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Abstract

The energy of a unit vector field X on a closed Riemannian manifold M is defined as the energy of the
section into T 1 M determined by X . For odd-dimensional spheres, the energy functional has an infimum
for each dimension 2k + 1 which is not attained by any non-singular vector field for k > 1. For k = 1,
Hopf vector fields are the unique minima. In this paper we show that for any closed Riemannian manifold,
the energy of a frame defined on the manifold, possibly except on a finite subset, admits a lower bound in
terms of the total scalar curvature of the manifold. In particular, for odd-dimensional spheres this lower
bound is attained by a family of frames defined on the sphere minus one point and consisting of vector
fields parallel along geodesics.
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1. Introduction

Let (Mn+1, g) be a compact oriented Riemannian manifold without boundary and
Levi-Civita connection ∇. Given a unit vector field X on M , the energy of X is
(see [13])

E(X) =
1
2

∫
M

‖∇ X‖
2
+

n + 1
2

vol(M). (1)

Up to a constant, the first integral of (1) sometimes appears in the references as the
total bending of X or the vertical energy of the section of the tangent bundle.

The lower bound of the energy functional is (n + 1) vol(M)/2, attained by parallel
vector fields, that is, when ∇ X = 0. For this kind of vector fields, the integral curves
are geodesic and the orthogonal distribution X⊥ is integrable and totally geodesic.
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Parallel vector fields are rare because if M admits a unit parallel vector field, then M
is locally a Riemannian product.

The first important result concerning the energy of vector fields appears over S2k+1,
where k ≥ 1.

THEOREM 1.1 (Wiegmink [14]). Hopf vector fields on S3 are stable critical points of
the energy.

Later on, using a very different approach, the following result was found.

THEOREM 1.2 (Brito [4]). Hopf vector fields are the only unit vector fields on S3 to
minimize E .

In dimension 5 and so on, Hopf vector fields are unstable critical points of E ,
see [15]. The instability is obtained by parallel translation along the flow of a gradient
field of the original Hopf vector field. At the limit of this sequence we have a vector
field with one singularity and finite energy. This limit vector field was considered
in [10] for another similar functional, the volume of a vector field, but is simply defined
in the following way. Take p ∈ Sn+1 and v ∈ TpSn+1; if x ∈ Sn+1

\ {−p}, let VP(x)

be the vector obtained by parallel translation along the minimizing geodesic from p
to x . We say the vector field parallel along the geodesics to refer to this VP. For a
more intuitive description of VP, see the final section.

In [15] it was conjectured that the energy of global fields had an infimum attained
by VP (with one singularity). As mentioned below, this conjecture was refuted in [3].

Following the literature, we find another special unit vector field on Sn+1. Let
VR, the radial vector field or North–South field, be the unit vector field tangent
to the geodesics from a fixed point p ∈ Sn+1. Note that VR has two antipodal
singularities, ±p. This field plays a fundamental role in the study of the energy.

THEOREM 1.3 (Brito and Walczak [5]). The energy of any unit vector field X with
isolated singularities on Sn+1, where n ≥ 3, satisfies the inequality

E(X) ≥
n2

+ n − 1
2(n − 1)

vol(Sn+1),

and equality holds if and only if X = VR.

At this point, the question of whether or not there is a global unit vector field
minimum of the energy was still unanswered. This question was completely solved
in [3] with the following result.

THEOREM 1.4 (Borrelli, Brito and Gil-Medrano [3]). The infimum of E among all
globally defined unit smooth vector fields on the spheres S2k+1, where k ≥ 2, is E(VR).

For more results on energy, see, for example, [2, 6, 8, 9] or [12].
In this paper we show why vector fields parallel along the geodesics (the VP

defined above) are important for the energy functional. With this, we provide a
satisfactory answer to the motivation of the conjecture of [15].
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Let us now consider a global unit frame B = {X1, X2, . . . , Xn+1} on M . We can
define a new functional: the sum of the energies of all of the fields of the frame. That
is, we set

E(B) =

n+1∑
i=1

E(X i ).

This functional also makes sense if the global frame is defined off a finite subset of
M . In this case, the integral (1) of the energy of some X i can be divergent.

Here we prove the following theorem.

THEOREM 1.5. Let Mn+1, where n ≥ 3, be a closed Riemannian manifold and
B = {X1, . . . , Xn+1} be an orthonormal frame on M \ Z for a finite subset Z ⊂ M.
Then,

E(B) ≥
1

n − 1

∫
M

τ +
(n + 1)2

2
vol(M),

where τ is the scalar curvature of M. Moreover, equality holds if and only if each X⊥

i
is integrable and the leaves are umbilic submanifolds.

Note that the right-hand side of the inequality does not depend on the frame. Thus,
Theorem 1.5 provides a lower bound of the new functional. We apply this theorem to
the spheres. Recall that Sn+1 minus one point is parallelizable.

