By Item (3) of Lemma 5.3, E[R]≥N ·[
(t− k+ 1) · 1+2μr −Ot,μ(n−1)

]
and by Chernoff’s inequality (Lemma 3.4), we have w.h.p. that

R≥ (1− β) · (t− k+ 1) · 1+ 2μ
r
· nt−1/2 . (6.2)

We now show that we can pass to a large subcollectionP′ ⊆P such that no two paths inP′ have
the same vertex set. Let Y be the set of pairs 1≤ i< j≤N such thatV(Pi)=V(Pj). We now bound
|Y|. Given any t-subset S of V , observe that there are t!/2 (unordered) paths P with V(P)= S and
that, using Item (1) in Lemma 5.3, the probability that Pi = P for a given 1≤ i≤N is Ot,μ(n−t).
Therefore, the probability that a given pair i, j belongs to Y is Ot,μ(n−t), and thus E[|Y|]≤N2 ·
Ot,μ(n−t)=Ot,μ(nt−1). It follows fromMarkov’s inequality that w.h.p. |Y| ≤ nt−2/3.

We now fix such a collection of paths that satisfies (6.1), (6.2) and |Y| ≤ nt−2/3. Let P′ ⊆P
be obtained from P by deleting Pi, Pj for every pair {i, j} ∈ Y . Then |P′| ≥ |P| − 2|Y| ≥ (1−
β/3)nt−1/2. Let H be the auxiliary t-graph on V with edge set {V(P) : P ∈P′}. By the definition
of P′, we have V(P) �=V(Q) for each P,Q ∈P′, and thus e(H)= |P′| (i.e., H has no multi-
ple edges). We now show that H is suitable for an application of Theorem 3.5, by establishing
bounds on �(H) and �c(H). Using (6.1), we have dH({v})≤ |Xv| ≤ (1+ β/3)tnt−3/2. Setting
� := (1+ β/3)tnt−3/2, we have �(H)≤�, and it trivially holds that �c(H)≤ nt−2 ≤�1−δ , as
δ� 1/t.

We would like the matching given by Theorem 3.5 to be almost-spanning and with large dis-
crepancy. To this end, we define two weight functions w1,w2 : E(H)→R≥0 as follows: w1 ≡ 1;
and for an edge e ∈ E(H) corresponding to a path P ∈P′, we define w2(e) := red(P). We claim
that wi(E(H))≥maxe∈E(H) w(e)�1+δ for each i= 1, 2. For i= 1, this is obvious as

w1(E(H))= e(H)≥ (1− β/3)nt−1/2 ≥�1+δ = max
e∈E(H)

w1(e)�1+δ ,

where the last inequality uses that δ� 1/t. And for i= 2, we have

w2(E(H))=
∑
P∈P′

red(P)= R−
∑

P∈P\P′
red(P)≥ R− (t− k+ 1) · 2nt−2/3

≥ (1− 2β) · (t− k+ 1) · 1+ 2μ
r
· nt−1/2,

where the first inequality uses |P| − |P′| ≤ 2|Y| ≤ 2nt−2/3 and that each path has at most t− k+ 1
red edges, while the second inequality uses (6.2). Therefore

w2(E(H))=�(nt−1/2)≥ (t− k+ 1)�1+δ ≥ max
e∈E(H)

w2(e)�1+δ ,

using that �=Ot(nt−3/2) and δ� 1/t.
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Let M be the matching in H given by applying Theorem 3.5 with W := {w1,w2}. Using
w1(E(H))= e(H)= |P′| ≥ (1− β/3)nt−1/2 and the guarantees of Theorem 3.5, we have

|M| =w1(M)≥ (
1−�−γ

) · w1(E(H))
�

≥ (
1−�−γ

) · (1− β/3)nt−1/2

(1+ β/3)tnt−3/2
≥ (1− β)

n
t
.

Similarly, for w2 we have

w2(M)≥ (
1−�−γ

) · w2(E(H))
�

≥ (1− o(1)) · (1− 2β) · (t− k+ 1) · 1+2μr · nt−1/2
(1+ β/3)tnt−3/2

= (1− o(1)) · 1− 2β
1+ β/3

· t− k+ 1
t

· 1+ 2μ
r
· n

≥ (1− 3β) · 1+ 2μ
r
· n≥ (1+μ)

n
r
,

where we used the bound on w2(E(H)) established above, the definition of �, together with
1/t� β�μ� 1/k.

