
Cite this article: Kharatyan, A., Tekaat, J., Japs, S., Anacker, H., Dumitrescu, R. (2021) ‘Metamodel for Safety and
Security Integrated System Architecture Modeling’, in Proceedings of the International Conference on Engineering
Design (ICED21), Gothenburg, Sweden, 16-20 August 2021. DOI:10.1017/pds.2021.464

ICED21 2027

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED21
16-20 AUGUST 2021, GOTHENBURG, SWEDEN

ICED21 1

METAMODEL FOR SAFETY AND SECURITY INTEGRATED
SYSTEM ARCHITECTURE MODELING

Kharatyan, Aschot;
Tekaat, Julian;
Japs, Sergej;
Anacker, Harald;
Dumitrescu, Roman

Fraunhofer Research Institute for Mechatronic Systems Design IEM

ABSTRACT
As digitization progresses, the integration of information and communication technologies in technical
systems is constantly increasing. Fascinating value potentials are emerging (e.g. autonomous driving),
but also challenges in the system development. The constantly increasing product complexity and
degree of networking require a systemic development, which is fulfilled by established approaches of
Model-Based Systems Engineering (MBSE). To ensure the reliability of tomorrow's systems, an
integrative and early consideration of security and safety is additionally required. In order to show the
possibility and consequences of failures and attacks, the paper develops a modeling language that links
established and partly isolated security and safety approaches within a consistent metamodel. The
developer is enabled to synthesize system architectures transparently on an interdisciplinary level and
to analyze attack and failure propagation integratively. The approach uncovers synergetic and
especially contrasting goals and effects of architectural designs in terms of safety and security in order
to make adequate architectural decisions based on trade-off analyses.

Keywords: Systems Engineering (SE), Product architecture, Early design phases, Security and safety
by design

Contact:
Kharatyan, Aschot
Fraunhofer Research Institute for Mechatronic Systems Design IEM
Product Engineering
Germany
aschot.kharatyan@iem.fraunhofer.de

https://doi.org/10.1017/pds.2021.464 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.464

2028 ICED21

1 INTRODUCTION

The increasing digitization and networking of mechatronic systems is leading to a growing integration

of information and communication technologies. In the field of mobility in particular, this is leading to

enormous leaps in innovation and fascinating potential benefits of the vehicles of the future (Dumitrescu

et al., 2018). The change from classic technical systems to intelligent systems involves, in addition to

the new functionalities and their benefits, increasing challenges for system development. A promising

approach to the development of complex interdisciplinary systems is offered by Systems Engineering

(SE) and the consistent continuation by Model Based Systems Engineering (Walden et al., 2015).

Particularly in the early phase of development, the consistent use of models creates a great potential to

master complexity and, for example, to detect and eliminate possible errors at an early stage.

Studies show that the constantly increasing degree of connectivity, automation and autonomy,

especially in the automotive industry, results in a high vulnerability of technical systems (Miller and

Valasek, 2013). Ensuring system reliability (in particular functional safety and cyber security) thus

represents a further major challenge for today’s developers (Nigam et al., 2019). The question arises as

to how developers can be supported in the early stages of product development within the MBSE in

order to develop future products in a safe and secure manner. In order to synthesize system

architecture models and to be able to analyze the challenges of safety and security integratively across

individual domains, a modeling language is required that addresses security and safety-relevant

aspects integratively.

The goal of this paper is to create a basis for a safety and security-oriented system modeling by

specifying a modeling language for the system architecture. The developer is enabled to identify errors

and threats such as error propagation and attack vectors in an integrative way at an early development

stage. In the first chapter, the problem analysis is adressed, in which the system architecture modeling,

the challenges of safety and security as well as the necessity of an integrative integration into the

MBSE modeling language are presented. The second chapter evaluates the state of the art. The third

chapter presents the solution approach in the form of a metamodel, while the fourth chapter includes a

validation. The fifth chapter concludes with a summary and an outlook on further fields of research.

2 PROBLEM ANALYSIS

2.1 Architecture modeling in Systems Engineering

Systems engineering allows the holistic development of complex and networked technical systems

(Gausemeier et al., 2014). The development and consideration of a design on different levels of

abstraction above the individual technical domains helps to make the complexity of the overall system

controllable for humans. Abstraction is used to disclose only relevant information. The system

architecture is such a level or view that shows which functionalities are fulfilled by which systems

(Haberfellner et al., 2019). The system architecture is addressed in this paper because of its high

relevance to the early and holistic protection of a system with respect to safety and security (Nigam et

al., 2019). A distinction is made between the synthesis phase, in which the system architecture is

created, and the analysis phase, in which existing architecture constructs are validated.

