PRENEX NORMAL FORM THEOREMS IN SEMI-CLASSICAL ARITHMETIC

MAKOTO FUJIWARA AND TAISHI KURAHASHI

Abstract

Akama et al. [1] systematically studied an arithmetical hierarchy of the law of excluded middle and related principles in the context of first-order arithmetic. In that paper, they first provide a prenex normal form theorem as a justification of their semi-classical principles restricted to prenex formulas. However, there are some errors in their proof. In this paper, we provide a simple counterexample of their prenex normal form theorem [1, Theorem 2.7], then modify it in an appropriate way which still serves to largely justify the arithmetical hierarchy. In addition, we characterize a variety of prenex normal form theorems by logical principles in the arithmetical hierarchy. The characterization results reveal that our prenex normal form theorems are optimal. For the characterization results, we establish a new conservation theorem on semi-classical arithmetic. The theorem generalizes a well-known fact that classical arithmetic is Π_{2}-conservative over intuitionistic arithmetic.

§1. Introduction. Prenex normal form theorem is one of the most basic theorems on theories based on classical first-order predicate logic. In contrast, it does not hold for intuitionistic theories in general. Therefore it does not make sense to consider an arithmetical hierarchy in an intuitionistic theory. On the other hand, if one reasons in some semi-classical arithmetic which lies in-between classical arithmetic and intuitionistic arithmetic, one can take an equivalent formula in prenex normal form for any formula with low complexity. Akama et al. [1] introduces the classes of formulas E_{k} and U_{k} which correspond to the classes of classical Σ_{k} and Π_{k} formulas respectively, and showed that the former is equivalent to the class of formulas of Σ_{k} form and the latter is so for Π_{k} over some semi-classical arithmetic respectively. This prenex normal form theorem justifies their investigation on the arithmetical hierarchy in the context of intuitionistic first-order arithmetic. Unfortunately, however, there are some crucial errors in their proof of the prenex normal form theorem [1, Theorem 2.7]. In this paper, we revisit their formulation and modify their prenex normal form theorem in an appropriate way.

In $\S 2$, we recall the definitions and basic properties. In $\S 3$, we provide a simple counterexample of [1, Theorem 2.7]. In §5, we show the corrected version of the prenex normal form theorem (see Theorem 5.3). In addition, we present a simplified version of the prenex normal form theorem for formulas which do not contain the disjunction (see Theorem 5.7). In §6, we establish a new conservation theorem on semi-classical arithmetic. The theorem generalizes a well-known fact

[^0]that classical arithmetic is Π_{2}-conservative over intuitionistic arithmetic. In $\S 7$, using the generalized conservation theorem in $\S 6$, we characterize several prenex normal form theorems with respect to semi-classical arithmetic. In particular, among other things, we show that for any theory T in-between intuitionistic arithmetic and classical arithmetic, T proves a semi-classical principle $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE if and only if T satisfies the prenex normal form theorem for $\mathrm{U}_{k^{\prime}}$ and $\Pi_{k^{\prime}}$ for all $k^{\prime} \leq k$ (see Theorem 7.3).

Throughout this paper, we work basically over intuitionistic arithmetic. When we use some principle (including induction hypothesis [I.H.]) which is not available in intuitionistic arithmetic, it will be exhibited explicitly. As regards basic reasoning over intuitionistic first-order logic, we refer the reader to [10, §6.2].
§2. Preparation. Throughout this paper, we work with a standard formulation of intuitionistic arithmetic HA described e.g., in [8, §1.3], which has function symbols for all primitive recursive functions. We work in the language containing all the logical constants $\forall, \exists, \rightarrow, \wedge, \vee, \perp$. Let T denote a theory (e.g., HA), and P and Q denote schemata (e.g., logical principles). Then $T+\mathrm{P}$ denotes the theory obtained from T by adding P into the axioms. In particular, the classical variant PA is defined as HA + LEM, where LEM is the axiom scheme of the law of excluded middle. We write $T \vdash \mathrm{Q}$ (or T proves Q) if any instance of Q is provable in T. We write $T \vdash \mathrm{P}+\mathrm{Q}$ if $T \vdash \mathrm{P}$ and $T \vdash \mathrm{Q}$.

Notation 1. For a formula $\varphi, \operatorname{FV}(\varphi)$ denotes the set of free variables in φ. Quantifier-free formulas are denoted with subscript "qf" as φ_{qf}. In addition, a list of variables is denoted with an over-line as \bar{x}. In particular, a list of quantifiers of the same kind is denoted as $\exists \bar{x}$ and $\forall \bar{x}$ respectively.

Definition 2.1. The classes Σ_{k} and Π_{k} of formulas are defined as follows:

- Σ_{0}, as well as Π_{0}, is the class of all quantifier-free formulas;
- Π_{k+1} is the class of all formulas of form $Q_{1} \overline{x_{1}} \cdots Q_{k+1} \overline{x_{k+1}} \varphi_{\mathrm{qf}}$;
- Σ_{k+1} is the class of all formulas of form $Q_{1}^{\prime} \overline{x_{1}} \cdots Q_{k+1}^{\prime} \overline{x_{k+1}} \varphi_{\mathrm{qf}}$;
where Q_{i} represents \forall for odd i and \exists for even i and Q_{i}^{\prime} represents \exists for odd i and \forall for even i. Following [1], we define the classes Σ_{k} and Π_{k} in the non-cumulative manner (namely, each $Q_{i} \overline{x_{i}}$ and $Q_{i}^{\prime} \overline{x_{i}}$ must not be empty). A formula φ is of prenex normal form if $\varphi \in \Sigma_{k} \cup \Pi_{k}$ for some k.

Remark 2.2. Since the list of variables can be contracted into one variable in HA by using a fixed primitive recursive pairing function (see e.g., [8, §1.3.9]), one may assume that for each natural number $k>0$, a formula in Σ_{k} is of form $\exists x \varphi(x)$ with some $\varphi(x) \in \Pi_{k-1}$ and a formula in Π_{k} is of form $\forall x \psi(x)$ with some $\psi(x) \in \Sigma_{k-1}$ without loss of generality.

Lemma 2.3. Let k be a natural number. Let φ be in Π_{k} and ψ be in Σ_{k}. Then, for all natural numbers i and j, there exist $\varphi^{\prime}, \psi^{\prime} \in \Pi_{k+i}$ and $\varphi^{\prime \prime}, \psi^{\prime \prime} \in \Sigma_{k+j}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)=\mathrm{FV}\left(\varphi^{\prime \prime}\right), \mathrm{FV}(\psi)=\mathrm{FV}\left(\psi^{\prime}\right)=\mathrm{FV}\left(\psi^{\prime \prime}\right), \mathrm{HA} \vdash \varphi \leftrightarrow \varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}$ and $\mathrm{HA} \vdash \psi \leftrightarrow \psi^{\prime} \leftrightarrow \psi^{\prime \prime}$.

Proof. Straightforward by the fact that

$$
\begin{equation*}
\mathrm{HA} \vdash \xi \leftrightarrow \forall z \xi \leftrightarrow \exists z \xi \tag{1}
\end{equation*}
$$

for any $z \notin \mathrm{FV}(\xi)$.
Definition 2.4. For a class Γ of formulas, $\Gamma(\bar{x})$ denotes the class of formulas φ in Γ such that $\mathrm{FV}(\varphi) \subseteq\{\bar{x}\}$.