THEOREM 1.6. Given a finite subset Z ⊂ Sn+1, where n ≥ 3, and B a global
orthonormal frame in Sn+1

\ Z, then

E(B) ≥
(n2

+ 2n − 1) (n + 1)

2(n − 1)
vol(Sn+1),

and equality holds if and only if each vector field of B has an orthogonal distribution
integrable with umbilic leaves.

In Sn+1
\ {p}, a frame formed by fields VP satisfies the condition to be a lower

bound of E .

COROLLARY 1.7. The global frames on Sn+1
\ {p} obtained by parallel translation

along the geodesics leaving −p of a frame at the point −p to attain the lower bound of
Theorem 1.6. Moreover, in Sn+1

\ {p} only this kind of frame attains the lower bound.

This property characterizes the vector fields parallel along the geodesics when the
singular set Z is just one point. That is, this kind of vector field gives the minimum if it
is considered within a global frame. If we compare Theorems 1.3 and 1.6, we observe
that the minimum value of E(B) is not the sum of the infimum values of E(X).
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2. Notation

The energy of a smooth map f : (M, g) → (N , h) between Riemannian manifolds
is defined by (see [7])

E( f ) =
1
2

∫
M

‖d f ‖
2. (2)

A unit vector field X on a closed Riemannian manifold Mn+1 is a section of the
unit tangent bundle π : T 1 M → M . It is well known that T 1 M has a natural metric
induced from g, usually called the Sasaki metric. For a precise definition, we refer
to [1] or [11]. With this, from (2) we can obtain (1).

Since X is globally defined, we have the subbundle of T M determined by the
vectors orthogonal to X at each point of M . We denote this subbundle by X⊥.

Let us take an orthonormal local frame {e1, . . . , en} on M adapted to X , that is,
en+1 = X . The second fundamental form H of X⊥ is given by

H= (hi j ) where hi j = g(∇ei e j , X), i, j = 1, . . . , n.

Recall that H will be symmetric if and only if X⊥ is integrable. The second
elementary symmetric function of H, σ2(X), is given by

σ2(X) =

∑
1≤i< j≤n

(hi i h j j − hi j h j i ).

The Ricci curvature and σ2 are related by the formula∫
M

2σ2(X) =

∫
M

Ricci(X, X). (3)

A proof of (3) for the compact case can be found in [4]. This equality also holds
true by integrating over M \ Z , where Z is a finite subset of M , see [5]. The scalar
curvature τ of M is given by

τ =

n+1∑
i=1

Ricci(ei , ei ),

where {ei }
n+1
i=1 is an orthonormal local frame.

Considering (1), a straightforward computation gives

‖∇ X‖
2
=

n+1∑
i=1

‖∇ei X‖
2
=

n∑
i, j=1

h2
i j +

n∑
i=1

a2
i , (4)

where ai are the components of the acceleration of X , that is, ai = g(∇X X, ei ) for an
adapted orthonormal local frame. It is now clear that only unit parallel vector fields
have energy equal to ((n + 1)/2) vol(M).
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3. Proof of Theorem 1.5

Let us now prove Theorem 1.5. Given a global frame B = {X1, . . . , Xn+1}

on M \ Z , first of all we consider each vector field Xa , where a = 1, . . . , n + 1,
separately.

The integrand of the energy of Xa (4) is

‖∇ Xa‖
2
=

∑
i, j 6=a

(ha
i j )

2
+

∑
i 6=a

g(∇Xa Xa, X i )
2
=

∑
i, j 6=a

(ha
i j )

2
+

∑
i 6=a

(hi
aa)2.

From here, the sum of these factors for each Xa is

n+1∑
a=1

‖∇ Xa‖
2

=

n+1∑
a=1

( ∑
i, j 6=a

(ha
i j )

2
+

∑
i 6=a

(hi
aa)2

)

=

n+1∑
a=1

(∑
i 6=a

(ha
ii )

2
+

∑
i, j 6=a
i 6= j

(ha
i j )

2
+

∑
i 6=a

(hi
aa)2

)

= 2
n+1∑
a=1

∑
i 6=a

(ha
ii )

2
+

n+1∑
a=1

∑
i, j 6=a
i 6= j

(ha
i j )

2. (5)

Now, for a fixed a we can rewrite these sums using the expressions

∑
i, j 6=a
i< j

(ha
ii − ha

j j )
2

=

∑
i, j 6=a
i< j

((ha
ii )

2
+ (ha

j j )
2) − 2

∑
i, j 6=a
i< j

ha
ii h

a
j j

= (n − 1)
∑
i 6=a

(ha
ii )

2
− 2

∑
i, j 6=a
i< j

ha
ii h

a
j j , (6)

and

∑
i, j 6=a
i< j

(ha
i j + ha

ji )
2

=

∑
i, j 6=a
i< j

((ha
i j )

2
+ (ha

ji )
2) + 2

∑
i, j 6=a
i< j

ha
i j h

a
ji

=

∑
i, j 6=a
i 6= j

(ha
i j )

2
+ 2

∑
i, j 6=a
i< j

ha
i j h

a
ji . (7)

https://doi.org/10.1017/S1446788708000177 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000177