Model-Based Systems Engineering (MBSE): According to the International Council on Systems

Engineering (INCOSE), the future of systems engineering will be model-based. A model-based design

approach can take advantage of a holistic system model to integrate multiple domains in a more

precise, consistent and reusable format - in contrast to the document-oriented process (Walden et al.,

2015).

The three main parts to describe a system model are a method, a tool and a modeling language. The

modeling method is the guideline, which describes in which way the language elements have to be

modeled. The modeling language, however, is only a means of expression and specifies the individual

language elements that are available for system modeling. Finally, the modeling tool can be used to

perform the modeling. Only a coordinated combination of the three parts leads to a successful system

modeling. Especially the use of graphical modeling languages provides advantages in the areas of

perception, maintenance, processing and communication between the departments. For this purpose,

INCOSE and the Object Management Group (OMG) have developed the standardized Systems Model

Language (SysML) for mapping and modeling the system model (Weilkiens, 2014).

https://doi.org/10.1017/pds.2021.464 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.464

ICED21 2029

As already explained, in order to describe a system model-based, a modeling language (e.g. SysML)

is required. As shown in Figure 1, the modeling language is defined by the syntax and semantics

(Dorociak, 2015). In detail, a modeling language consists of an abstract syntax, one or more concrete

syntaxes and a semantics. The abstract syntax defines the different model elements together with their

attributes and relationships to other model elements. The abstract syntax (also called metamodel) also

contains the static semantics, which is mainly used to define constraints of the model elements and

relations. The graphical representation is recorded in the concrete syntax, also called notation. For

example, it can be defined that a system element should be represented by a blue rectangle. In

semantics, the meanings of model elements are defined in a concrete model environment.

A great variety of domains exists, making the development of a modeling language that covers all

existing aspects practically impossible. To meet this limitation, extension mechanisms (so-called

profiles) are used to add new concepts and notations (Weilkiens, 2014). For this purpose, metamodels

can be created and integrated into the existing modeling languages.

Figure 1. Structure of a modeling language according to Rodrigues da Silva (2015)

2.2 Safety and security in the development process

Safety and security are approached with different ways of thinking. While safety is about controlling

catastrophic events caused, for example, by system malfunctions, security is about preventing malicious

entities from attacking the system. The ISO standard 26262 (Road Vehicles - Functional safety) defines

the term functional safety as “absence of unreasonable risk due to hazards caused by malfunctioning

behaviour of E/E systems” (ISO 26262, 2011). Safety is thus understood as the freedom from

unacceptable risks in relation to dangers resulting from functional failure of the system. The term

security is understood as the minimization of the weak points of assets and resources. Thus, the term

security is not only understood as the protection against known hacker attacks, but also all possible

external interventions from outside, which can damage the system. The counterpart to ISO 26262 is ISO

21434, which focuses on the cyber security of road vehicles. It uses the term Road Vehicle Cyber

Security and defines it as “Condition in which assets are sufficiently protected against threat scenarios

to electrical or electronic components of road vehicles and their functions” (ISO/SAE 21434, 2020).

The different ways in which safety and security are addressed in the development process are clearly

reflected in the different methods (Nigam et al., 2019). Safety methods are used to safeguard against

dangers, which arise, for example, from functional failures or unforeseen situations. Established

methods include, for example: Fault tree analysis (FTA), component fault tree (CFT), dynamic fault

tree (DFT) and failure mode and effects analysis (FMEA) (Dorociak, 2015). The security methods

focus on the classification and prognosis of attacks, especially in the context of cyber security.

Exemplary methods for identifying threats and their damage potential are the Threat Assessment and

Remediation Analysis (TARA), Attack Tree (AT) or STRIDE (ISO/SAE 21434, 2020).

2.3 Need for action in safety and security integrated modeling languages

Due to the constant functional integration and networking of modern technical systems and their

components, communication and network interfaces in particular are rapidly increasing. This results in a

high system complexity, which in the development process can only be made manageable by approaches

of Model-Based Systems Engineering. The importance of an early safety analysis in the development

process is growing steadily (Pierre and Shawky, 2010). A purely safety- or security-oriented design and

protection will no longer meet the increasing requirements. For example, security gaps can accumulate in

the form of weak points and malfunctions that lead to errors in the smallest subsystems and result in

unforeseeable effects in the overall system (Jäger, 2016). In order to anticipate these challenges in early

phases of development and to be able to compensate for them with suitable measures, a modeling

language for system architectures is required that models both safety and security-specific aspects (e.g.

