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CONVERGENCE FORMULAS FOR SEQUENCES OF SETS 

FRANK A. CHIMENTI 

This paper is concerned with the convergence of sequences of subsets of a 
topological space, as defined by F. Hausdorff [6]. Such a sequence converges 
if and only if its limit inferior equals its limit superior, where its limit inferior 
(respectively, superior) is that set each of whose elements satisfies the condi
tion that each of its neighborhoods has nonempty intersection with all but 
finitely (respectively, with infinitely) many terms of the sequence. 

F. Hausdorff [6] showed that the limit superior of a sequence (An) of sub
sets of a topological space X equals 

h\UAn) . 

K. Kuratowski [Problems, Colloq. Math. 1 (1947), p. 29] first formally posed 
the natural question: Can a "similar" formula be found for the limit inferior? 
R. Engelking [3] answered this question negatively, for "similar" formula 
characterized as a finite sequence of finite and countable Boolean operations 
and the Kuratowski closure operator. Indeed analysis of Engelking's proof 
reveals a stronger result than necessary, viz., such a formula cannot be found 
in a certain subspace of any metric space possessing two nonisolated points. 
More exactly the result in [3] shows that there is no formula for the limit 
inferior that is valid, i.e., yields the limit inferior of every sequence of subsets 
of the space, in all spaces. Such a formula is necessarily hereditary, since the 
limit inferior is hereditary. Moreover discrete spaces do admit a formula for 
the limit inferior, viz., 

u n An. 
m ^ l n > m 

What follows shows that not all formulas are hereditary and among those 
that are, none of these is a formula for the limit inferior in a nondiscrete first 
countable Hausdorff space. This result improves the result in [3] in that it 
identifies a class of spaces and a class of formulas for which the result in [3] 
is valid. 

The result mentioned above (see Corollary 3.11) is obtained by considering 
a more general question, i.e., when can the convergence of sequences of subsets 
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be determined by a "method" based on formulas? Abstracting from the situa
tion in discrete spaces, where the formulas for the limit inferior and superior 
could be equated for a particular sequence and their equality would guarantee 
the convergence of this sequence (indeed it would exhibit its limit), we define 
a "method" based on formulas as a system of equations drawn from the class 
of formulas. A complete solution for first countable Hausdorff spaces is 
obtained (see Theorem 3.10): A countable system of hereditary formulaic 
equations determines the convergence of sequences of subsets of a first count
able Hausdorff space if and only if the space is discrete. Also a more general 
but incomplete result is obtained (see Theorem 3.9): No countable system of 
hereditary formulaic equations determines the convergence of sequences of 
subsets of a space possessing the one-point compactification, X, of a countably 
infinite discrete space as a closed subspace. 3.9 depends on Theorem 3.4: No 
countable system of formulaic equations determines the convergence of se
quences of nonempty closed subsets in X. 

The contents of Sections 1 and 2 are necessary for Section 3. Section 1 con
tains some convergence properties of sequences of sets. In Section 2 the formu
las of [3] are developed in some detail and a few properties of formulas are 
presented. 

1. We denote the limit inferior (respectively, superior) of a sequence (An) of 
subsets of X by Lix (An) (respectively, Ls x (An)) and the limit (when it 
exists) by Limx (An). Where no confusion arises we will write these symbols 
without their subscript. If Limx (An) = A, then (An) is said to converge in X 
to A. The following facts are direct consequences of the results in [5] and 
[7, pp. 335-344]. 

1.1 If F is a closed subspace of X, then Ls x (An) = LsF (An), for every 
sequence (An) of subsets of F. 

1.2 If F is a closed subspace of X, then a sequence (An) of subsets of F 
converges in F if and only if (An) converges in X. 

1.3 If h is a homeomorphism from X onto F, then a sequence (An) of 
subsets of X converges in X if and only if (h[A„\) converges in F. 

2. Suppose N = {1, 2, 3, . . . } , / is a function from Nk into TV, where k £ TV, 
and (wi, . . . , nk) (respectively, (ax, . . . , ah)) is a variable (respectively, fixed) 
element of TV*. A' designates a variable sign and cp, cl, \Jm (for m £ TV) and 
VJ are all constant signs. 