Remark 2.5. In the light of Lemma 2.3, throughout this paper, we identify the classes Σ_{k} and Π_{k} with the classes defined as in Definition 2.1 with allowing the quantifiers Q_{i} and Q_{i}^{\prime} to be empty. Under this identification, for all k and k^{\prime} such that $k<k^{\prime}, \Pi_{k}(\bar{x})$ and $\Sigma_{k}(\bar{x})$ are considered to be sub-classes of $\Sigma_{k^{\prime}}(\bar{x}) \cap \Pi_{k^{\prime}}(\bar{x})$. We frequently use this property in what follows.

Recall the logical principles from [1] and related principles:
Definition 2.6. Let Γ and Γ^{\prime} be classes of formulas.

- Γ-LEM : $\forall x(\varphi(x) \vee \neg \varphi(x))$ where $\varphi(x) \in \Gamma(x)$.
- Γ-DML : $\forall x(\neg(\varphi(x) \wedge \psi(x)) \rightarrow \neg \varphi(x) \vee \neg \psi(x))$ where $\varphi(x), \psi(x) \in \Gamma(x)$.
- Γ-DNE : $\forall x(\neg \neg \varphi(x) \rightarrow \varphi(x))$ where $\varphi(x) \in \Gamma(x)$.
- $\left(\Gamma \vee \Gamma^{\prime}\right)$-DNE $: \forall x(\neg \neg(\varphi(x) \vee \psi(x)) \rightarrow \varphi(x) \vee \psi(x))$ where $\varphi(x) \in \Gamma(x)$ and $\psi(x) \in \Gamma^{\prime}(x)$.
- Γ-DNS : $\forall x(\forall y \neg \neg \varphi(x, y) \rightarrow \neg \neg \forall y \varphi(x, y))$ where $\varphi(x, y) \in \Gamma(x, y)$.
- Let $\quad \mathrm{P} \in\left\{\Gamma\right.$-LEM, Γ-DML, Γ-DNE, $\left(\Gamma \vee \Gamma^{\prime}\right)$-DNE, Γ-DNS $\} . ~ \neg \neg \mathrm{P}: \neg \neg \xi$ where ξ is an instance of P.
Note that our logical principles are equivalent also to those defined with lists of quantifiers of the same kind (cf. Remark 2.2).

Remark 2.7. One has to care about the formulation of the double negated variants. That is, one has to take the double negations of the universal closure of the original logical principles as in Definition 2.6. The double negated variants defined as such are not provable in HA, which has been overlooked in the proof of [1, Theorem 2.7] (see also §3). In fact, one may think of the double negated versions as variants of the double negation shift principle (see [3]). In addition, our double negated versions are equivalent to (the universal closures of) those with allowing free variables (cf. [3, Remark 2.5]).

Remark 2.8. For any class Γ of formulas, Γ-DNS is intuitionistically equivalent to $\neg \neg \Gamma$-DNS since

$$
\begin{array}{ll}
& \forall x(\forall y \neg \neg \varphi \rightarrow \neg \neg \forall y \varphi) \\
\longleftrightarrow & \forall x \neg \neg(\forall y \neg \neg \varphi \rightarrow \neg \neg \forall y \varphi) \\
\longleftrightarrow & \neg \neg \forall x \neg \neg(\forall y \neg \neg \varphi \rightarrow \neg \neg \forall y \varphi) \\
\longleftrightarrow & \neg \neg \forall x(\forall y \neg \neg \varphi \rightarrow \neg \neg \forall y \varphi) .
\end{array}
$$

Akama et al. [1] introduces the classes $\mathrm{F}_{k}, \mathrm{U}_{k}$ and E_{k} of formulas. In the following, we reformulate them and introduce two additional classes U_{k}^{+}and E_{k}^{+}in a formal manner.

Definition 2.9. An alternation path is a finite sequence of + and - in which + and - appear alternatively. For an alternation path s, let $i(s)$ denote the first symbol
of s if $s \not \equiv\left\rangle\right.$ (empty sequence); \times if $s \equiv\left\rangle\right.$. Let s^{\perp} denote the alternation path which is obtained by switching + and - in s, and let $l(s)$ denote the length of s.

Definition 2.10. For a formula φ, the set of alternation paths $\operatorname{Alt}(\varphi)$ of φ is defined as follows:

- If φ is quantifier-free, then $\operatorname{Alt}(\varphi):=\{\langle \rangle\}$;
- Otherwise, $\operatorname{Alt}(\varphi)$ is defined inductively by the following rule:
- If $\varphi \equiv \varphi_{1} \wedge \varphi_{2}$ or $\varphi \equiv \varphi_{1} \vee \varphi_{2}$, then $\operatorname{Alt}(\varphi):=\operatorname{Alt}\left(\varphi_{1}\right) \cup \operatorname{Alt}\left(\varphi_{2}\right)$;
- If $\varphi \equiv \varphi_{1} \rightarrow \varphi_{2}$, then $\operatorname{Alt}(\varphi):=\left\{s^{\perp} \mid s \in \operatorname{Alt}\left(\varphi_{1}\right)\right\} \cup \operatorname{Alt}\left(\varphi_{2}\right)$;
- If $\varphi \equiv \forall x \varphi_{1}$, then $\operatorname{Alt}(\varphi):=\left\{s \mid s \in \operatorname{Alt}\left(\varphi_{1}\right)\right.$ and $\left.i(s) \equiv-\right\} \cup\{-s \mid s \in$ $\operatorname{Alt}\left(\varphi_{1}\right)$ and $\left.i(s) \not \equiv-\right\}$;
- If $\varphi \equiv \exists x \varphi_{1}$, then $\operatorname{Alt}(\varphi):=\left\{s \mid s \in \operatorname{Alt}\left(\varphi_{1}\right)\right.$ and $\left.i(s) \equiv+\right\} \cup\{+s \mid s \in$ $\operatorname{Alt}\left(\varphi_{1}\right)$ and $\left.i(s) \not \equiv+\right\}$.
In addition, for a formula φ, the degree $\operatorname{deg}(\varphi)$ of φ is defined as

$$
\operatorname{deg}(\varphi):=\max \{l(s) \mid s \in \operatorname{Alt}(\varphi)\} .
$$

Definition 2.11. The classes $\mathrm{F}_{k}, \mathrm{U}_{k}, \mathrm{E}_{k}$ (from [1, Definition 2.4]), U_{k}^{+}and E_{k}^{+} of formulas are defined as follows:

- $\mathrm{F}_{k}:=\{\varphi \mid \operatorname{deg}(\varphi)=k\} ;$
- $\mathrm{U}_{0}:=\mathrm{E}_{0}:=\mathrm{F}_{0}$;
- $\mathrm{U}_{k+1}:=\left\{\varphi \in \mathrm{F}_{k+1} \mid i(s) \equiv-\right.$ for all $s \in \operatorname{Alt}(\varphi)$ such that $\left.l(s)=k+1\right\}$;
- $\mathrm{E}_{k+1}:=\left\{\varphi \in \mathrm{F}_{k+1} \mid i(s) \equiv+\right.$ for all $s \in \operatorname{Alt}(\varphi)$ such that $\left.l(s)=k+1\right\}$;
- $\mathrm{U}_{k}^{+}:=\mathrm{U}_{k} \cup \bigcup_{i<k} \mathrm{~F}_{i}$;
- $\mathrm{E}_{k}^{+}:=\mathrm{E}_{k} \cup \bigcup_{i<k} \mathrm{~F}_{i}$.

Remark 2.12. From the perspective of Proposition 4.6 below, the introduction of U_{k}^{+}and E_{k}^{+}in addition to U_{k} and E_{k} is mathematically superfluous. However, we introduce these auxiliary classes for facilitating our arguments below.

