Complete manifolds with non-negative Ricci curvature
and the Caffarelli–Kohn–Nirenberg inequalities

Manfredo Perdigão do Carmo and Changyu Xia

Abstract

In this paper, we prove that complete open Riemannian manifolds with non-negative Ricci curvature of dimension greater than or equal to three in which some Caffarelli–Kohn–Nirenberg type inequalities are satisfied are close to the Euclidean space.

1. Introduction

Let \(n \geq 3 \) be an integer and let \(a, b, \) and \(p \) be constants satisfying
\[
-\infty < a < \frac{n - 2}{2}, \quad a \leq b \leq a + 1, \quad \text{and} \quad p = \frac{2n}{n - 2 + 2(b - a)}.
\]
(1.1)

Denote by \(C_0^\infty(\mathbb{R}^n) \) the space of smooth functions with compact support in the \(n \)-dimensional Euclidean space \(\mathbb{R}^n \). In [CKN84], among a much more general family of inequalities, Caffarelli, Kohn, and Nirenberg proved the following result. There exists a positive constant \(C \) depending only on \(a, b \) and \(n \) such that
\[
\left(\int_{\mathbb{R}^n} |x|^{-bp} |u|^p \, dx \right)^{1/p} \leq C \left(\int_{\mathbb{R}^n} |x|^{-2a} |\nabla u|^2 \, dx \right)^{1/2},
\]
(1.2)

for all \(u \in C_0^\infty(\mathbb{R}^n) \), where \(|x| \) is the Euclidean length of \(x \in \mathbb{R}^n \). Note that the Caffarelli–Kohn–Nirenberg inequalities contain the classical Sobolev inequality \((a = b = 0)\) and the Hardy inequality \((a = 0, b = 1)\) as special cases, which have many important applications (see e.g. [Aub82, Aub98, CKN84, HLP52, Heb96, Heb99, Lie83] and references therein).

Let \(K_{a,b} \) be the best constant for the Caffarelli, Kohn, and Nirenberg inequality (1.1), that is
\[
K_{a,b}^{-1} = \inf_{u \in C_0^\infty(\mathbb{R}^n) - \{0\}} \frac{\left(\int_{\mathbb{R}^n} |x|^{-2a} |\nabla u|^2 \, dx \right)^{1/2}}{\left(\int_{\mathbb{R}^n} |x|^{-bp} |u|^p \, dx \right)^{1/p}}.
\]
(1.3)

For the Sobolev inequality \((a = b = 0)\), it has been proved by Aubin [Aub76] and Talenti [Tal76] that
\[
K_{0,0} = \left(\frac{1}{n(n - 2)} \right)^{1/2} \left(\frac{2\Gamma(n)}{n\omega_n \Gamma^2(n/2)} \right)^{1/n},
\]
where \(\omega_n \) is the volume of the unit ball in \(\mathbb{R}^n \), and that a family of minimizers of (1.3) is given by
\[
u(x) = (\lambda + |x|^2)^{1-n/2}, \quad \lambda > 0.
\]

In [Lie83], Lieb considered the case \(a = 0, 0 < b < 1 \), and proved that the best constant is
\[
K_{0,b} = \left(\frac{1}{(n - 2)(n - bp)} \right)^{1/2} \left(\frac{(2 - bp)\Gamma((2n - 2bp)/(2 - bp))}{n\omega_n \Gamma^2((n - bp)/(2 - bp))} \right)^{2(n-bp)/(2-bp)},
\]
which is very close to the Euclidean space. For the particular case of the Euclidean space, \(K_{0,0} \) is the best constant for the Sobolev inequality (1.2) and is known to be the same as \(K_0 \) in the following sense:
\[
K_0 = \inf_{u \in C_0^\infty(\mathbb{R}^n) - \{0\}} \frac{\left(\int_{\mathbb{R}^n} |x|^{-2} |\nabla u|^2 \, dx \right)^{1/2}}{\left(\int_{\mathbb{R}^n} |u|^2 \, dx \right)^{1/2}},
\]
(1.4)

Received 12 March 2002, accepted in final form 18 June 2002.