Modeling language

Abstract syntax Concrete syntax Semantic

Metamodel Structural semantic Notation

1

1 1..* 1

1

0..1

<<synonym>><<synonym>>

is defined by

https://doi.org/10.1017/pds.2021.464 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.464

2030 ICED21

error or attack paths) across disciplines. The modelling language is the basis for an integrative or

combinatorial analysis and protection of security and safety and allows to detect synergies as well as

conflicting effects or goals and to address them with suitable means at an early stage.

3 RELATED WORK

The analysed state of the art can be divided into basic modelling languages and profiles, as described

in section 2.1. While basic modeling languages provide the fundamental possibility to represent

system architectures and other aspects (requirements etc.), profiles allow the representation of specific

concepts by consistently extending the basic modeling language.

3.1 Basic modelling languages

The graphical, model-based representation of a cross-disciplinary system model is realized by well-

known modeling languages such as UML, SysML and CONSENS. Through the formally defined

elements, system architectures can be represented in addition to aspects such as use cases or

requirements. The Unified Modeling Language (UML) offers fourteen different diagram types to

represent the structure and behavior of a system. The first seven diagrams can be used for the

structural description of models, while the other diagrams are used for behavioral modeling (Rupp and

Queins, 2012). The UML is used as the basis for the Systems Modeling Language (SysML). With

regard to a standardized extension, elements were added and modified completely new. Elements of

the UML that are irrelevant for Systems Engineering were explicitly excluded.

The specification technique CONSENS - “CONceptual design Specification technique for the

Engineering of complex Systems” is used in the MBSE area for the development of highly complex

systems. CONSENS has both a modeling language and a modeling method for the creation of the

system model. The goal of the modeling language is to improve communication and cooperation

between the various disciplines in the area of product design, as well as a holistic description of the

system model. For this purpose, eight different views are addressed in CONSENS, one of which

comprises the system architecture in the form of a so-called active structure (Gausemeier et al., 2014).

The basic modeling languages offer standardized language constructs with which system architectures

can be specified across disciplines. A direct mapping of safety and/or security-specific aspects is not

aimed at and can therefore only be realized by metamodel extensions in the sense of profiles.

3.2 Profiles / Extensions of modeling languages

The UML profile according to Fockel (2018) offers a model-based implementation of component fault

trees (CFT) and thus a particularly good basis for safety-relevant analyses in the system architecture. The

dedicated specification of failure types offers a better traceability of possible hazards and at the same

time the possibility to evaluate effects on the system more transparently. Based on UML and SysML, the

Electronics Architecture and Software Technology - Architecture Description Language (EAST- ADL)

was developed for the automotive sector. Regarding functional safety according to ISO 26262 and

reliability, different elements are predefined in the Dependability Package (EAST-ADL, 2013;

Hillenbrand, 2012). EAST-ADL enables the modeling of system behavior for safety analysis (e.g. FTA)

and the possibility to point out the errors/failures. For error propagation, errors can be detected on the

ports, which are linked with propagation links (Chen et al., 2011). The CONSENS profile by Dorociak

(2015) is, analogous to the EAST-ADL, well suited for the architecture analysis of safety-relevant

aspects, but does not offer a specification towards automotive. Another approach is the SysML profile by

Biggs et al. (2018) by introducing safety-relevant stereotypes for safety aspects. However, the focus of

the profile is not on architecture modeling, but rather on requirements engineering.

In the context of security, UMLsec comprises, according to Schmidt and Jürjens (2011), a UML

extension that focuses on secure software development. Different stereotypes are defined, which allow

e.g. the representation and classification of different communication channels and the assignment of

criticality. SysMLsec according to Roudier and Apvrille (2015) is an extension of SysML and allows

an integrated modeling of an attack tree. The goal is to identify threats more transparently at an early

stage in order to design suitable countermeasures. The SysML profile according to (Oates et al., 2013)

integrates a security perspective. The core of the profile is the Threat Agent Model. It describes how

threats from the threat agents can follow and provide information about the vulnerabilities.

https://doi.org/10.1017/pds.2021.464 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.464

ICED21 2031

The analyzed state of the art shows the lack of a metamodel that allows an combinatorial application

of safety and security analysis methods in early system architecture modeling. The addressing of

safety or security-specific aspects, which are used in the established methods presented in section 2.2,

is done exclusively in isolation. Consistent integration in the form of a holistic metamodel is required.