Note $\mathrm{F}_{0}=\Sigma_{0}=\Pi_{0}$. For each formula $\varphi \in \mathrm{E}_{k}\left(\right.$ resp. $\left.\psi \in \mathrm{U}_{k}\right)$ of PA, one can take a formula $\varphi^{\prime} \in \Sigma_{k}$ (resp. $\psi^{\prime} \in \Pi_{k}$) of PA which is equivalent to φ (resp. ψ) over PA. On the other hand, this is not the case for HA. In what follows, we study what kind of semi-classical arithmetic in-between PA and HA captures this property for each k. In fact, Akama et al. [1] has already undertaken this. In particular, [1, Theorem 2.7] asserts the following:

1. For any $\varphi \in \mathrm{E}_{k}$, there exists $\varphi^{\prime} \in \Sigma_{k}$ such that

$$
\mathrm{HA}+\Sigma_{k}-\mathrm{DNE} \vdash \varphi \leftrightarrow \varphi^{\prime} .
$$

2. For any $\varphi \in \mathrm{U}_{k}$, there exists $\varphi^{\prime} \in \Pi_{k}$ such that

$$
\mathrm{HA}+\left(\Pi_{k} \vee \Pi_{k}\right) \text {-DNE } \vdash \varphi \leftrightarrow \varphi^{\prime} .
$$

However, the first assertion is wrong as we show in §3. In fact, a weak variant U_{k}-DNS of the double negation shift principle is missing in the verification theory, which will be revealed by our modified version of the prenex normal form theorem (Theorem 5.3) below. On the other hand, the second assertion is correct. This will be revealed also by Theorem 5.3.
§3. A counter example. Recall that [1, Theorem 2.7] asserts that for any $\varphi \in \mathrm{E}_{k}$, there exists $\varphi^{\prime} \in \Sigma_{k}$ such that

$$
\mathrm{HA}+\Sigma_{k}-\mathrm{DNE} \vdash \varphi \leftrightarrow \varphi^{\prime} .
$$

However, there are some errors in the proof. In particular, in [1, p. 5, lines 15-17], it is written that "Since the double negations of DNE is intuitionistically provable, $\vdash_{\text {HA }} \neg \neg A_{0} \leftrightarrow \neg \neg \exists x_{0} . C_{0}$ (which means HA $\vdash \neg \neg A_{0} \leftrightarrow \neg \neg \exists x_{0} C_{0}$ in our notation)". As studied in [3], however, the double negations of (the universal closure of) DNE is not provable in HA, and hence, their proof actually uses some double negated logical principles in the sense of Definition 2.6. Our counterexample below shows that such a use of some additional principle is unavoidable.

Recall the arithmetical form of Church's thesis from [8, §3.2.14]:

$$
\mathrm{CT}_{0}: \forall x \exists y \varphi(x, y) \rightarrow \exists e \forall x \exists v(\mathrm{~T}(e, x, v) \wedge \varphi(x, \mathrm{U}(v))),
$$

where T and U are the standard primitive recursive predicate and function from the Kleene normal form theorem. Note that CT_{0} is a sort of combination of so-called Church's thesis stating that every function is recursive and the countable choice principle (see [9, §4.3.2]).

Proposition 3.1. The following sentence

$$
\varphi_{0}: \equiv \neg \forall x(\neg \exists u(\mathrm{~T}(x, x, u) \wedge \mathrm{U}(u)=0) \vee \neg \exists u(\mathrm{~T}(x, x, u) \wedge \mathrm{U}(u) \neq 0))
$$

is not equivalent to any sentence $\varphi_{0}^{\prime} \in \Sigma_{1}$ over $\mathrm{HA}+\Sigma_{1}$-DNE.
Proof. We first claim that $\mathrm{HA}+\mathrm{CT}_{0}$ proves φ_{0}. For the sake of contradiction, assume

$$
\begin{equation*}
\forall x(\neg \exists u(\mathrm{~T}(x, x, u) \wedge \mathrm{U}(u)=0) \vee \neg \exists u(\mathrm{~T}(x, x, u) \wedge \mathrm{U}(u) \neq 0)) \tag{2}
\end{equation*}
$$

and reason in $\mathrm{HA}+\mathrm{CT}_{0}$. Since $\varphi_{1} \vee \varphi_{2} \leftrightarrow \exists k\left(\left(k=0 \rightarrow \varphi_{1}\right) \wedge\left(k \neq 0 \rightarrow \varphi_{2}\right)\right)$ (see [8, §1.3.7]), by CT_{0}, there exists e such that

$$
\forall x \exists v\left(\begin{array}{l}
\mathrm{T}(e, x, v) \\
\wedge(\mathrm{U}(v)=0 \rightarrow \neg \exists u(\mathrm{~T}(x, x, u) \wedge \mathrm{U}(u)=0)) \\
\wedge(\mathrm{U}(v) \neq 0 \rightarrow \neg \exists u(\mathrm{~T}(x, x, u) \wedge \mathrm{U}(u) \neq 0))
\end{array}\right) .
$$

In particular, for that e, there exists v_{e} such that $\mathrm{T}\left(e, e, v_{e}\right)$,

$$
\mathrm{U}\left(v_{e}\right)=0 \rightarrow \neg \exists u(\mathrm{~T}(e, e, u) \wedge \mathrm{U}(u)=0)
$$

and

$$
\mathrm{U}\left(v_{e}\right) \neq 0 \rightarrow \neg \exists u(\mathrm{~T}(e, e, u) \wedge \mathrm{U}(u) \neq 0) .
$$

Since $\mathrm{U}\left(v_{e}\right)=0 \vee \mathrm{U}\left(v_{e}\right) \neq 0$, we obtain a contradiction straightforwardly.
If φ_{0} is equivalent to some sentence $\varphi_{0}^{\prime} \in \Sigma_{1}$ over $\mathrm{HA}+\Sigma_{1}$-DNE, we have $\mathrm{HA}+$ $\Sigma_{1}-\mathrm{DNE}+\mathrm{CT}_{0} \vdash \varphi_{0}^{\prime}$ from the above claim. Since $\varphi_{0}^{\prime} \in \Sigma_{1}$, by the soundness of Kleene realizability (see [8, §3.2.22]), we have that

$$
\mathrm{HA}+\Sigma_{1}-\mathrm{DNE} \vdash \varphi_{0}^{\prime},
$$

and hence, $\mathrm{HA}+\Sigma_{1}-\mathrm{DNE} \vdash \varphi_{0}$. On the other hand, since

$$
\forall x \neg(\exists u(\mathrm{~T}(x, x, u) \wedge \mathrm{U}(u)=0) \wedge \exists u(\mathrm{~T}(x, x, u) \wedge \mathrm{U}(u) \neq 0))
$$

is provable in HA, we have HA $+\Sigma_{1}$-DML $\vdash(2)$. Therefore we have

$$
\mathrm{HA}+\Sigma_{1}-\mathrm{DNE}+\Sigma_{1}-\mathrm{DML} \vdash \perp,
$$

and hence, $\mathrm{PA} \vdash \perp$, which is a contradiction.
Remark 3.2. One can easily see that φ_{0} in Proposition 3.1 is in E_{1}. Thus Proposition 3.1 shows that φ_{0} is a counterexample of [1, Theorem 2.7] for $k=1$.
§4. Basic lemmata. In this section, we show several lemmata which we use in the proofs of our prenex normal form theorems.