2000 Mathematics Subject Classification 53C20, 53C21, 57R70, 31C12.

Keywords: manifolds, Ricci curvature, Sobolev inequalities.
and a family of minimizers is
\[u(x) = \frac{1}{(\lambda + |x|^{2b}(n-2)/2b)} \lambda > 0. \]

Chou and Chu [CC93] studied the case \(a \geq 0, \ a \leq b < a + 1 \), and proved that the best constant is
\[K_{a,b} = \left(\frac{1}{(n-2a-2)(n-bp)} \right)^{1/2} \left(\frac{(2-bp+2a)\Gamma((2n-2bp)/(2-bp+2a))}{n\omega_n\Gamma^2((n-bp)/(2-bp+2a))} \right)^{2(n-bp)/(2-bp+2a)}, \]
and that, for \(a > 0 \), all minimizers are non-zero constant multiples of the function
\[u(x) = \frac{1}{(\lambda + |x|^{2b+2a}(n-2-2a)/2b)} \lambda > 0. \]

For the remaining case, the best constant \(K_{a,b} \) and the existence or non-existence of the minimizers have been studied recently in [CW01].

In this paper, we study complete manifolds with non-negative Ricci curvature in which some Caffarelli–Kohn–Nirenberg inequalities are satisfied. Now we fix some notation. For an integer \(n \geq 3 \), we will from now on let \(a \) and \(b \) be constants satisfying
\[0 \leq a < \frac{n-2}{2}, \quad a \leq b < a + 1, \tag{1.4} \]
and set
\[p = \frac{2n}{n-2 + 2(b-a)}. \tag{1.5} \]

For a Riemannian manifold \(M \), we let \(dv \) be the Riemannian volume element on \(M \), denote by \(\nabla \) the gradient operator, \(C_0^\infty(M) \) the space of smooth functions on \(M \) with compact support, \(B(x,r) \) the geodesic ball with center \(x \in M \) and radius \(r \), and \(\text{vol}[B(p,r)] \) the volume of \(B(p,r) \).

Our purpose is to prove the following result.

Theorem 1.1. Let \(C \geq K_{a,b} \) be a constant and \(M \) be an \(n \)-dimensional \((n \geq 3) \) complete open Riemannian manifold with non-negative Ricci curvature. Fix a point \(x_0 \in M \) and denote by \(\rho \) the distance function on \(M \) from \(x_0 \). Assume that, for any \(u \in C_0^\infty(M) \), we have
\[\left(\int_M \rho^{-bp}|u|^p \, dv \right)^{1/p} \leq C \left(\int_M \rho^{-2a} |\nabla u|^2 \, dv \right)^{1/2}. \tag{1.6} \]

Then for any \(x \in M \), we have
\[\text{vol}[B(x,r)] \geq (C^{-1}K_{a,b})^{n/(1+a-b)}V_0(r), \quad \forall r > 0, \tag{1.7} \]
where \(V_0(r) \) is the volume of the \(r \)-ball in \(\mathbb{R}^n \).

In the special case that \(a = b = 0 \), the above theorem has been proved in [Xia01].

The theorem has several consequences for manifolds with non-negative Ricci curvature.

The Bishop–Gromov comparison theorem (cf. [BC64, Cha93, GLP81]) implies that, if \(M \) is an \(n \)-dimensional complete Riemannian manifold with non-negative Ricci curvature, then for any \(x \in M, \text{vol}[B(x,r)] \leq V_0(r) \), with equality holding if and only if \(B(x,r) \) is isometric to an \(r \)-ball in \(\mathbb{R}^n \). Combining this fact and Theorem 1.1, one immediately gets the following rigidity theorem.

Corollary 1.2. An \(n \)-dimensional \((n \geq 3) \) complete open Riemannian manifold \(M \) with non-negative Ricci curvature in which the inequality
\[\left(\int_M \rho^{-bp}|u|^p \, dv \right)^{1/p} \leq K_{a,b} \left(\int_M \rho^{-2a} |\nabla u|^2 \, dv \right)^{1/2}, \quad \forall u \in C_0^\infty(M), \]
is satisfied, is isometric to \(\mathbb{R}^n \).
When \(a = b = 0\), Corollary 1.2 is the main theorem in [Led99].