4 METAMODEL FOR SAFETY AND SAFETY INTEGRATED SYSTEM

ARCHITECTURE MODELING

As already explained, a metamodel is required for the early protection of systems to be developed, which

addresses safety and security integratively and thus allows a combinatorial applicability. In order to

specify the metamodel, the OMG’s Meta Object Facility (MOF) metamodeling language is used in the

following. This language uses associations, data types, classes and packages and allows the formal

structure of a metamodel analogous to UML. As shown in Figure 2, the metamodel

(SystemArchitectureModel) developed in the context of this paper comprises a synthesis model

(SynthesisModel) and an analysis model (AnalysisModel). The synthesis model contains architectural

elements (ArchitectureElement) and architectural connections (ArchitectureConnection), which are

required for the synthesis of the system architecture. The basis for deriving these class groups is provided

by established approaches and basic modeling languages like SysML (Weilkiens, 2014). The analysis

model consists of the trigger model and the error and attack propagation model. With the TriggerModel

all classes are addressed, which represent possible disturbances in and on the system. The

ErrorAttackPropagation, on the other hand, enables the modeling of the effects in the architecture. Thus,

possible error and attack propagations in the complex architecture can be reproduced integratively.

Several approaches were used for this purpose, which will be explained in the following sections.

Figure 2. Overview of the metamodel

4.1 SynthesisModel

The synthesis model presented in detail in the following allows the modeling of the system

architecture. Architectural modeling requires various architectural elements (ArchitecturElement), but

also relationships (ArchitectureConnection) to represent the interactions between the individual

elements (see Figure 3). Architecture elements are differentiated into system elements

(SystemElement), ports (Port) or port specifications (PortSpecification). The system element

represents all components of the system down to the atomic subsystem (e.g. brake caliper). A system

element can contain any number of system elements as subsystems.

The system elements possess connection constructs in the form of ports to interact with other

elements. The ports have a direction, which is set either in or out. A more detailed description of the

ports is given in the port specifications. The Type attribute allows ports to be typified in the same way

as technical relationships. The technical relationships comprise the various flows that flow between

the individual system elements in order to represent technical interdependencies. These are subdivided

into material, energy and information flows and can only represent directional connections. As a

special feature, mechanical connections can be modeled in a dedicated way, which are of high

relevance especially in terms of safety. For example, the destruction of a mechanical connection

between two elements - intentionally or unintentionally - can have drastic effects on the entire system

safety. The allocation relation (AllocateRelation) is possible without using the ports. Allocations

comprise the “satisfied”, “realized” and “implemented” relationship between system elements and

other aspects in the system model. For example, the Satisfy relationship can be used to assign security

goals (safety and security goals) to responsible elements. The Realizes relationship links the functions

that are fulfilled by the elements. By means of the Implement relationship, the system elements are

SystemArchitectureModel

SynthesisModel

Trigger

Sec Safe

ErrorAttackPropagation

Sec Safe

ArchitectureElement ArchitectureConnection

1..* 0..*

0..* 0..*0..*0..*

AnalysisModel
Sec Safe

Sec Safe Legend

Safety and security

focus
Sec Safe

Composition

Class

https://doi.org/10.1017/pds.2021.464 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.464

2032 ICED21

assigned to the physical solution elements (e.g. concrete control units). The assignment of hazards and

threats is represented by the Trace relationship.

Figure 3. Overview of the SynthesisModel

4.2 AnalysisModel

Based on or integrative to the architecture synthesis, the architecture analysis is performed, in which

synthesized constructs are examined, for example, with respect to vulnerability or the effects of fault

propagation. The submodels that are necessary for the analysis are presented separately below.

4.2.1 TriggerModel

The TriggerModel includes the classes that allow the modeling of fault and attack possibilities on the

system architecture. Within a system element internal faults (InternalFault) can be modeled. In the

safety context, the InternalFault is strongly based on the error model of the EAST-ADL (2013) and the

CONSENS profile according to Dorociak (2015). In order to also address security, further aspects

have been added which are explained below.

The InternalFault represents the internal state of the respective system element. For this purpose, the

attribute FaultOccurence is used to specify the random failure probability of the element. Furthermore

the attribute HackImpact represents the effect of a hack attack on the random failure probability of a

system element. The change of the random failure probability depends on the type of attack. Thus the

different effects of a HackType on the target element of the architecture can be represented. For

example, a DoS (Denial of Service) attack on a target element can lead to an internal failure due to the

increased load and thus possibly trigger a safety-critical situation which the developer might not have

considered from this point of view in advance.

Another essential attribute is the IndirectHackImpact, which in contrast to the general HackImpact

addresses the indirect influences of an attack. The attack on a concrete target system is usually carried

out via networked neighbouring systems. For example, a successful hack attack on the target element

D is only carried out by the access path via elements A, B and C. This access and the continuation of

the attack path has real effects on the indirectly affected systems. In case of information processing

systems (e.g. electronic control unit) the access can lead to an increased probability of a system failure

due to an unexpected resource demand. In terms of safety, this can result in an uncontrolled error

propagation and finally in an overall system failure.