160 F. G. B. Brito and P. M. Chacón [6]

When n ≥ 3, from (5), (6) and (7) we obtain

n+1∑
a=1

‖∇ Xa‖
2

≥
2

n − 1

n+1∑
a=1

( ∑
i, j 6=a
i< j

(ha
ii − ha

j j )
2
+ 2

∑
i, j 6=a
i< j

ha
ii h

a
j j +

∑
i, j 6=a
i 6= j

(ha
i j )

2
)

≥
2

n − 1

n+1∑
a=1

(
2

∑
i, j 6=a
i< j

ha
ii h

a
j j +

∑
i, j 6=a
i< j

(ha
i j + ha

ji )
2
− 2

∑
i, j 6=a
i< j

ha
i j h

a
ji

)

≥
4

n − 1

n+1∑
a=1

∑
i, j 6=a
i< j

(ha
ii h

a
j j − ha

i j h
a
ji ) =

4
n − 1

n+1∑
a=1

σ2(Xa). (8)

To complete the proof we integrate (8) over M and use (3)

E(B) =
1
2

n+1∑
a=1

∫
M

‖∇ Xa‖
2
+

(n + 1)2

2
vol(M)

≥
2

n − 1

∫
M

n+1∑
a=1

σ2(Xa) +
(n + 1)2

2
vol(M)

=
1

n − 1

∫
M

n+1∑
a=1

Ricci(Xa, Xa) +
(n + 1)2

2
vol(M)

=
1

n − 1

∫
M

τ +
(n + 1)2

2
vol(M).

In the first inequality of (8) we have disregarded 1 − 2/(n − 1) = (n − 3)/(n − 1)

terms of type (ha
i j )

2 with i 6= j . Also we have discarded the terms (ha
ii − ha

j j )
2 and

(ha
i j + ha

ji )
2 with i 6= j . Thus, the inequality of the theorem will be an equality if and

only if for all a = 1, . . . , n + 1 we have

ha
ii = λa and ha

i j = 0 for i 6= j.

That is, the equality holds if and only if each distribution X⊥
a is integrable and the

integral leaves are umbilic submanifolds. 2

4. Consequences

The proof of Theorem 1.6 follows directly from Theorem 1.5 using the fact that
τ(Sn+1) = n(n + 1).

In the introduction we defined the vector fields parallel along the geodesics as
in [10] or [15]. However, there is an alternative description that is more useful to
prove the corollary.
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Choose in Rn+1 a direction v and consider the foliation Fv of Rn+1 by straight
lines with the chosen direction. Using the stereographic projection from the North
pole N ∈ Sn+1 over Fv , we obtain a foliation of Sn+1

\ {N } by circles. Let us define
VP as a unit tangent vector field to that foliation. The properties of the stereographic
projection tell us that both definitions of VP are equivalent.

It is now clear that the orthogonal distribution V ⊥

P is integrable. Note that F⊥
v in

Rn+1 is the n-dimensional foliation determined by the hyperplanes orthogonal to v.
Thus, the leaves of V ⊥

P are n-dimensional spheres of Sn+1. Recall that VP is defined
on Sn+1

\ {N }. The integral curves of VP and also the leaves of V ⊥

P all meet at N .
Obviously, we can define a congruent vector field parallel along the geodesics on
Sn+1

\ {p} for any p ∈ Sn+1.
The properties of symmetry of VP allow us to construct an orthonormal global

frame on Sn+1
\ {p} formed by n + 1 fields parallel along the geodesics. In this way,

we obtain an orthonormal global frame B such that each distribution orthogonal to
each field of B is integrable with umbilic leaves. Therefore, such a B satisfies the
conditions of Theorem 1.6 to minimize the functional energy of frames. This argument
proves the first statement of the corollary. Conversely, totally umbilical foliations
in Sn+1

\ {p} goes to totally umbilical foliations in Rn+1 through the stereographic
projection. Necessarily this kind of foliation in Rn+1 is given by parallel hyperplanes,
so in Sn+1 these foliations are congruent to some V ⊥

P . With that, an orthonormal
frame satisfying the equality condition in Theorem 1.6 must be formed by fields VP.
This complete the proof of the corollary.

We can obtain the energy of VP from Theorem 1.6 (see also [15]):

E(VP) =
n2

+ 2n − 1
2(n − 1)

vol(Sn+1).

When n ≥ 3, this value is between the energy of the radial vector field and that of
the Hopf vector field, VH:

E(VR) =
n2

+ n − 1
2(n − 1)

vol(Sn+1); E(VH) =
2n + 1

2
vol(Sn+1).

Note that VR and VH have the same energy on S3. On Sn+1, individually, the radial
vector field has less energy than the vector field parallel along the geodesics, but it is
not possible to generate an orthonormal frame formed just by radial vector fields.

Finally, observe that Theorem 1.5 can be applied to manifolds other than spheres;
parallelizable manifolds (Lie groups and others) for example.
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