A theorem of Cheeger and Colding [CC97] states that given integer \(n \geq 2\) there exists a constant \(\delta(n) > 0\) such that any \(n\)-dimensional complete Riemannian manifold with non-negative Ricci curvature and \(\text{vol}[B(x, r)] \geq (1 - \delta(n))V_0(r)\) for some \(p \in M\) and all \(r > 0\) is diffeomorphic to \(\mathbb{R}^n\). Thus combining the Cheeger–Colding theorem and Theorem 1.1, one deduces the following topological rigidity for manifolds with non-negative Ricci curvature.

Corollary 1.3. Given integer \(n \geq 3\), there exists a positive constant \(\epsilon = \epsilon(n, a, b)\) such that any \(n\)-dimensional \((n \geq 3)\) complete non-compact Riemannian manifold \(M\) with non-negative Ricci curvature in which the inequality

\[
\left(\int_M \rho^{-bp}|u|^p \, dv \right)^{1/p} \leq \left(K_{a,b} + \epsilon \right) \left(\int_M \rho^{-2a} \| \nabla u \|^2 \, dv \right)^{1/2}, \quad \forall u \in C_0^\infty(M),
\]

is satisfied, is diffeomorphic to \(\mathbb{R}^n\).

A theorem due to Li [Li86] and Anderson [And90] states that, if \(M\) is an \(n\)-dimensional complete manifold with non-negative Ricci curvature in which the inequality \(\text{vol}[B(p, r)] \geq \alpha V_0(r)\) holds for some constant \(\alpha > 0\) and all \(r > 0\), the fundamental group \(\pi_1(M)\) is finite and \(\# \pi_1(M) \leq 1/\alpha\). Thus from the Li–Anderson theorem and Theorem 1.1 we have the following corollary.

Corollary 1.4. Let \(C \geq K_{a,b}\) be a constant and \(M\) be an \(n\)-dimensional \((n \geq 3)\) complete open Riemannian manifold with non-negative Ricci curvature. Assume that, for any \(u \in C_0^\infty(M)\), we have

\[
\left(\int_M \rho^{-bp}|u|^p \, dv \right)^{1/p} \leq C \left(\int_M \rho^{-2a} \| \nabla u \|^2 \, dv \right)^{1/2}.
\]

Then \(M\) has finite fundamental group and the order of \(\pi_1(M)\) is bounded above by \((K_{a,b}^{-1}C)^{n/(1+a-b)}\).

One can find some related results about the topology of complete manifolds with non-negative Ricci curvature, for example, in [AG90, And90, CX00, Col98, Li86, OSY00, Ots89, SS97, She93, She96, SS01, Sor00, Xia99].

2. A Proof of Theorem 1.1

First notice the following fact. The Bishop–Gromov comparison theorem (cf. [BC64, Cha93, GLP81]) tells us that for any \(p \in M\) the function \(\text{vol}[B(p, r)]/V_0(r)\) is decreasing and so the limit

\[
\lim_{r \to +\infty} \frac{\text{vol}[B(p, r)]}{V_0(r)}
\]

exists. Also one can easily check that the above limit does not depend on the choice of \(p\). It then follows that if (1.7) holds for some point \(p_0 \in M\), then it is satisfied for all \(x \in M\). Now we are going to show that (1.7) holds at the point \(x_0\).

Set

\[
w = 2a - bp + 2, \quad q = \frac{(n - 2a - 2)p}{2a - bp + 2} = \frac{2p}{p - 2},
\]

and, for any \(\lambda > 0\), let

\[
F(\lambda) = \frac{p - 2}{p + 2} \int_M \frac{dv}{\rho^{bp}(\lambda + \rho^w)q}. \tag{2.2}
\]

Then, for \(\lambda > 0\), we have from the Fubini theorem (cf. [SY94]) that

\[
F(\lambda) = \frac{p - 2}{p + 2} \int_0^{+\infty} \text{vol} \left\{ x : \frac{1}{\rho^{bp}(\lambda + \rho^w)q} > s \right\} \, ds.
\]