Therefore the matching M corresponds to a collection of vertex-disjoint paths of G of order
t such that their union covers all but at most βn vertices and the colour red appears on at least
(1+μ)nr edges in the paths, as desired. �

7. Proof of the main theorem
We are now ready to prove our main result.

Proof of Theorem 1.1. Let
1/n� 1/t� β�μ� ε� 1/k, 1/r ,

where we have assumed without loss of generality that ε is sufficiently small. Let G be an n-vertex
k-graph with δ(G)≥ (1/2+ ε)n whose edges are r-coloured. By Lemma 3.2, there exists a tight
path P0 such that |V(P0)| ≤μn and for eachW ⊆V(G) \V(P0) of size |W| ≤ 3βn there is a tight
path covering V(P0)∪W and with the same ends as P0. Let R be a random subset of V(G) \
V(P0) obtained by including each vertex with probability β independently. Then w.h.p. it holds
that βn/2≤ |R| ≤ 2βn and that |NG(S)∩ R| ≥ (1/2+ ε/2)|R| for every (k− 1)-subset S⊆V(G).
Indeed, this can be shown by a standard application of Chernoff’s inequality (Lemma 3.4) and a
union bound over S.

Let G′ := G \ (V(P0)∪ R) and observe that δ(G′)≥ δ(G)− |V(P0)∪ R| ≥ (1/2+ ε/2)n≥
(1/2+ ε/2)|V(G′)|. Then, by Lemma 6.1 (with 4μ playing the role of μ), G′ contains a collec-
tion P := {Pi : i ∈ [N]} of vertex-disjoint tight paths of order t such that their union covers all but
at most βn vertices, and there is a colour, say red, which appears on at least (1+ 4μ)|V(G′)|/r≥
(1+ 4μ)(1−μ− 2β)n/r≥ (1+μ)n/r edges in the paths. Therefore, if we manage to connect the
paths in P into a tight cycle while covering all the vertices then we are done. This connection can
be achieved using the standard tools collected in Section 3.1. The details follow.

Denote by−→Si and−→Ti the ends of Pi for each 0≤ i≤N. Add the uncovered vertices ofG′ to R to
get a set R′, and observe that |R| ≤ |R′| ≤ |R| + βn. Using multiple applications of the connecting
lemma (Lemma 3.1), we can connect the path P0 and the paths in P into an almost-spanning tight
cycle using vertices in R′, as proved by the following claim. �
Claim 5. For each 0≤ i≤N, there is a tight path Qi of order at most 2k/ε2 connecting

←−
Ti and

←−−Si+1
(where indices are modulo N + 1), such that V(Qi) \ (Ti ∪ Si+1)⊆ R′. Moreover, we can choose such
paths to be pairwise vertex-disjoint.

Proof. Suppose we can find vertex-disjoint connecting paths Q0, . . . ,Qm−1 as in the statement
of the claim, and let m be as large as possible. If we are not done yet, then m≤N. The union of
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Q0, . . . ,Qm−1 covers at most m · 2k/ε2 ≤ 2kn/(ε2t) vertices of R′, where we used that N ≤ n/t.
Let R′′ denote the subset of R′ consisting of the uncovered vertices. Then for every (k− 1)-subset
S⊆V(G) we have |NG(S)∩ R′′| ≥ (1/2+ ε/2)|R| − |R′ \ R′′| ≥ (1/2+ ε/4)|R′′ ∪ Tm+1 ∪ Sm+2|,
where we used that |R| ≥ |R′| − βn, |R′ \ R′′| ≤ 2kn/(ε2t) and 1/t� β� ε, 1/k. Therefore, we
can apply Lemma 3.1 to G[R′′ ∪ Tm+1 ∪ Sm+2] to get a tight path of order at most 2k/ε2 connect-
ing
←−−
Tm+1 and

←−−Sm+2, which is vertex-disjoint from Q0, . . . ,Qm−1. This contradicts the maximality
ofm. �

Observe that C := ⋃
0≤i≤N (Pi ∪Qi) is a tight cycle. Now let W ⊆ R′ be the subset of vertices

not covered by C and observe that clearly |W| ≤ |R′| ≤ 3βn. By the property of the absorbing path
P0, there exists a tight path P̃0 which covers V(P0)∪W and has the same ends as P0, i.e.

−→S0 and−→
T0 . It follows that C̃ := P̃0 ∪⋃

1≤i≤N (Pi ∪Qi) is a tight Hamilton cycle of G and, since each edge
of P1 ∪ . . .∪ PN is an edge of C̃ as well, then C̃ has at least (1+μ)n/r red edges, as desired.

8. Concluding remarks
Themain result of this paper offers a discrepancy version of the celebrated result of Rödl, Ruciński,
and Szemerédi [29], and determines the minimum (k− 1)-degree threshold for high discrep-
ancy of tight Hamilton cycles and perfect matchings; both of these thresholds equal 1/2, which
is also the existence threshold for these structures. In the following we discuss some natural open
problems for further research.