Definition, (i) A'f is an expression with &-many parameters; 
(ii) if W is an expression with &-many parameters, then cp W and cl W are 

also expressions with &-many parameters and \JU)W, where j G {1, . . . , fe} is 
an expression with (k — l)-many parameters; if W* is an expression with 
&*-many parameters, then W U W* is an expression with (k + &*)-many 
parameters. 
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When writing the tuple of parameters of length k + k* on which W U W* 
dpends, we will use the convention of writing the &-many parameters on which 
W depends in positions 1 through k followed in positions k + 1 through 
k + k* by the &*-many parameters on which W* depends. 

We remark that (i) and (ii) define all expressions and that an expression 
without parameters, i.e., k = 0, will be called a formula. We observe that a 
formula can be written as a finite sequence of constant and variable signs, 
where the first sign in the sequence is, necessarily, a variable sign. The length 
of this sequence is r if r + 1 signs have been used to compose W. Wo is the 
first expression in the sequence, i.e., Wo = A''f; Wt is the expression that 
results at the ith-step in the sequence and Wr = W is the formula of length r. 

The following definition applies these expressions to sequences of sets. 
Suppose (An) is a sequence of subsets of a topological space X and W is an 
expression with &-many parameters, exp (X) denotes the power set of X. 

Definition. V(W) maps Nk X exp {X)N into exp (X) such that 
V(W)(((ai, . . . ,ak), (An))) depends upon the signs forming Win the following 
manner: 

(1) V(A'f)aau...ak),(An)) = Afial ak); 

(2) F(cp W')U<H, • • .,**), (An)) = X\V(W')«au . . . , ak), (An)); 

(3) 7(cl W')«alt . . . , ak), (An)) = (V(W'){{au . . . , ak), (An))Y
x; 

(4) V\\JW') ((alt...9ak)t(AH)) = 

U V(W')((bu . . . bi-x, m, bj+l bk+1), (An)), 
m=l 

where at = bt, for i < j and at — bt+\, for i ^ _;'; 

(5) V(W VJ W*){{au . . . , ak), (An)) = V{W'){{au . . . , ak.), (AJ) \J 

V(W*)((av+1 av+k*), (An)). 

V(W) is always a function, since it is always either the composition of 
functions or the composition or sum of Boolean functions, and V(W)((ni,.. ,nk), 
(An)) represents a &-tuple sequence of sets. If k = 0, then N° = {0}, where 0 
is the empty function and V(W)((nu . . . , % ) , (An)) = V(W)(0, (An)) = 
V(W)((An)) represents a 0-tuple sequence of sets, i.e., a set. 

We note that value of the function V(W) for a fixed argument depends upon 
the space X with respect to which V(W) is computed. Thus we adopt the 
notation VX(W) rather that V(W), whenever necessary. 

We remark that HausdorfFs formula for the limit superior is a formula of 
the type described above of length r = 6, i.e., the limit superior equals 
^(cp Um CP cl Un2 Af), where / maps iV2 onto N via /(«i , w2) = «i + ni. 

2.1 If h is a homeomorphism from X to F, (An) is a sequence in exp (X) and 
W is a formula, then h[Vx(W){(An))} = VY(W){(h[An})). 
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Proof. If Wm = A'f (and it does for m = 0), then A[Fx(Wm)((ai, . . . , akm), 
(A.))] = h[A 

f(a\,... ,akm) 

] = VY(Wm)((au . . . , akm), (h[An])). Suppose for 
m > 0, h[Vx(Wt)((au . . . , aki), (An))] = F r ( T F < ) ( K . . . , aki), (h[An])), 
for i = 0, 1, . . . , w — 1. Now the remaining possibilities for Wm are Uns^z» 
cp Wu cl PF* or IF^ U W ,̂ for some i , j Ç (0, l , . . . w - 1). Since the pattern 
of proof in each of these four cases is the same, we pause to examine only the 
third case. 

Thus Wm = cl Wu for some i G {0, 1, . . . , m — 1} implies km = kt and 
h[Vx(Wm)((au . . . , akm), (An))] = h[(Vx(Wt)({ai, . . . , aki), (An)))-*] 

= (h[Vx(Wi)Ua1,...,aki),(An))]yY 

= (VY(Wt)aalt . . . , aki), (h[An]))YY = VY(Wm)((au ... ,akm), (h[An])). 

Finally if m = r, then 

Wm = Wr = W*ndh[Vx(W)((An))] = VY{W){{h[An])). 

If W is a formula of length r and (An) is a sequence in exp (X), define 
Ri{X, Wu (An)), for i = 0, 1, . . . , r, to be 

{ACX:A = Vx(Wi)((a1,...Jaki)J (An)), 

for some (ai, . . . , aki) 6 iV*1'}. 