Lemma 4.1. For any logical principle P in Definition 2.6 and any formula φ (possibly containing free variables), if $\mathrm{HA}+\mathrm{P} \vdash \varphi$, then $\mathrm{HA}+\neg \neg \mathrm{P} \vdash \neg \neg \varphi$.

Proof. Assume $\mathrm{HA}+\mathrm{P} \vdash \varphi$. Then there exists finite instances $\psi_{1}, \ldots, \psi_{k}$ of P such that HA $+\psi_{1}+\cdots+\psi_{k} \vdash \varphi$. Since HA satisfies the deduction theorem, we have that HA proves $\psi_{1} \wedge \cdots \wedge \psi_{k} \rightarrow \varphi$, and hence, $\neg \neg\left(\psi_{1} \wedge \cdots \wedge \psi_{k} \rightarrow \varphi\right)$, which is equivalent to $\neg \neg \psi_{1} \wedge \cdots \wedge \neg \neg \psi_{k} \rightarrow \neg \neg \varphi$. Then we have HA $+\neg \neg \mathrm{P} \vdash \neg \neg \varphi$. $\quad \dashv$

Corollary 4.2. For any logical principle P in Definition 2.6 and any formulas φ_{1} and φ_{2} (possibly containing free variables), if $\mathrm{HA}+\mathrm{P} \vdash \varphi_{1} \leftrightarrow \varphi_{2}$, then $\mathrm{HA}+\neg \neg \mathrm{P} \vdash$ $\neg \neg \varphi_{1} \leftrightarrow \neg \neg \varphi_{2}$.

Proof. Immediate from Lemma 4.1 and the fact that $\neg \neg\left(\varphi_{1} \leftrightarrow \varphi_{2}\right)$ is intuitionistically equivalent to $\neg \neg \varphi_{1} \leftrightarrow \neg \neg \varphi_{2}$.

Lemma 4.3. Let k be a natural number. Let φ_{1} and φ_{2} be formulas in Σ_{k}, and let φ_{3} and φ_{4} be formulas in Π_{k}. Then the following hold:

1. There exists a formula $\varphi \in \Sigma_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi_{1} \wedge \varphi_{2}\right)$ and $\mathrm{HA} \vdash \varphi \leftrightarrow$ $\varphi_{1} \wedge \varphi_{2}$.
2. There exists a formula $\varphi^{\prime} \in \Pi_{k}$ such that $\mathrm{FV}\left(\varphi^{\prime}\right)=\mathrm{FV}\left(\varphi_{3} \wedge \varphi_{4}\right)$ and $\mathrm{HA} \vdash$ $\varphi^{\prime} \leftrightarrow \varphi_{3} \wedge \varphi_{4}$.
Proof. Straightforward by simultaneous induction on k.
Lemma 4.4. For any formulas φ_{1} and φ_{2} in Σ_{k}, there exists a formula $\varphi \in \Sigma_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi_{1} \vee \varphi_{2}\right)$ and $\mathrm{HA} \vdash \varphi \leftrightarrow \varphi_{1} \vee \varphi_{2}$.

Proof. Note that $\varphi_{1} \vee \varphi_{2}$ is equivalent to

$$
\exists k\left(\left(k=0 \rightarrow \varphi_{1}\right) \wedge\left(k \neq 0 \rightarrow \varphi_{2}\right)\right)
$$

over HA (see $[8, \S 1.3 .7]$). Since $\varphi_{\mathrm{qf}} \rightarrow \exists x \psi(x)$ and $\varphi_{\mathrm{qf}} \rightarrow \forall x \psi(x)$ are equivalent to $\exists x\left(\varphi_{\mathrm{qf}} \rightarrow \psi(x)\right)$ and $\forall x\left(\varphi_{\mathrm{qf}} \rightarrow \psi(x)\right)$ respectively over HA when $x \notin \mathrm{FV}\left(\varphi_{\mathrm{qf}}\right)$, our assertion follows from Lemma 4.3 straightforwardly.

Lemma 4.5. Let k be a natural number greater than 0 .

1. $\varphi_{1} \wedge \varphi_{2}$ is in $\mathrm{U}_{k}^{+}\left(\right.$resp. $\left.\mathrm{E}_{k}^{+}\right)$if and only if both of φ_{1} and φ_{2} are in $\mathrm{U}_{k}^{+}\left(\right.$resp. $\left.\mathrm{E}_{k}^{+}\right)$.
2. $\varphi_{1} \vee \varphi_{2}$ is in $\mathrm{U}_{k}^{+}\left(\right.$resp. $\left.\mathrm{E}_{k}^{+}\right)$if and only if both of φ_{1} and φ_{2} are in $\mathrm{U}_{k}^{+}\left(\right.$resp. $\left.\mathrm{E}_{k}^{+}\right)$.
3. $\varphi_{1} \rightarrow \varphi_{2}$ is in $\mathrm{U}_{k}^{+}\left(\right.$resp. $\left.\mathrm{E}_{k}^{+}\right)$if and only if φ_{1} is in $\mathrm{E}_{k}^{+}\left(\right.$resp. $\left.\mathrm{U}_{k}^{+}\right)$and φ_{2} is in U_{k}^{+} (resp. E_{k}^{+}).
4. $\forall x \varphi_{1}$ is in U_{k}^{+}if and only if φ_{1} is in U_{k}^{+}.
5. $\exists x \varphi_{1}$ is in E_{k}^{+}if and only if φ_{1} is in E_{k}^{+}.
6. $\forall x \varphi_{1}$ is in E_{k+1}^{+}if and only if it is in U_{k}^{+}.
7. $\exists x \varphi_{1}$ is in U_{k+1}^{+}if and only if it is in E_{k}^{+}.

Proof. (1): Assume $\varphi_{1} \wedge \varphi_{2} \in \mathrm{U}_{k}^{+}$. Then $l(s) \leq k$ for all $s \in \operatorname{Alt}\left(\varphi_{1} \wedge \varphi_{2}\right)=$ $\operatorname{Alt}\left(\varphi_{1}\right) \cup \operatorname{Alt}\left(\varphi_{2}\right)$.

- If $l(s)<k$ for all $s \in \operatorname{Alt}\left(\varphi_{1}\right)$, then φ_{1} is in $\bigcup_{i<k} \mathrm{~F}_{i} \subseteq \mathrm{U}_{k}^{+}$.
- Otherwise, there is $s_{0} \in \operatorname{Alt}\left(\varphi_{1}\right)$ such that $l\left(s_{0}\right)=k$. Then, since $\varphi_{1} \wedge \varphi_{2} \notin$ $\bigcup_{i<k} \mathrm{~F}_{i}$, we have $\varphi_{1} \wedge \varphi_{2} \in \mathrm{U}_{k}$. Then, for each $s \in \operatorname{Alt}\left(\varphi_{1}\right)$ such that $l(s)=k$, we have $i(s) \equiv-$ since $s \in \operatorname{Alt}\left(\varphi_{1} \wedge \varphi_{2}\right)$. Thus $\varphi_{1} \in \mathrm{U}_{k} \subseteq \mathrm{U}_{k}^{+}$.
We also have $\varphi_{2} \in \mathrm{U}_{k}^{+}$in the same manner.
For the converse direction, assume that φ_{1} and φ_{2} are in U_{k}^{+}. Then, for all $s \in \operatorname{Alt}\left(\varphi_{1} \wedge \varphi_{2}\right)$, since $s \in \operatorname{Alt}\left(\varphi_{1}\right)$ or $s \in \operatorname{Alt}\left(\varphi_{2}\right)$, we have $l(s) \leq k$, in particular, $i(s) \equiv-$ if $l(s)=k$. Thus $\varphi_{1} \wedge \varphi_{2}$ is in U_{k}^{+}.