Safety-critical weak points can be specified in more detail for the ports of the system elements via

FailureModes and FailureSpecification. FailureSpecification allows each input and output port to be

assigned multiple failure modes including the allocation of threats/hazards. This class has been added

following the UML profile according to Fockel (2018), which specifies five failure types: Omission

(O), Commission (C), Crash (Cr), Value (V) and Timing Earlier (TE)/ Timing Late (TL). Security-

critical triggers are modeled in the form of a threat agent (ThreatAgent) or using environmental

elements (EnvironmentalElement). The ThreatAgent is modeled according to Steiner (2016) as a

separate environmental element and specifies the attacker component. Steiner has developed an

approach for the combined consideration of (component) fault trees with attack trees. The goal was to

SynthesisModel

ArchitectureElement ArchitectureConnection

AllocateRelation

PortSpecification

Type: PortSpecificationType

Flow MechanicalConnection

Satisfy

Realizes

Implement

Trace

MaterialFlowEnergyFlow InformationFlow

0..*0..*

Source/Target

Source/Target

0..*

specified

0..*

Direction: PortDirection

Port

0..*

SystemElement

TechnicalRelation

Assoziation

Generalization

Composition

Legend

SynthesisModel

class

https://doi.org/10.1017/pds.2021.464 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.464

ICED21 2033

enrich the safety analysis with suitable security aspects. Thereby, new safety-critical events are

uncovered, which could be caused by a malicious attacker. According to Jones and Vidalis (2005),

ThreatAgents include not only hacker attacks, but also natural disasters and malicious programs.

Figure 4. Overview of the TriggerModel

The ThreatAgent attacks are specified using the included hack types (HackType). The different

hacker attacks can be differentiated into passive, active and physical. Various passive and active

hacker attacks are classified in detail in the approach according to Hoppe (2014). The HackType can

be further detailed via an attack event. This includes the required resources (Resource), the time

needed (Time) and the required knowledge for an attack. The attributes are based on the Attack

Feasibility Rating (8.7) of ISO/SAE 21434 Road vehicles – Cybersecurity engineering.

The environmental element (EnvironmentalElement) allows the modeling of all elements that lie

outside the system context, with the exception of the attacker component. It possesses similar

properties as the system element and allows the representation of attack path attacks through its

relationship to other environmental elements (see section 4.2.2).

Finally, the information flow can be detailed by an information flow specification

(InformationFlowSpecification) in the TriggerModel. Following UMLsec according to Schmidt and

Jürjens (2011), it is possible to differentiate the type into LAN, WLAN, Bluetooth and Wire.

Additionally, a boolean value can be used to model the necessity of information encryption.

4.2.2 ErrorPropagationModel

The last part of the overall metamodel covers error and attack propagation (ErrorAttackPropagation).

The goal is to represent the effects of different attacks and errors on the system architecture. The

metamodel is strongly based on the CONSENS profile according to Dorociak (2015) and the UML

profile according to Fockel (2018). Both safety approaches address a component failure propagation

(CFA). Regarding the security specific aspects (modeling of attack trees) the SysML-Sec according to

Apvrille and Roudier (2014) was used as an essential reference.

The ports of a system element can have several port states (PortState), which can represent incoming

and outgoing failures (see figure 5). The attribute State can be used to map the state “ok”, “partlyok”

or “notok”. The port states can be both source and target of a “can imply link” (CanImplyLink). Both

gates (Gate) and hack elements (HackElement) can be modeled in one system element. By means of

gates and CanImplyLinks the different propagations through the architecture can be represented. The

hack element is used to represent the access probability of the respective hack type. The connection

between the attack event and the hack element is modeled by the attack path (AttackPath). In

addition, an attack path between environment elements (EnvironmentalElement) and hacking element

or attack event and environment element can also be represented, since threats can also occur via

environment elements. The attack path was included analogous to the attack path analysis (8.6) of

ISO/SAE 21434 (2020) and is of high relevance especially for the development of highly networked

complex systems. In order to enable a risk classification already at system level, the system elements

are extended by the concept of criticality. Criticality is determined by the ISO 26262 (ASIL) and the

SAHARA method (SecL). By means of the integrative analysis and risk classification, the developer

becomes aware which elements require special attention in the further detailing.