• A very natural question is to study minimum-degree discrepancy thresholds for the j-
degree1 with j< k− 1.We remark that for this question, the existence threshold for perfect
matchings (i.e. the minimum j-degree guaranteeing the existence of a perfect matching) is
mostly not known. We wonder if, for k-uniform hypergraphs with k≥ 3, there is some
j such that the j-degree discrepancy threshold is strictly larger than the corresponding
existence threshold (as is the case for graphs).
Remark added. This problem has been solved for each j �= 1 in a simultaneous work
of Balogh, Treglown, and Zárate-Guerén [5], who also provided a construction show-
ing that, for j= 1 and k= 3, the discrepancy threshold is significantly larger than the
existence threshold. The case j= 1 was then fully resolved by Lu, Ma and Xie [26], and,
independently, by Hàn, Lang, Marciano, Pavez-Signé, Sanhueza-Matamala, Treglown, and
Zárate-Guerén [20].

• Another natural question is to consider other notions of Hamilton cycles. As mentioned
in the introduction, Theorem 1.1 implies that minimum (k− 1)-degree (1/2+ ε)n guar-
antees the existence of Hamilton �-cycles of high discrepancy, for every 1≤ �≤ k− 1.
However, unlike in the case of tight Hamilton cycles (namely, �= k− 1), we do not have a
matching lower bound. For example, it is known that the minimum (k− 1)-degree thresh-
old for the existence of loose Hamilton cycles in k-graphs is 1

2(k−1) , see [22, 23]. We wonder
if this is also the discrepancy threshold of loose Hamilton cycles.

• As mentioned in the introduction, 1/2 is the minimum (k− 1)-degree threshold for the
existence of perfect matchings in k-graphs (see [24, 30]), which shows that Corollary 1.2
is tight. However, it is also known [24, 30] that a k-graph with minimum (k− 1)-degree
at least (1+ o(1))nk contains a near-perfect matching, i.e. a matching of size n

k −Ok(1). For
k= 3 and 2 colours, we have the following simple example showing that 1/2 is the dis-
crepancy threshold of near-perfect matchings (which is larger than the existence threshold

1Theminimum j-degree of a hypergraph is the minimum of d(S) over all sets S of j vertices.
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of 1/3). Partition the vertices into two sets A and B of equal size and take G to be the
hypergraph consisting of all edges which intersect both A and B. Colour in red the edges
which intersect A in two vertices, and colour the remaining edges in blue. Every match-
ing of size n/3− t must have at least n/6− 2t edges in each colour, meaning that there is
no near-perfect matching with discrepancy �(n). It is therefore natural to ask, for general
k≥ 3 and r≥ 2, what is theminimum (k− 1)-degree threshold guaranteeing a near-perfect
matching of high discrepancy in every r-edge-colouring.

• It would also be interesting to prove similar results for other spanning structures in hyper-
graphs, perhaps even of design-type, such as Steiner triple systems. We will return to this
in a future work.

• Instead of studying minimum degree thresholds, one might also consider random hyper-
graphs. In the graph case, Gishboliner, Krivelevich, and Michaeli [16] showed that with
high probability, the random graph G(n, p) has the following property: in every r-edge-
colouring, there exists a Hamilton cycle which has at least roughly 2n

r+1 edges of the same
colour and hence a perfect matching with at least roughly n

r+1 edges of the same colour.
The respective constants 2

r+1 and 1
r+1 are best possible even in the complete graph. This

raises the question of whether the same phenomenon holds in hypergraphs. For example,
as mentioned in the introduction, the result of Alon–Frankl–Lovász [1] implies that every
2-edge-colouring ofK(k)

n has a perfect matching with at least roughly n
k+1 edges of the same

colour. Is the same true in a random k-graph (say, with edge probability above the existence
threshold ( log n)/nk−1)?

• Generalising the previous item, it would be very interesting to prove a general result
relating the threshold for containing a structure (in a random graph/hypergraph) to the
threshold for having high discrepancy for this structure. Namely, for a family F of graphs
(or hypergraphs) on [n], let p0 be the threshold for the event that G∼G(n, p) contains a
member from F, and let p1 be the threshold for the event that in every 2-edge-colouring
of G∼G(n, p), there is a member F ∈F with high discrepancy, say of order �(e(F)). Note
that p1 is well-defined if (and only if) F has high discrepancy in Kn. Clearly p1 ≥ p0. Is
there a general upper bound on p1 in terms of p0? We wonder if the recent breakthroughs
around the expectation-threshold conjecture are relevant to this question.

• Even more generally, one can ask about the discrepancy of random subhypergraphs of
general hypergraphs (not necessarily those arising from graphs). Namely, we return to the
original definition of discrepancy, whereH is a hypergraph, and we colour the vertices ofH
with two colours. How ‘robust’ is discrepancy? For instance, suppose H has high discrep-
ancy, and we take a random subset of vertices by including each vertex independently with
probability p. Is the random induced subhypergraph likely to still have high discrepancy?
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