820
Manifolds with non-negative Ricci curvature

Making the variable change \(s = 1(h^{bp}(\lambda + h)^{q-1}) \) in the above equality, one concludes that

\[
F(\lambda) = \frac{p - 2}{p + 2} \int_0^{+\infty} \text{vol}\{x : \rho(x) < h\} \frac{h^{bp+1}(\lambda + h^q)}{(h^{bp+1}(\lambda + h^q))'} \, dh
\]

\[
= \frac{p - 2}{p + 2} \int_0^{+\infty} \text{vol}[B(x_0, h)] \frac{(h^{bp+1}(\lambda + h^q))'}{(h^{bp+1}(\lambda + h^q))} \, dh.
\]

(2.3)

Since the Bishop–Gromov comparison theorem implies that \(\text{vol}[B(x_0, h)] \leq \omega_n h^n \), we have

\[
F(\lambda) \leq \frac{\omega_n(p - 2)}{p + 2} \int_0^{+\infty} (h^{bp+1}(\lambda + h^q))' h^{n-bp-1}(\lambda + h^q)^{-q} \, dh.
\]

On the other hand, one can deduce from (1.4), (1.5), and (2.1) that

\[
n - bp - 1 > -1, \quad n - bp - 1 + w(1 - q) < -1.
\]

It then follows that \(0 \leq F(\lambda) < +\infty, \forall \lambda > 0 \), and that \(F \) is differentiable. Also, we have

\[
F'(\lambda) = -\int_M \frac{dv}{\rho^{bp}(\lambda + \rho^w)^q}.
\]

(2.4)

Consider the function \(H_0 : (0, +\infty) \to \mathbb{R} \) defined by

\[
H_0(\lambda) = \frac{p - 2}{p + 2} \int_{\mathbb{R}^n} \frac{dx}{|x|^{bp}(\lambda + |x|^w)^{q-1}}.
\]

Recall that when \(M = \mathbb{R}^n \) and \(C = K_{a,b} \), the extremal functions in the inequality (1.6) are the functions \(u_\lambda := (\lambda + |x|^w)^{-q/p}, \lambda > 0 \). That is, we have

\[
(-H_0'(\lambda))^{2/p} = \left(\int_{\mathbb{R}^n} \frac{dx}{|x|^{bp}(\lambda + |x|^w)^q} \right)^{2/p} = \left(\frac{K_{a,b}qw}{p} \right)^2 \int_{\mathbb{R}^n} \frac{dx}{|x|^{2(1+a-w)(\lambda + |x|^w)^2+2q/p}}
\]

\[
= \left(\frac{K_{a,b}qw}{p} \right)^2 \int_{\mathbb{R}^n} \frac{dx}{|x|^{bp-w(\lambda + |x|^w)^q}} = \left(\frac{K_{a,b}qw}{p} \right)^2 \left(H_0'(\lambda) + \frac{p + 2}{p - 2} H_0(\lambda) \right).
\]

Substituting \(H_0(\lambda) = H_0(1)\lambda^{-2/(p-2)} \) into the above equation, one gets

\[
H_0(1) = \frac{p - 2}{p + 2} \int_{\mathbb{R}^n} \frac{dx}{|x|^{bp}(1 + |x|^w)^{q-1}} = 2^{2/(p-2)}(p-2)((n-2a-2)^2 K_{a,b}^2)^{-p/(p-2)}.
\]

(2.5)

By a simple approximation procedure, we can apply (1.6) to \((\lambda + \rho^w)^{-q/p} \) for every \(\lambda > 0 \) to get

\[
\left(\int_M \frac{dv}{\rho^{bp}(\lambda + \rho^w)^q} \right)^{2/p} \leq \left(\frac{qwC}{p} \right)^2 \int_M \frac{dv}{\rho^{2(1+a-w)(\lambda + \rho^w)^2+2q/p}}
\]

\[
= \left(\frac{qwC}{p} \right)^2 \int_M \frac{dv}{\rho^{bp-w(\lambda + \rho^w)^q}}.
\]

Let \(l = (p/qwC)^2 \); then the above inequality becomes

\[
(l(-F'(\lambda))^{2/p} - \lambda F'(\lambda) \leq \frac{p + 2}{p - 2} F(\lambda).
\]