As for the case of E_{k}^{+}, an analogous proof works.
(2): Analogous to (1).
(3): Assume $\varphi_{1} \rightarrow \varphi_{2} \in \mathrm{U}_{k}^{+}$. Let s be in $\operatorname{Alt}\left(\varphi_{1}\right)$. By the definition of $\operatorname{Alt}\left(\varphi_{1} \rightarrow \varphi_{2}\right)$, we have $s^{\perp} \in \operatorname{Alt}\left(\varphi_{1} \rightarrow \varphi_{2}\right)$ and $l(s) \leq k$.

- If $l(s)<k$ for all $s \in \operatorname{Alt}\left(\varphi_{1}\right)$, then φ_{1} is in $\bigcup_{i<k} \mathrm{~F}_{i} \subseteq \mathrm{E}_{k}^{+}$.
- Otherwise, there is $s_{0} \in \operatorname{Alt}\left(\varphi_{1}\right)$ such that $l\left(s_{0}\right)=k$. Since $s_{0}{ }^{\perp} \in \operatorname{Alt}\left(\varphi_{1} \rightarrow \varphi_{2}\right)$, we have $\varphi_{1} \rightarrow \varphi_{2} \in \mathrm{U}_{k}$. Then, for each $s \in \operatorname{Alt}\left(\varphi_{1}\right)$ such that $l(s)=k$, we have $i\left(s^{\perp}\right) \equiv-$, and hence, $i(s) \equiv+$. Thus $\varphi_{1} \in \mathrm{E}_{k} \subseteq \mathrm{E}_{k}^{+}$.
We also have $\varphi_{2} \in \mathrm{U}_{k}^{+}$in the same manner.
For the converse direction, assume $\varphi_{1} \in \mathrm{E}_{k}^{+}$and $\varphi_{2} \in \mathrm{U}_{k}^{+}$. Since $\operatorname{deg}\left(\varphi_{1}\right) \leq k$ and $\operatorname{deg}\left(\varphi_{2}\right) \leq k$, we have $\operatorname{deg}\left(\varphi_{1} \rightarrow \varphi_{2}\right) \leq k$.
- If $\operatorname{deg}\left(\varphi_{1} \rightarrow \varphi_{2}\right)<k$, then $\varphi_{1} \rightarrow \varphi_{2} \in \bigcup_{i<k} \mathrm{~F}_{i} \subseteq \mathrm{U}_{k}^{+}$.
- If $\operatorname{deg}\left(\varphi_{1} \rightarrow \varphi_{2}\right)=k$, for all $s \in \operatorname{Alt}\left(\varphi_{1} \rightarrow \varphi_{2}\right)$ such that $l(s)=k$, we have $s \in \operatorname{Alt}\left(\varphi_{2}\right)$ or $s \equiv s_{0}{ }^{\perp}$ for some $s_{0} \in \operatorname{Alt}\left(\varphi_{1}\right)$. In the former case, we have $i(s) \equiv-$ by $\varphi_{2} \in \mathrm{U}_{k}^{+}$. In the latter case, we have $i\left(s_{0}\right) \equiv+$ by $\varphi_{1} \in \mathrm{E}_{k}^{+}$, and hence, $i(s) \equiv-$.
One can also show that $\varphi_{1} \rightarrow \varphi_{2}$ is in E_{k}^{+}if and only if φ_{1} is in U_{k}^{+}and φ_{2} is in E_{k}^{+}analogously.
(4): Assume $\forall x \varphi_{1} \in \mathrm{U}_{k}^{+}$.
- If $\forall x \varphi_{1} \notin \mathrm{U}_{k}$, then $\forall x \varphi_{1} \in \bigcup_{i<k} \mathrm{~F}_{i}$. Since $\operatorname{deg}\left(\varphi_{1}\right) \leq \operatorname{deg}\left(\forall x \varphi_{1}\right)<k$, we have $\varphi_{1} \in \bigcup_{i<k} \mathrm{~F}_{i} \subseteq \mathrm{U}_{k}^{+}$.
- Otherwise, $\operatorname{deg}\left(\varphi_{1}\right) \leq \operatorname{deg}\left(\forall x \varphi_{1}\right)=k$. If $\operatorname{deg}\left(\varphi_{1}\right)<k$, then we have $\varphi_{1} \in$ $\bigcup_{i<k} \mathrm{~F}_{i} \subseteq \mathrm{U}_{k}^{+}$. Assume $\operatorname{deg}\left(\varphi_{1}\right)=k$. Let s be an alternation path of φ_{1} such that $l(s)=k$. If $i(s) \not \equiv-$, by the definition of $\operatorname{Alt}\left(\forall x \varphi_{1}\right)$, we have $-s \in \operatorname{Alt}\left(\forall x \varphi_{1}\right)$, which contradicts $\operatorname{deg}\left(\forall x \varphi_{1}\right)=k$ since $l(-s)=k+1$. Then we have $i(s) \equiv-$. Thus we have $\varphi_{1} \in \mathrm{U}_{k} \subseteq \mathrm{U}_{k}^{+}$.
For the converse direction, assume $\varphi_{1} \in \mathrm{U}_{k}^{+}$.
- If $\varphi_{1} \notin \mathrm{U}_{k}$, then $\varphi_{1} \in \bigcup_{i<k} \mathrm{~F}_{i}$. Thus $\operatorname{deg}\left(\varphi_{1}\right)<k$, and hence, $\operatorname{deg}\left(\forall x \varphi_{1}\right) \leq k$. If $\operatorname{deg}\left(\forall x \varphi_{1}\right)<k$, then $\forall x \varphi_{1} \in \bigcup_{i<k} \mathrm{~F}_{i} \subseteq \mathrm{U}_{k}^{+}$. If $\operatorname{deg}\left(\forall x \varphi_{1}\right)=k$, since $i(s) \equiv-$ for all $s \in \operatorname{Alt}\left(\forall x \varphi_{1}\right)$, we have $\forall x \varphi_{1} \in \mathrm{U}_{k} \subseteq \mathrm{U}_{k}^{+}$.
- Otherwise, $\operatorname{deg}\left(\varphi_{1}\right)=k$ and $i(s) \equiv-$ for all $s \in \operatorname{Alt}\left(\varphi_{1}\right)$ such that $l(s)=k$. By the definition of $\operatorname{Alt}\left(\forall x \varphi_{1}\right)$, for all $s \in \operatorname{Alt}\left(\forall x \varphi_{1}\right)$, we have $l(s) \leq k$, and hence, $\operatorname{deg}\left(\forall x \varphi_{1}\right)=k$. In addition, again by the definition of $\operatorname{Alt}\left(\forall x \varphi_{1}\right)$, we have $i(s) \equiv-$ for all $s \in \operatorname{Alt}\left(\forall x \varphi_{1}\right)$ such that $l(s)=k$. Thus $\forall x \varphi_{1} \in \mathrm{U}_{k} \subseteq \mathrm{U}_{k}^{+}$.
(5): Analogous to (4).
(6): Assume $\forall x \varphi_{1} \in \mathrm{E}_{k+1}^{+}$. Since $i(s) \equiv-$ for all $s \in \operatorname{Alt}\left(\forall x \varphi_{1}\right), \forall x \varphi_{1}$ is not in E_{k+1}. Then $\forall x \varphi_{1} \in \bigcup_{i \leq k} \mathrm{~F}_{i}$, and hence, $\operatorname{deg}\left(\forall x \varphi_{1}\right) \leq k$.
- If $\operatorname{deg}\left(\forall x \varphi_{1}\right)<k$, then $\forall x \varphi_{1} \in \bigcup_{i<k} \mathrm{~F}_{i} \subseteq \mathrm{U}_{k}^{+}$.
- If $\operatorname{deg}\left(\forall x \varphi_{1}\right)=k$, since $i(s) \equiv$ - for all $s \in \operatorname{Alt}\left(\forall x \varphi_{1}\right)$, we have $\forall x \varphi_{1} \in \mathrm{U}_{k} \subseteq$ U_{k}^{+}.
The converse direction is trivial since $\mathrm{U}_{k}^{+} \subseteq \bigcup_{i<k+1} \mathrm{~F}_{i} \subseteq \mathrm{E}_{k+1}^{+}$.
(7): Analogous to (6).