For each distinct triple (X, PF*, (An)), Rt is countable, as Nki is countable and 
F x ( ^ ) is a function. Defining i?(X, W, (An)) = U {i?*: i = 0, . . . , r}, we 
note that R is a countable class of subsets of X. 

2.2 If W is a formula and fdn = 0, /or ezjery n £ N, then R(X, W, (0J ) C 
{0,X}. 

Proof. If PFm = ^4'r (and it does for m = 0), then 0 = 0 / ( a i 0Am) = 
Vx(Wm)((au . . . , a*J, (0n)). For m > 0, suppose Fx(PF*)((ai, . . . , a*,.), 
(0n)) belongs to {0, X), for i = 0, . . . , m — 1. We now proceed by distin
guishing three cases for Wm, viz., Wm = UnsWi or Wm = PF* U PF̂ -, PFW = 
cp PFZ-, and Wm = cl PF*, for some i, j Ç {0, . . . , m — 1} and for some 
5 G { 1 , . . . ,kt}. In each of these three casesFx(PFm) ((rti, . . . ,akm), (0J) belongs 
to {0, X}, as {0, X} is closed under unions, complementation and closures, 
respectively. Thus Rm(X, Wm, (0)n)) is a subset of {0, X} and hence by finite 
induction on the length of the formula W, R(X, W, (0W)) C {0, X}. 

To say thatasubspaceFof aspaceXisi?-open means (A)'x C\ Y = (A C\ Y)'Y, 
for every A £ R C exp (X). We note that Y is open in X implies that Y is 
i^-open, for every R £ exp (exp (X)), since Y is open in X if and only if Y is 
exp (X)-open (see [2]). The proof of 2.3 below is patterned after the proof of 2.1 
and is contained in [1]. 

We remark that every subspace F of a space X is {0, X}-open, hence is 
R(X, W, (0n))-open, for every formula W. 
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2.3 If W is a formula, (An) is a sequence in exp (X) and Y is a subspace of X 
that is R(X, W, {An))-open, then Vx(W)({An)) C\ Y = VY{W){{AnC\ Y)). 

We remark tha t even if (An) is a sequence of subsets of F, 2.3 need not be 
t rue if Y is not R(X, W, (A n))-open. For let Y = {l/n: n £ N} U {0}, 
X = Y\J {2-<n+1/2>: n £ N], W = clcp UnAf, w h e r e / is the identi ty on TV, 
and An = {2/n}, if n is even and An = {0}, if n is odd, then {0} = 
Vx{W){(An))C\ Y, bu t 0= VY(W)«An)). Clearly Vx(W)((An)) is the 
member of R(X, W, (An)) causing Y to not be R(X, W, (.4 J ) - o p e n . 

We note t ha t if X is arbi t rary then the equation in 2.3 is valid for every 
formula and for every sequence in exp (X) if and only if Y is open in X. To 
verify this observe tha t if Y is open then it is R{X, W, (A n))-open, for every 
formula IF and every sequence (An) in exp (X), so the equation is valid by 2.3 
and if the equation is valid for every formula then it is valid for the limit 
superior, so F i s open (see [2]). 

We are led by this discussion to make the following useful 

Definition. W is a hereditary formula means Vx(W)((An)) C\ Y = 
VY(W)({An)), for every sequence (An) in exp ( F ) and for each subspace F of 
an arbi t rary space X. 

We note tha t the formula for the limit superior is valid in all spaces and the 
limit superior is hereditary, thus its formula is also. 

3 . A formulaic equation S is a pair (W, W*), where W and W* are formulas. 
A collection F of formulaic equations will be called a system. To say a sequence 
(An) of subsets of a space X satisfies a system F in X means VX(W) ((An)) = 
Vx(W*)((An)) for every pair S = (W, W*) belonging to F. Moreover (An) 
satisfies 5 in X, if (An) satisfies F = {S} in X. A system F is countable means 
its cardinali ty is a t most countably infinite. 

Definition. A system determines the convergence of sequences of subsets of 
a space means a sequence of subsets of the space converges in the space if and 
only if it satisfies the system in the space. 

3.1 LEMMA. / / two spaces are homeomorphic and a system determines con
vergence for one of them, then it also determines convergence for the other. 