(2.6)
The idea now is to compare the solutions of (2.6) to the solutions H of the following differential equality:

$$l(-H'(\lambda))^{2/p} - \lambda H'(\lambda) = \frac{p+2}{p-2} H(\lambda).$$

(2.7)

One can easily check that $H_1(\lambda)$ given by

$$H_1(\lambda) := A\lambda^{-2/(p-2)}$$

is a particular solution of (2.7), where

$$A = 2^{2/(p-2)}(p-2) \left(\frac{1}{p}\right)^{p/(p-2)}$$

$$= 2^{2/(p-2)}(p-2)((n-2a-2)^2pC^2)^{-p/(p-2)}$$

$$= (C^{-1} K_{a, b})^{2p/(p-2)}(p-2) \cdot (n-2a-2)^2pK_{a,b}^2)^{-p/(p-2)}$$

$$= (C^{-1} K_{a, b})^{2p/(p-2)} \cdot \frac{p-2}{p+2} \int_{\mathbb{R}^n} \frac{dx}{|x|^{bp(1 + |x|^w)^q-1}}$$

$$= (C^{-1} K_{a, b})^{n/(1+a-b)} \cdot \frac{p-2}{p+2} \int_{\mathbb{R}^n} \frac{dx}{|x|^{bp(1 + |x|^w)^q-1}}.$$

(2.9)

Observe that

$$H_1(\lambda) = (C^{-1} K_{a, b})^{n/(1+a-b)} \cdot \lambda^{-2/(p-2)} \cdot \frac{p-2}{p+2} \int_{\mathbb{R}^n} \frac{dx}{|x|^{bp(1 + |x|^w)^q-1}}$$

$$= (C^{-1} K_{a, b})^{n/(1+a-b)} H_0(\lambda).$$

(2.10)

Before we can conclude the proof of Theorem 1.1, we shall need the following two lemmas.

Lemma 2.1. If for some $\lambda_0 > 0$, $F(\lambda_0) < H_1(\lambda_0)$, then $F(\lambda) < H_1(\lambda)$ $\forall \lambda \in (0, \lambda_0]$.

Proof. Suppose that Lemma 2.1 is false. Set

$$\lambda_1 = \sup\{\lambda < \lambda_0; F(\lambda) = H_1(\lambda)\}.$$

For each $\lambda > 0$, the function $\phi_\lambda : [0, +\infty) \to \mathbb{R}$ defined by

$$\phi_\lambda(s) = ls^{2/p} + \lambda s$$

is increasing. By (2.6), we have

$$\phi_\lambda(-F'(\lambda)) \leq \frac{p+2}{p-2} F(\lambda),$$

which gives

$$-F'(\lambda) \leq \phi_\lambda^{-1} \left(\frac{p+2}{p-2} F(\lambda)\right).$$

On the other hand, (2.7) implies that

$$-H_1'(\lambda) = \phi_\lambda^{-1} \left(\frac{p+2}{p-2} H_1(\lambda)\right).$$

Thus, on the subset $\{s \mid F(s) \leq H_1(s)\}$, we have

$$F'(\lambda) - H_1'(\lambda) \geq \phi_\lambda^{-1} \left(\frac{p+2}{p-2} H_1(\lambda)\right) - \phi_\lambda^{-1} \left(\frac{p+2}{p-2} F(\lambda)\right).$$

Since $(F - H_1)|_{[\lambda_1, \lambda_0]} \leq 0$, we conclude therefore that $(F - H_1)' \leq 0$ on $[\lambda_1, \lambda_0]$. Consequently, one gets

$$0 = (F - H_1)(\lambda_1) \leq (F - H_1)(\lambda_0) < 0.$$

This is a contradiction and completes the proof of Lemma 2.1.

\[\Box\]
Manifolds with non-negative Ricci curvature

Lemma 2.2. We have

\[\liminf_{\lambda \to 0} \frac{F(\lambda)}{H_0(\lambda)} \geq 1. \]
(2.11)