As mentioned in Lemma 2.3, our non-cumulative definition of the classes Σ_{k} and Π_{k} does not cause any trouble. In a similar sense, the following proposition allows us to think of E_{k} and U_{k} in the cumulative manner:

Proposition 4.6. Let k be a natural number. Then the following hold:

1. If $\varphi \in \mathrm{U}_{k}^{+}$, then there exist $\varphi^{\prime} \in \mathrm{U}_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and $\mathrm{HA} \vdash \varphi \leftrightarrow$ φ^{\prime}.
2. If $\varphi \in \mathrm{E}_{k}^{+}$, then there exist $\varphi^{\prime} \in \mathrm{E}_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and $\mathrm{HA} \vdash \varphi \leftrightarrow$ φ^{\prime}.

Proof. By simultaneous induction on k. The base case is trivial.
For the induction step, assume that the assertion holds for k. We show the assertion for $k+1$ by induction on the structure of formulas.

The case of that φ is prime: Suppose $\varphi \in \mathrm{U}_{k+1}^{+} \cup \mathrm{E}_{k+1}^{+}$. Since φ is prime, the assertion for k ensures that there exist $\varphi^{\prime} \in \mathrm{U}_{k}$ and $\varphi^{\prime \prime} \in \mathrm{E}_{k}$ such that $\mathrm{FV}(\varphi)=$ $\mathrm{FV}\left(\varphi^{\prime}\right)=\mathrm{FV}\left(\varphi^{\prime \prime}\right)$ and $\mathrm{HA} \vdash \varphi \leftrightarrow \varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}$. Put $\psi^{\prime}: \equiv \exists x \varphi^{\prime}$ and $\psi^{\prime \prime}: \equiv \forall x \varphi^{\prime \prime}$ where $x \notin \mathrm{FV}\left(\varphi^{\prime}\right) \cup \mathrm{FV}\left(\varphi^{\prime \prime}\right)$. By the definition, it is straightforward to show that
$\psi^{\prime} \in \mathrm{E}_{k+1}, \psi^{\prime \prime} \in \mathrm{U}_{k+1}$ and $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\psi^{\prime}\right)=\mathrm{FV}\left(\psi^{\prime \prime}\right)$. In addition, by (1) in the proof of Lemma 2.3, we have HA $\vdash \varphi \leftrightarrow \psi^{\prime} \leftrightarrow \psi^{\prime \prime}$.

The case of $\varphi: \equiv \varphi_{1} \wedge \varphi_{2}$: Suppose $\varphi \in \mathrm{U}_{k+1}^{+}$. By Lemma 4.5.(1), we have $\varphi_{1} \in$ U_{k+1}^{+}and $\varphi_{2} \in \mathrm{U}_{k+1}^{+}$. By the induction hypothesis, there exist $\varphi_{1}^{\prime}, \varphi_{2}^{\prime} \in \mathrm{U}_{k}$ such that $\mathrm{FV}\left(\varphi_{1}\right)=\mathrm{FV}\left(\varphi_{1}^{\prime}\right), \mathrm{FV}\left(\varphi_{2}\right)=\mathrm{FV}\left(\varphi_{2}^{\prime}\right), \mathrm{HA} \vdash \varphi_{1} \leftrightarrow \varphi_{1}^{\prime}$ and HA $\vdash \varphi_{2} \leftrightarrow \varphi_{2}^{\prime}$. Then it is straightforward to show that $\varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime} \in \mathrm{U}_{k}, \mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime}\right)$ and $\mathrm{HA} \vdash \varphi \leftrightarrow \varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime}$. In the same manner, if $\varphi \in \mathrm{E}_{k+1}^{+}$, there exists $\varphi^{\prime} \in \mathrm{E}_{k+1}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and HA $\vdash \varphi \leftrightarrow \varphi^{\prime}$.

The case of $\varphi: \equiv \varphi_{1} \vee \varphi_{2}$ is similar to the case of $\varphi: \equiv \varphi_{1} \wedge \varphi_{2}$ (use Lemma 4.5.(2) instead of Lemma 4.5.(1)).

The case of $\varphi: \equiv \varphi_{1} \rightarrow \varphi_{2}$: Suppose $\varphi \in \mathrm{U}_{k+1}^{+}$. By Lemma 4.5.(3), we have $\varphi_{1} \in \mathrm{E}_{k+1}^{+}$and $\varphi_{2} \in \mathrm{U}_{k+1}^{+}$. By the induction hypothesis, there exist $\varphi_{1}^{\prime} \in \mathrm{E}_{k+1}$ and $\varphi_{2}^{\prime} \in \mathrm{U}_{k+1}$ such that $\mathrm{FV}\left(\varphi_{1}\right)=\mathrm{FV}\left(\varphi_{1}^{\prime}\right), \mathrm{FV}\left(\varphi_{2}\right)=\mathrm{FV}\left(\varphi_{2}^{\prime}\right), \mathrm{HA} \vdash \varphi_{1} \leftrightarrow \varphi_{1}^{\prime}$ and HA $\vdash \varphi_{2} \leftrightarrow \varphi_{2}^{\prime}$. Then it is straightforward to show that $\varphi_{1}^{\prime} \rightarrow \varphi_{2}^{\prime} \in \mathrm{U}_{k+1}, \mathrm{FV}(\varphi)=$ $\operatorname{FV}\left(\varphi_{1}^{\prime} \rightarrow \varphi_{2}^{\prime}\right)$ and $\mathrm{HA} \vdash \varphi \leftrightarrow\left(\varphi_{1}^{\prime} \rightarrow \varphi_{2}^{\prime}\right)$. In the same manner, if $\varphi \in \mathrm{E}_{k+1}^{+}$, there exists $\varphi^{\prime} \in \mathrm{E}_{k+1}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and $\mathrm{HA} \vdash \varphi \leftrightarrow \varphi^{\prime}$.