Proof. Suppose F = {St — (Wt, W*): i G / ) determines convergence for F, 
h is a homeomorphism from X to F and (An) is a sequence in exp (X). Now 
(An) converges in X <=> (h\An~\) converges in F «=> (h[An]) satisfies F in F <=> 
VY(Wt)Uh[An\)) = VY(W*)((h[An])), for every i £ I ^ for every i d I, 
h[Vx(Wt)((An))] = h[Vx{W*)({An))]^ Vx(Wt)UAn)) = Vx(W*)((An)), 
for every i G I <=$ (An) satisfies F in X. The first, fourth and fifth equivalences 
are valid due to 1.3, 2.1 and h is invertible, respectively. 

3.2 LEMMA. / / F is a subspace of X, S = (W, W*), (An) is a sequence in 
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exp (X) and Y is R(X, S, (An)) = R(X, W, (An)) U R(X, W*, (An))-open, 
then (An) satisfies S in X implies (An C\ Y) satisfies S in Y. 

Proof. (An) satisfies 5 in X means Vx(W)((An)) = Vx(W*)((An)) implies 

vY(w)((Anr\ Y)) = vx(W)((An))n Y= vx(w*)((An)) n Y= VY(W*) 
((Anr\ Y)) means (AnC\ Y) satisfies S in F. 

3.3 LEMMA (Engelking [3]). If X is a countably infinite set and Ris a countable 
class of subsets of X, then there is a countably infinite subset E of X, satisfying 
A\E is countably infinite, for every countably infinite A £ R. 

3.4 T H E O R E M . NO countable system determines the convergence of sequences of 
closed subsets in the one-point compactification, X of a countably infinite discrete 
space. 

Proof. Suppose 12 = {xn: n G N} KJ {p}, where (xn) is a sequence of dist inct 
terms different from p and convergent in 12 to p and 12\{£>} is a discrete sub-
space of 12. Let F = {Sm: m G N] be a countable system and set An = {xn}, 
for every n G N. Define 

R(Q, F, (An)) = U {R(Q, Sm, (An)): m G N} = R. 

Now R is a countable subset of exp (12), since it is the countable union of 
countable subsets of exp (12). 

Let E be the countably infinite subset of 12 satisfying 3.3 for R. We note 
t ha t 12\£ is countably infinite, since for any countably infinite A G R, A\E C 
12\£ and if every A G R is finite, choose a suitable E, e.g., E = {x2n: n £ N}. 
T h u s Y = (12\£) U {p} is closed in 12 and is homeomorphic to 12 in its rela
tivized topology, since it is also the one-point compactification of a countably 
infinite discrete space. Moreover Y is i^-open, since if A is finite, (A)'nC\ Y = 
AH Y = (A P\ F)" y , as A H Y is finite and 12 (hence Y) is 7 \ ; if A is infinite, 
AC\ Y-JA\E, so (AC\ Y)~Y = (AC\Y)\J{p) = (A U {p}) H Y = (A)'*1 H 
Y, as 12 (hence Y) is Fréchet (see [4]). 

Since {p} = Lim f i(^4n), assuming F determines convergence in 12 yields (An) 
satisfies F in 12. Now Fis i^ -open , so it is i?(12, Sm, (An))-open, for every m G N. 
T h u s (An C\ Y) satisfies Sm in F, for every m G N, by 3.2, so (4W Pi F) 
satisfies F in F. But F determines convergence in F by 3.1, so (An (~\ Y) 
converges in F. 

Bu t (An C\ Y) does not converge in F, since l^sY(An C\ Y) = {p} and 
L i y ( A n C\ Y) = 0, as An C\ Y = {xn}, if xn G 12\£ and An C\ Y = 0, if xn 6 £ 
and both £ and 12\£ are countably infinite. This contradict ion implies t ha t F 
does not determine convergence in X. 

We remark tha t admit t ing sequences some of whose terms may be the 
empty set can be avoided in the above proof, by lett ing An = {xi, xn+\), for 
every n G N and F = (12\£) U {p, Xi}, where £ is chosen as before. 

Suppose L is a function from exp (X)N to exp (X) . T o say t ha t W is a 
formula for L means L = VX(W). 
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3.5 COROLLARY. There is no formula for the limit inferior over the class of 
sequences of closed subsets of 12. 

Proof. If there were such a formula, Wu then F = {(Wi} Ws)}, where Ws is 
the formula for the limit superior, would be a system determining convergence 
for 12, contradicting 3.4. 