Proof. Fix a small \(\epsilon > 0 \). Since

\[\lim_{u \to 0} \frac{\text{vol}[B(x_0, u)]}{V_0(u)} = 1, \]

there exists a \(\delta > 0 \) such that \(\text{vol}[B(x_0, h)] \geq (1 - \epsilon) V_0(h), \forall h \leq \delta. \)

It then follows from (2.3) that

\[
F(\lambda) \geq \frac{p - 2}{p + 2} (1 - \epsilon) \int_{0}^{\delta} V_0(h) \frac{(bp \lambda + (bp + (q - 1)w)h^w)}{h^{bp+1}(\lambda + h^w)^q} dh \\
= \frac{p - 2}{p + 2} (1 - \epsilon) \lambda^{[(n+bp)/w]+1-q} \int_{0}^{\delta/\lambda^{1/w}} V_0(s) \frac{(bp + (bp + (q - 1)w)s^w)}{s^{bp+1}(1 + s^w)^q} ds \\
= \frac{p - 2}{p + 2} (1 - \epsilon) \lambda^{-2/(p-2)} \int_{0}^{\delta/\lambda^{1/w}} V_0(s) \frac{(bp + (bp + (q - 1)w)s^w)}{s^{bp+1}(1 + s^w)^q} ds.
\]

On the other hand, it is easy to see that

\[H_0(\lambda) = \frac{p - 2}{p + 2} \lambda^{-2/(p-2)} \int_{0}^{+\infty} V_0(s) \frac{(bp + (bp + (q - 1)w)s^w)}{s^{bp+1}(1 + s^w)^q} ds. \]

We conclude therefore that

\[\liminf_{\lambda \to 0} \frac{F(\lambda)}{H_0(\lambda)} \geq 1 - \epsilon. \]

Letting \(\epsilon \to 0 \), one gets

\[\liminf_{\lambda \to 0} \frac{F(\lambda)}{H_0(\lambda)} \geq 1. \]
(2.12)

This completes the proof of Lemma 2.2. \(\square \)

Now we continue on the proof of Theorem 1.1. We separate the proof into two cases.

Case 1: \(C > K_{a,b} \). In this case, it follows from (2.10) and Lemma 2.2 that

\[\liminf_{\lambda \to 0} \frac{F(\lambda)}{H_1(\lambda)} = \left(\frac{C}{K_{a,b}} \right)^{n/(1+a-b)} \liminf_{\lambda \to 0} \frac{F(\lambda)}{H_0(\lambda)} \geq \left(\frac{C}{K_{a,b}} \right)^{n/(1+a-b)} > 1, \]
(2.13)

which, combining with Lemma 2.1, implies that

\[F(\lambda) \geq H_1(\lambda), \forall \lambda > 0. \]
(2.14)

That is, for any \(\lambda > 0 \), we have

\[\int_{0}^{+\infty} (\text{vol}[B(x_0, s)] - (C^{-1}K_{a,b})^{n/(1+a-b)} V_0(s)) \frac{bp \lambda + (bp + (q - 1)w)s^w}{s^{bp+1}(\lambda + s^w)^q} ds \geq 0. \]
(2.15)

Recall that the Bishop–Gromov comparison theorem says that the function \(|B(x_0, s)|/V_0(s) \) is decreasing. Set \(d = (C^{-1}K(n,q))^{n/(1+a-b)} \) and assume that

\[\lim_{s \to +\infty} \frac{|B(x_0, s)|}{V_0(s)} = d_0. \]

823
The proof of Theorem 1.1 will be completed if we can show that \(d_0 \geq d \). We prove this fact by contradiction. Thus suppose that \(d_0 = d - \epsilon_0 \), for some \(\epsilon_0 > 0 \). Then there exists an \(N_0 > 0 \) such that

\[
\frac{\text{vol}[B(x_0, s)]}{V_0(s)} \leq d - \frac{\epsilon_0}{2}, \quad \forall s \geq N_0. \tag{2.16}
\]