…

InternalFault

Sec Safe

HackType

Sec

FailureSpecification

Sec Safe

EnvironmentalElement

Sec

ThreatAgent

Sec

Information-

FlowSpecification

Sec

0..*

FailureMode

Sec Safe

0..*

0..*

AttackEvent

Sec

Time: TimeClass

Resource: ResourceClass

Knowlegde: KnowledgeClass

TriggeredHazard: Hazard

in
fl
u
e
n
c
e
d

s
p
e
c
if
ie

s

0..*

0..*

InputFailureMode

Sec Safe

OutputFailureMode

Sec Safe

0..*

0..* 0..*

0..*

specifies

0..*

0..*

Port

SystemElement Information-

Flow

SMA

SMA

SMA

HackElement
EMA

FaultOccurence: float

HackImpact: float

IndirectHackImpact: float

Type: Failure-

specificationType

Encryption-necessary:

boolean

Type: InformationType

TriggerModel
Sec Safe

ErrorAttackPropagation-

Model class
EMA

Assoziation

Generalization

Composition

Aggregation

Safety and security

focus
Sec Safe

Legend

TriggerModel class

SynthesisModel classSMA

0..*

https://doi.org/10.1017/pds.2021.464 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.464

2034 ICED21

Figure 5. Overview of the ErrorAttackPropagationModel

5 VALIDATION

For the prototypical validation a highly simplified vehicle system is used, which is shown in figure 6.

The following use case describes a security-critical intervention from outside, as well as the possible

consequences in the vehicle system. The attacker component is specified as a criminal who wants to gain

access to the detection sub-system (e.g. for environmental detection) of Vehicle1 in order to influence

the braking subsystem in a safety-critical manner. Based on the architecture analysis, it becomes

apparent that an attack vector exists via the WLAN of the infotainment subsystem.

Figure 6. Validation example

The detected attack event can be specified in detail due to the required resources (R1), knowledge (K1)

and the time required (T1). The first possible vulnerability lies in the elements of the infotainment

subsystem that can communicate with the environment. The attack path leads via the Wifi codec,

proccesor/control and the detection subsystem to the attacker’s target. Each system element has a certain

access and failure probability that can be calculated. To get a better understanding of the composition of

the probabilities, a detailed overview is given in Figure 7. As explained in chapter 4, the internal fault of

ErrorAttackPropagationModel
Sec Safe

…

Gate

Safe

PortState

Sec Safe

State: Portstate

DisturbanceRelation

Sec Safe

CanImplyLink

Sec Safe

AttackPath

Sec

Criticality

Sec Safe

ASIL: AsiLevel

SecL: SecLevel

0..*

0..*

0..*

Target

Source/Target

S
o
u
rc

e
/T

a
rg

e
t

S
o
u
rc

e

S
o
u
rc

e
/

T
a
rg

e
t

S
o
u
rc

e
/

T
a
rg

e
t

0..*

Source/Target

HackType
Environmental-

Element

HackElement

Sec

Accessprobability: int

Port
SMA

Internal

Fault

TMA

TMASMA

SystemElement
SMA TriggerModel classTMA

Assoziation

Generalization

Composition

Aggregation

Safety and security

focus
Sec Safe

Legend

ErrorAttackPropagation

Model class

SynthesisModel classSMA

Source/

Target

Extract System of Interest Vehicle1

Criminal
Interrupt:

…

Modify:
Change controller

Data

InfotainmentSubsystem

Wifi Codec

Processor/

control

…
…

2/2,3

3/3,4

>

>

>

>

10

>

>

>>

>

Sec Safe

OR

>

AND

>

4

P

O1(L)

(e2)

R1_K1_T1

P

I2(L)

(e2)

R1_K1_T1

>

OR

P
I7(C)

P

I6(L)

(e3)

R1_K1_T1

P

O6(L)

(e3)

R1_K1_T1

P

O6(L)

(e3)

R1_K1_T1

Braking-

Subsystem

…
…

Sec Safe

ECU
> >

>

>

>

Detection-

Subsystem

>

>

Sec Safe

Smart Device

(of a human

user)

>

Legend

Informationflow

CanImplyLink

SystemElement

HackType

ThreatAgent

EnvironmentalElement

AttackPath

Safety and

security focus
Sec Safe

InternalFault

Port

HackElement

Gate

https://doi.org/10.1017/pds.2021.464 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.464

ICED21 2035

each system element is composed of the three values: fault occurrence, hack impact and random hack

impact. The fault occurrence specifies the random failure probability of a system element and is

determined from past experiences (λ1). Before the failure probability can be determined by a direct hack,

the access probability (hack element) to the system element must be determined at the beginning. For

this purpose, the possibilities of a hack can be determined with reference to the attack feasibility rating of

ISO 21434. Input for this analysis are the previously defined constructs threat agent, hack type and attack

event. Alternatively, the fault of a system element can also be increased by an indirect hack attack (λ3), if

an internal hack attack is performed on or via a connected neighboring system. In case of a successful

access, the failure probability by a hack (λ2) is determined considering the hack type.