3.6 COROLLARY. There is no hereditary formula for the limit inferior in a space 
possessing 12 as a subspace. 

Proof. Let Z be the space described above, W a formula for L i z and (An) a 
sequence in exp (12). The contradiction tha t W is a formula for Li^ results 
from: 

LiQ(An) = Liz(An) H 12 = Vz{W){(An)) C\ 12 = VQ(W)((An)). 

T o say a system F is hereditary means every formula composing every 
formulaic equation 5 belonging to F is hereditary. Moreover, a formulaic 
equation S is hereditary means F = {S} is hereditary. 

3.7 LEMMA. / / Y is a subspace of X, S = (W, W*), (An) is a sequence in 

exp ( F ) , (0n) satisfies S in X and at least one of 
(a) S is hereditary, or 
(b) F and X\Y are both R(X, S, {An))-open 

is true, then (An) satisfies S in Y if and only if (An) satisfies S in X. 

Proof. Now 

Vx{T)({An)) = VY(T)({Anr\ Y)) U VxXY{T)({Anr\ {X\Y))), 

by (a) or (b) , for T = W or W*. But i B H F = ^ n , for every n £ N, thus 
Vx(T)((An)) = VY(T)((An)) VJ VxXY(T)((Qn)), for r = Ŵ  or W*. Also 
by 3.2, (0„) satisfies 5 in X \ 7 , as it satisfies 5 in X and X \ F is always R(X, S, 
(0„))-open (see 2.2 and the remark following). Thus Vx(W)((An)) = 

Vy{W)({An)) U VX\y(W)((Qn)) = Vy(W*)((An)) U 7 ^ y ( PT*) ( (0„) ) = 
Vx(W*)((An)). This proves the direct implication, the proof of the reverse 
implication is a slight modification of the proof of 3.2. 

3.8 LEMMA. If Y is a closed subspace of X, F is a system and at least one of 
(a) F is open, or 
(b) F is hereditary 

is true, then F determines convergence in X implies F determines convergence in F 

Proof. Let (An) be a sequence in exp ( F ) and F = {St: i G / ) • Now (An) 
converges in F<^> (An) converges in X <=$ (An) satisfies F m X <=> (An) satisfies 
Si in X, for every i £ I <=$ (An) satisfies St in F, for every i Ç / <=> (An) satis
fies F in F The first and fourth equivalences follow from 1.2 and 3.7, respec
tively. 
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3.9 T H E O R E M . NO countable hereditary system determines the convergence of 
sequences of subsets of a space possessing 12 as a closed subspace. 

Proof. Let Z be the space described above. If F is a countable heredi tary 
system which determines convergence in Z, then it determines convergence 
in 12 by 3.8, which contradicts 3.4. 

We remark t ha t in a space possessing unique sequential limits, a sequentially 
nonisolated point, i.e., the limit point of a sequence, together with the sequence 
convergent to it const i tutes the one-point compactification of a countably 
infinite discrete space. T h u s 3.4 is valid for the class of unique sequential limit 
spaces possessing a t least one sequentially nonisolated point. 

3.10 T H E O R E M . A countable hereditary system determines the convergence of 
sequences of subsets of a first countable Hausdorff space if and only if the space is 
discrete. 

Proof. Suppose Z is a first countable Hausdorff space. If Z is not discrete 
then it satisfies 3.9. If Z is discrete, then F = {(Wt, Ws)} is a countable 
hereditary system which determines convergence in Z, where Wt and Ws are 
the formulas for the limits inferior and superior, respectively, in discrete spaces. 

3.11 COROLLARY. There is a hereditary formula for the limit inferior in a first 
countable Hausdorff space if and only if the space is discrete. 

We note t ha t whenever heredi tary formulas were necessary in the above, 
t ha t it would have been sufficient to assume t h a t these formulas were heredi
tary only on the one point compactification of a countably infinite discrete 
space. The counterexample following 2.3 illustrates t ha t a formula need not 
even satisfy this restricted heredi tary condition. 

An open question is whether the restriction in 3.6 and 3.10 to heredi tary 
formulas is necessary. Again the counterexample following 2.3 il lustrates t h a t 
not all formulas are heredi tary even for closed extensions of the one point 
compactification of a countably infinite discrete space. 

Another open question is whether any of these results can be extended to 
the case where disjunctions and negations of formulaic equat ions are permit ted , 
in addit ion to the conjunctions used here. 

The author wishes to thank Professor S. Mrowka for introducing him to 
this problem and for his encouragement and criticisms. 
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