The case of $\varphi: \equiv \forall x \varphi_{1}$: First, suppose $\varphi \in \mathrm{U}_{k+1}^{+}$. By Lemma 4.5.(4), we have $\varphi_{1} \in \mathrm{U}_{k+1}^{+}$. By the induction hypothesis, there exists $\varphi_{1}^{\prime} \in \mathrm{U}_{k+1}$ such that $\mathrm{FV}\left(\varphi_{1}\right)=$ $\mathrm{FV}\left(\varphi_{1}^{\prime}\right)$ and $\mathrm{HA} \vdash \varphi_{1} \leftrightarrow \varphi_{1}^{\prime}$. Then it is straightforward to show that $\forall x \varphi_{1}^{\prime} \in \mathrm{U}_{k+1}$, FV $(\varphi)=\mathrm{FV}\left(\forall x \varphi_{1}^{\prime}\right)$ and $\mathrm{HA} \vdash \varphi \leftrightarrow \forall x \varphi_{1}^{\prime}$. Next, suppose $\varphi \in \mathrm{E}_{k+1}^{+}$. By Lemma 4.5.(6), we have $\varphi \in \mathrm{U}_{k}^{+}$. The assertion for k ensures that there exists $\varphi^{\prime} \in \mathrm{U}_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and $\mathrm{HA} \vdash \varphi \leftrightarrow \varphi^{\prime}$. Put $\psi: \equiv \exists y \varphi^{\prime}$ where $y \notin \mathrm{FV}\left(\varphi^{\prime}\right)$. By the definition, it is straightforward to show that $\psi \in \mathrm{E}_{k+1}, \mathrm{FV}(\varphi)=\mathrm{FV}(\psi)$ and $\mathrm{HA} \vdash \varphi \leftrightarrow \psi$.

The case of $\varphi: \equiv \exists x \varphi_{1}$ is similar to the case of $\varphi: \equiv \forall x \varphi_{1}$ (use Lemma 4.5.(7) and Lemma 4.5.(5)).

In what follows, based on Proposition 4.6, we often identify U_{k}-DNS with U_{k}^{+}-DNS (especially in the assertions of our theorems). The latter will play a crucial role in the arguments below.

Lemma 4.7. Let k be a natural number. For all φ_{1} and φ_{2} in Π_{k}, there exists $\varphi \in \Pi_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi_{1} \vee \varphi_{2}\right)$ and $\mathrm{HA}+\neg \neg \Sigma_{k-1}-\mathrm{DNE}(\mathrm{HA}$ if $k=0)$ proves $\neg \neg\left(\varphi_{1} \vee \varphi_{2}\right) \leftrightarrow \neg \neg \varphi$.

Proof. Without loss of generality, assume $k>0, \varphi_{1}: \equiv \forall x \rho_{1}(x)$ and $\varphi_{2}: \equiv$ $\forall y \rho_{2}(y)$ where $\rho_{1}(x), \rho_{2}(y) \in \Sigma_{k-1}$ (see Remark 2.2). By Lemma 4.4, it suffices to show

$$
\mathrm{HA}+\neg \neg \Sigma_{k-1}-\mathrm{DNE} \vdash \neg \neg\left(\forall x \rho_{1}(x) \vee \forall y \rho_{2}(y)\right) \leftrightarrow \neg \neg \forall x, y\left(\rho_{1}(x) \vee \rho_{2}(y)\right) .
$$

The implication from the left to the right is straightforward. The converse implication is shown as follows:

$$
\begin{array}{cl}
& \neg \neg \forall x, y\left(\rho_{1}(x) \vee \rho_{2}(y)\right) \\
\neg \neg \Sigma_{k-1} \text {-DNE } & \neg \neg \forall x, y\left(\neg \neg \rho_{1}(x) \vee \neg \neg \rho_{2}(y)\right) \\
\longleftrightarrow & \forall x, y \neg \neg\left(\neg \neg \rho_{1}(x) \vee \neg \neg \rho_{2}(y)\right) \\
\longleftrightarrow & \neg \exists x, y \neg\left(\neg \neg \rho_{1}(x) \vee \neg \neg \rho_{2}(y)\right) \\
\longleftrightarrow & \neg \exists x, y\left(\neg \rho_{1}(x) \wedge \neg \rho_{2}(y)\right)
\end{array}
$$

$$
\begin{array}{cl}
\longleftrightarrow & \neg\left(\neg \neg \exists x \neg \rho_{1}(x) \wedge \neg \neg \exists y \neg \rho_{2}(y)\right) \\
\longleftrightarrow & \neg\left(\neg \forall x \neg \neg \rho_{1}(x) \wedge \neg \forall y \neg \neg \rho_{2}(y)\right) \\
\longleftrightarrow & \neg \neg\left(\forall x \neg \neg \rho_{1}(x) \vee \forall y \neg \neg \rho_{2}(y)\right) \\
\longleftrightarrow \neg \Sigma_{k-1}-\mathrm{DNE} & \neg \neg\left(\forall x \rho_{1}(x) \vee \forall y \rho_{2}(y)\right) .
\end{array}
$$

Lemma 4.8. Let k be a natural number.

1. For all $\varphi \in \Pi_{k}$, there exists $\psi \in \Sigma_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}(\psi)$ and $\mathrm{HA}+\Sigma_{k}$-DNE proves $\neg \varphi \leftrightarrow \psi$.
2. For all $\varphi \in \Sigma_{k}$, there exists $\psi \in \Pi_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}(\psi)$ and $\mathrm{HA}+$ $\Sigma_{k-1}-\mathrm{DNE}(\mathrm{HA}$ if $k=0)$ proves $\neg \varphi \leftrightarrow \psi$.
Proof. By simultaneous induction on k. The base case is trivial. In what follows, we show the induction step for $k+1$.

Let $\varphi: \equiv \forall x \rho(x)$ where $\rho(x) \in \Sigma_{k}$. By induction hypothesis, there exists $\rho^{\prime}(x) \in$ Π_{k} such that $\mathrm{FV}(\rho(x))=\mathrm{FV}\left(\rho^{\prime}(x)\right)$ and

$$
\mathrm{HA}+\Sigma_{k-1}-\mathrm{DNE} \vdash \neg \rho(x) \leftrightarrow \rho^{\prime}(x) .
$$

Then HA $+\Sigma_{k+1}$-DNE proves

$$
\begin{array}{ll}
& \neg \forall x \rho(x) \\
\stackrel{\Sigma_{k}-\text { DNE }}{\longleftrightarrow} & \neg \forall x \neg \neg \rho(x) \\
\longleftrightarrow & \neg \neg \exists x \neg \rho(x) \\
\stackrel{\text { [I.H.] }]}{\overleftrightarrow{\Sigma_{k-1}} \text {-DNE }} & \neg \neg \exists x \rho^{\prime}(x) \\
\stackrel{\Sigma_{k+1} \text {-DNE }}{\longleftrightarrow} & \exists x \rho^{\prime}(x),
\end{array}
$$

which is in Σ_{k+1}.
Next, let $\varphi: \equiv \exists x \rho(x)$ where $\rho(x) \in \Pi_{k}$. By induction hypothesis, there exists $\rho^{\prime}(x) \in \Sigma_{k}$ such that $\mathrm{FV}(\rho(x))=\mathrm{FV}\left(\rho^{\prime}(x)\right)$ and

$$
\mathrm{HA}+\Sigma_{k}-\mathrm{DNE} \vdash \neg \rho(x) \leftrightarrow \rho^{\prime}(x) .
$$

Then HA $+\Sigma_{k}$-DNE proves

$$
\neg \exists x \rho(x) \leftrightarrow \forall x \neg \rho(x) \underset{[I . \mathrm{H} \cdot]}{\overleftrightarrow{\Sigma_{k}-\mathrm{DNE}}} \forall x \rho^{\prime}(x)
$$

which is in Π_{k+1}.
Lemma 4.9. Let k be a natural number. For all $\varphi \in \Pi_{k}$, there exists $\psi \in \Sigma_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}(\psi)$ and $\mathrm{HA}+\neg \neg \Sigma_{k}-\mathrm{DNE} \vdash \neg \varphi \leftrightarrow \neg \neg \psi$.