Figure 7. Calculation of probability of failure

If this event occurs successfully, the attacker succumbs to access to the control device in the

infotainment sub-system, which enables him to gain access to the detection sub-system in the next

step. Once this happens, he can manipulate the output data to modify the input data of the braking sub-

system (Commission). This can result in safety-critical states that must be detected in early

development stages in order to develop suitable countermeasures. It becomes obvious that the

presented modelling language offers the possibility to represent much more complex attack and failure

scenarios and to analyse them integratively regarding their security and safety consequences.

6 SUMMARY AND OUTLOOK

The technical systems of the future (e.g. autonomous vehicles) require a systemic development in

which especially safety and security-compliant protection is integratively addressed in early

development phases. In order to be able to detect and compensate for potential hazards and threats

across domains, a modeling language for the system architecture is presented, which consistently links

established safety and security approaches. Based on formally modeled constructs, the metamodel

allows the transparent representation of complex interdependencies on an interdisciplinary, systemic

abstraction level. In addition to supporting constructs for the synthesis of system architectures, attack

and error propagation aspects including risk classification can be represented in the analysis phase.

The integrative approach uncovers synergetic and, in particular, contrary goals and effects of

architectural designs with regard to safety and security in order to make adequate architectural

decisions based on trade-off analyses.

Further research is needed for the application of the developed modeling language. With regard to the

definition of the system model, which forms the core of the MBSE, an appropriate method must be

developed. Based on the identified classes, e.g. calculation algorithms for the determination of individual

attributes have to be developed. Especially critical is the determination of the safety-critical failure

probability, which is influenced by a potential external intervention (HackImpact). Furthermore, it is

necessary to continuously examine further suitable safety and security analysis methods and to

consistently address them in the metamodel. A key challenge of the application is the systematic

identification of sources of attacks and errors. In order to enable the developer to effectively and

efficiently model the architecture of secure and safe systems, it is advisable to structure solution patterns

of attacks, failures and countermeasures in the form of databases in analogy to the metamodel.

Furthermore, in order to uncover new forms of attacks and errors, it is necessary to develop an

integrative method that promotes creativity in particular (e.g. design thinking). Finally, due to the current

focus on the automotive sector, an application to other domains (e.g. cyber-enabled ships) is to be

examined in further work by analyzing the corresponding challenges as well as established design

methodologies.

Hack feasibility in accordance with ISO 21434

(Attack Feasibility Rating)

Fault occurence

Inherent probability of failure (e.g. due to

physical wear and tear)

Hack impact

Probability of failure due

to direct hack

Random hack impact

Probability of failure due to indirect influ-

ence of a connected neighboring system

Internal fault

Total probability

of failure

λ1

λ2

λ3

Hack element

Access

probability

Assumption

Successful hack attack

Threat agent

Criminal

Professional Hacker

Layman

Expert

…

Hack type

Modification

Spoofing

Sniffing

Interrupt

Steal/Remove

Attack event

Time

Ressource

Knowlegde

…

…

https://doi.org/10.1017/pds.2021.464 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.464

2036 ICED21

REFERENCES

Apvrille, L. and Roudier, Y. (2014), “Towards the Model-Driven Engineering of Secure yet Safe Embedded

Systems”, Electronic Proceedings in Theoretical Computer Science.

Biggs, G., Juknevicius, T., Armonas, A. and Post, K. (2018), “Integrating Safety and Reliability Analysis into

MBSE: overview of the new proposed OMG standard”, INCOSE International Symposium, Vol. 28 No. 1.

Chen, D., Johansson, R., Lönn, H., Blom, H., Walker, M., Papadopoulos, Y., Torchiaro, S., Tagliabo, F. and

Sandberg, A. (2011), “Integrated safety and architecture modeling for automotive embedded systems”, e

& i Elektrotechnik und Informationstechnik, Vol. 128 No. 6.

Dorociak, R. (2015), “Systematik zur frühzeitigen Absicherung der Sicherheit und Zuverlässigkeit fortschritt -

licher mechatronischer Systeme”, Dissertation, Heinz Nixdorf Institut, Universität Paderborn, Paderborn.

Dumitrescu, R., Westermann, T. and Falkowski, T. (2018), “Autonome Systeme in der Produktion”, Industrie

4.0 Management, Vol. 2018 No. 6.

EAST-ADL (2013), EAST-ADL Domain Model Specification, V2.1.12.

Fockel, M. (2018), “Safety Requirements Engineering for Early SIL Tailoring”, Dissertation, Heinz Nixdorf

Institut, Universität Paderborn, Paderborn.