By introducing (2.16) into (2.15), one derives for every \(\lambda > 0 \) that

\[
0 \leq \int_0^{\infty} \left(\frac{\text{vol}[B(x_0, s)]}{V_0(s)} - d \right) s^n (bp\lambda + (bp + (q - 1)w)s^w) s^{b\lambda+1} (\lambda + s^w)^q ds \\
\leq \int_0^{N_0} \frac{\text{vol}[B(x_0, s)]}{V_0(s)} s^n (bp\lambda + (bp + (q - 1)w)s^w) s^{b\lambda+1} (\lambda + s^w)^q ds \\
+ \int_{N_0}^{\infty} \left(d - \frac{\epsilon_0}{2} \right) s^n (bp\lambda + (bp + (q - 1)w)s^w) s^{b\lambda+1} (\lambda + s^w)^q ds \\
- d \int_0^{\infty} s^n (bp\lambda + (bp + (q - 1)w)s^w) s^{b\lambda+1} (\lambda + s^w)^q ds \\
\leq \int_0^{N_0} \left(1 - d + \frac{\epsilon_0}{2} \right) s^n (bp\lambda + (bp + (q - 1)w)s^w) s^{b\lambda+1} (\lambda + s^w)^q ds \\
- \frac{\epsilon_0}{2\omega_n} \int_0^{\infty} V_0(s)(bp\lambda + (bp + (q - 1)w)s^w) s^{b\lambda+1} (\lambda + s^w)^q ds \\
\leq \left(1 - d + \frac{\epsilon_0}{2} \right) \lambda^{-q} \int_0^{N_0} (bp\lambda s^{n-bp-1} + (bp + (q - 1)w)s^{n+w-bp-1}) ds \\
- \frac{\epsilon_0}{2\omega_n} \cdot \frac{p + 2}{p - 2} \cdot \lambda^{-2/(p-2)} \cdot H_0(1) \\
= \left(1 - d + \frac{\epsilon_0}{2} \right) \lambda^{-q} \left(\frac{\lambda bp N_0^{n-bp}}{n - bp} + \frac{(bp + (q - 1)w)N_0^{n+w-bp}}{n + w - bp} \right) \\
- \frac{\epsilon_0(p + 2)H_0(1)}{2\omega_n(p - 2)} \cdot \lambda^{-2/(p-2)},
\]

which implies for any \(\lambda > 0 \) that

\[
\frac{\epsilon_0(p + 2)H_0(1)}{2\omega_n(p - 2)(1 - d + \epsilon_0/2)} \leq \lambda^{2/(p-2)-q} \left(\frac{\lambda bp N_0^{n-bp}}{n - bp} + \frac{(bp + (q - 1)w)N_0^{n+w-bp}}{n + w - bp} \right).
\]

Letting \(\lambda \to +\infty \) in the above inequality and observing that \(2/(p-2) - q + 1 < 0 \), one obtains the desired contradiction. Thus \(d_0 \geq d \). This completes the proof of Theorem 1.1 in the case that \(C > K_{a,b} \).
Case 2: \(C = K_{a,b} \). In this case, we have for any fixed \(\delta > 0 \) that

\[
\left(\int_M \rho^{-b |u|^p} \, dv \right)^{1/p} \leq (K_{a,b} + \delta) \left(\int_M \rho^{-2a |\nabla u|^2} \, dv \right)^{1/2}.
\]

Thus for any \(x \in M \) we have from case 1 that

\[
\text{vol}[B(x, r)] \geq \left(\frac{K_{a,b}}{K_{a,b} + \delta} \right)^{n/(1 + a - b)} V_0(r), \quad \forall r > 0.
\]

Letting \(\delta \to 0 \), one obtains that

\[
\text{vol}[B(x, r)] \geq V_0(r), \quad \forall r > 0.
\]

This completes the proof of Theorem 1.1 for the case that \(C = K_{a,b} \).

References

Manifolds with non-negative Ricci curvature

Li86 P. Li, Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature, Ann. of Math. (2) 124 (1986), 1–21.

Manfredo Perdigão do Carmo manfredo@impa.br
Institute de Matematica Pura e Aplicada, Estrada Dona Castorina 110, Jardim Botanico, 22460-320 Rio de Janeiro RJ, Brazil

Changyu Xia xia@mat.unb.br
Departamento de Matemática-IE, Fundação Universidade de Brasília, Campus Universitário, 70910-900 Brasília DF, Brazil