Gausemeier, J., Ramming, F. J., Schäfer, W. (2014), Design Methodology for Intelligent Technical Systems -

Develop Intelligent Technical Systems of the Future, Springer Berlin Heidelberg, Berlin, Heidelberg

Haberfellner, R., Weck, O.L. de and Fricke, E. (2019), Systems engineering: Fundamentals and applications,

Birkhäuser, Switzerland.

Haskins, C. (2006), INCOSE - Systems Engineering Handbook - A Guide for System Life Cycle Processes

and Activities, Version 3.

Hillenbrand, M. (2012), “Funktionale Sicherheit nach ISO 26262 in der Konzeptphase der Entwicklung von

Elektrik/Elektronik Architekturen von Fahrzeugen”, Dissertation, Institut für Technik der

Informationsverarbeitung, Karlsruher Institut für Technologie (KIT), Karlsruhe.

Hoppe, T. (2014), “Prävention, Detektion und Reaktion gegen drei Ausprägungsformen automotiver Malware

- Eine methodische Analyse im Spektrum von Manipulationen und Schutzkonzepten”, Dissertation,

Fakultät für Informatik, Otto-von-Guericke-Universität Magdeburg, Magdeburg.

ISO 26262 (2011), Road vehicles - Functional safety, ICS 01.040.43 No. 43.040.10 No., Beuth Verlag, Berlin.

ISO/SAE 21434 (2020), Road vehicles — Cybersecurity engineering, ICS: 43.040.15.

Jäger, T. (2016), “Safety und Security”, available at: https://users.informatik.haw-

hamburg.de/~ubicomp/projekte/master2015-gsem/jaeger/bericht.pdf (accessed 12 August 2020).

Jones, A. and VIdalis, S. (2005), Analyzing Threat Agents & Their Attributes, Information Security

Consultant Geo-Bureau.

Macher, G., Armengaud, E., Brenner, E. and Kreiner, C. (2016), “Threat and Risk Assessment Methodologies

in the Automotive Domain”, Procedia Computer Science.

Miller, C. and Valasek, C. (2013), Adventures in automotive networks and control units, Def Con, Vol. 21,

pp. 260–264.

Nigam, V., Pretschner, A. and Ruess, H. (2019), Model-Based Safety and Security Engineering.

Oates, R., Thom, F. and Herries, G. (2013), “Security-Aware, Model-Based Systems Engineering with

SysML”, in Janicke, H. (Ed.), 1st International Symposium for ICS & SCADA Cyber Security Research

2013 (ICS-CSR 2013), Leicester, UK, 16 - 17 September 2013, British Computer Soc, Swindon.

Pierre, D. and Shawky, M. (2010), “Supporting ISO 26262 with SysML, Benefits and Limits”, Proceedings of

European Safety and Reliability, ESREL 2010.

Rodrigues da Silva, A. (2015), “Model-driven engineering: A survey supported by the unified conceptual

model”, Computer Languages, Systems & Structures, Vol. 43.

Roudier, Y. and Apvrille, L. (2015), “SysML-Sec - A Model Driven Approach for Designing Safe and Secure

Systems”, in Hammoudi, S. (Eds.), Model-Driven Engineering and Software Development: Third

International Conference, MODELSWARD 2015, Angers, France, February 9-11, 2015, Revised

Selected Papers, Communications in Computer and Information Science, 1st ed. 2015, Springer

International Publishing, Cham, s.l.

Rupp, C. and Queins, S. (2012), UML2 glasklar: Praxiswissen für die UML-Modellierung, 4., aktualisierte

und erw. Aufl., Hanser, München.

Schmidt, H. and Jürjens, J. (2011), UMLsec4UML2 - Adopting UMLsec to Support UML2.

Steiner, M. (2016), “Integrating Security Concerns into Safety Analysis of Embedded Systems Using

Component Fault Trees”, Dissertation, Fachbereich Informatik, Technische Universität Kaiserslautern,

Kaiserslautern.

Walden, D.D., Roedler, G.J., Forsberg, K., Hamelin, R.D. and Shortell, T.M. (Eds.) (2015), Systems

engineering handbook: A guide for system life cycle processes and activities, INCOSE-TP-2003-002-04,

4. edition, Wiley, Hoboken, NJ.

Weilkiens, T. (2014), Systems Engineering mit SysML/UML: Anforderungen, Analyse, Architektur, 3.,

überarb. und aktualisierte Aufl., dpunkt.verl., Heidelberg.

https://doi.org/10.1017/pds.2021.464 Published online by Cambridge University Press

https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2015-gsem/jaeger/bericht.pdf
https://users.informatik.haw-hamburg.de/~ubicomp/projekte/master2015-gsem/jaeger/bericht.pdf
https://doi.org/10.1017/pds.2021.464