Proof. Let $\varphi \in \Pi_{k}$. By Lemma 4.8.(1), there exists $\psi \in \Sigma_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}(\psi)$ and $\mathrm{HA}+\Sigma_{k}-\mathrm{DNE} \vdash \neg \varphi \leftrightarrow \psi$. By Corollary 4.2, we have HA $+\neg \neg \Sigma_{k}$-DNE $\vdash \neg \varphi \leftrightarrow \neg \neg \psi$.

Lemma 4.10. $\mathrm{HA}+\mathrm{U}_{k}$-DNS $\vdash \neg \neg \Sigma_{k-1}$-LEM for each natural number $k>0$.
Proof. Fix an instance of $\neg \neg \Sigma_{k-1}$-LEM

$$
\varphi: \equiv \neg \neg \forall x\left(\varphi_{1}(x) \vee \neg \varphi_{1}(x)\right)
$$

where $\varphi_{1}(x) \in \Sigma_{k-1}$. Note $\left(\varphi_{1}(x) \vee \neg \varphi_{1}(x)\right) \in \mathrm{F}_{k-1} \subseteq \mathrm{U}_{k}^{+}$. Since HA proves $\forall x \neg \neg\left(\varphi_{1}(x) \vee \neg \varphi_{1}(x)\right)$, we have that HA $+\mathrm{U}_{k}$-DNS proves $\neg \neg \forall x\left(\varphi_{1}(x) \vee \neg \varphi_{1}(x)\right)$, namely, φ.

Corollary 4.11. $\mathrm{HA}+\mathrm{U}_{k}$ - $\mathrm{DNS} \vdash \neg \neg \Sigma_{k-1}-\mathrm{DNE}$ for each natural number $k>0$.
Proof. Immediate from Lemma 4.10 and the fact that Σ_{k-1}-LEM implies Σ_{k-1}-DNE.
§5. Prenex normal form theorems. In this section, we show the modified version of [1, Theorem 2.7]. Prior to that, we first show a variant of the prenex normal form theorem:

Lemma 5.1. For each natural number k and a formula φ, if $\varphi \in \mathrm{U}_{k}^{+}$, then there exists $\varphi^{\prime} \in \Pi_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and

$$
\mathrm{HA}+\mathrm{U}_{k} \text { - } \mathrm{DNS} \vdash \neg \neg \varphi \leftrightarrow \neg \neg \varphi^{\prime} .
$$

Proof. By simultaneous induction on k, we show the following two statements (which are in fact equivalent):

1. If $\varphi \in \mathrm{E}_{k}^{+}$, then there exists $\varphi^{\prime} \in \Pi_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and

$$
\mathrm{HA}+\mathrm{U}_{k}^{+}-\mathrm{DNS} \vdash \neg \varphi \leftrightarrow \neg \neg \varphi^{\prime} .
$$

2. If $\varphi \in \mathrm{U}_{k}^{+}$, then there exists $\varphi^{\prime} \in \Pi_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and

$$
\mathrm{HA}+\mathrm{U}_{k}^{+} \text {- } \mathrm{DNS} \vdash \neg \neg \varphi \leftrightarrow \neg \neg \varphi^{\prime}
$$

The base case is trivial (one can take φ^{\prime} as φ itself). In what follows, we show the induction step.

For the induction step, assume the items 1 and 2 for $k-1$. We show the items 1 and 2 for k simultaneously by induction on the structure of formulas. When φ is a prime formula, by Lemma 2.3, we have φ^{\prime} which satisfies the requirement. For the induction step, assume that the items 1 and 2 hold for φ_{1} and φ_{2}. When it is clear from the context, we suppress the argument on free variables.

The case o $\varphi_{1} \wedge \varphi_{2}$: First, assume $\varphi_{1} \wedge \varphi_{2} \in \mathrm{E}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1}, \varphi_{2} \in$ E_{k}^{+}. By induction hypothesis, there exist $\varphi_{1}^{\prime}, \varphi_{2}^{\prime} \in \Pi_{k}$ such that HA $+\mathrm{U}_{k}^{+}$-DNS proves $\neg \varphi_{1} \leftrightarrow \neg \neg \varphi_{1}^{\prime}$ and $\neg \varphi_{2} \leftrightarrow \neg \neg \varphi_{2}^{\prime}$. By Lemma 4.7, there exists $\varphi^{\prime} \in \Pi_{k}$ such that

$$
\mathrm{HA}+\neg \neg \Sigma_{k-1}-\mathrm{DNE} \vdash \neg \neg\left(\varphi_{1}^{\prime} \vee \varphi_{2}^{\prime}\right) \leftrightarrow \neg \neg \varphi^{\prime} .
$$

By Corollary 4.11, $\mathrm{HA}+\mathrm{U}_{k}^{+}$-DNS proves

$$
\begin{array}{ll}
& \neg\left(\varphi_{1} \wedge \varphi_{2}\right) \\
& \\
& \neg\left(\neg \neg \varphi_{1} \wedge \neg \neg \varphi_{2}\right) \\
\text { [I.H.] } \overleftrightarrow{\mathrm{U}_{k}^{+}} \text {-DNS }
\end{array} \quad \neg\left(\neg \varphi_{1}^{\prime} \wedge \neg \varphi_{2}^{\prime}\right) .
$$

Next, assume $\varphi_{1} \wedge \varphi_{2} \in \mathrm{U}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1}, \varphi_{2} \in \mathrm{U}_{k}^{+}$. By induction hypothesis, there exist $\varphi_{1}^{\prime}, \varphi_{2}^{\prime} \in \Pi_{k}$ such that $\mathrm{HA}+\mathrm{U}_{k}^{+}$- DNS proves $\neg \neg \varphi_{1} \leftrightarrow \neg \neg \varphi_{1}^{\prime}$
and $\neg \neg \varphi_{2} \leftrightarrow \neg \neg \varphi_{2}^{\prime}$. By Lemma 4.3, there exists $\varphi^{\prime} \in \Pi_{k}$ such that HA $\vdash \varphi^{\prime} \leftrightarrow$ $\varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime}$. Then HA $+\mathrm{U}_{k}^{+}$-DNS proves
$\neg \neg\left(\varphi_{1} \wedge \varphi_{2}\right) \leftrightarrow \neg \neg \varphi_{1} \wedge \neg \neg \varphi_{2} \underset{\text { [I.H.] } \mathrm{U}_{k}^{+} \text {-DNS }}{\longleftrightarrow} \neg \neg \varphi_{1}^{\prime} \wedge \neg \neg \varphi_{2}^{\prime} \leftrightarrow \neg \neg\left(\varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime}\right) \leftrightarrow \neg \neg \varphi^{\prime}$.
The case of $\varphi_{1} \vee \varphi_{2}$: First, assume $\varphi_{1} \vee \varphi_{2} \in \mathrm{E}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1}, \varphi_{2} \in$ E_{k}^{+}. By induction hypothesis, there exist $\varphi_{1}^{\prime}, \varphi_{2}^{\prime} \in \Pi_{k}$ such that $\mathrm{HA}+\mathrm{U}_{k}^{+}$-DNS proves $\neg \varphi_{1} \leftrightarrow \neg \neg \varphi_{1}^{\prime}$ and $\neg \varphi_{2} \leftrightarrow \neg \neg \varphi_{2}^{\prime}$. By Lemma 4.3, there exists $\varphi^{\prime} \in \Pi_{k}$ such that $\mathrm{HA} \vdash \varphi^{\prime} \leftrightarrow \varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime}$. Then HA $+\mathrm{U}_{k}^{+}$-DNS proves

$$
\begin{array}{ll}
& \neg\left(\varphi_{1} \vee \varphi_{2}\right) \\
\longleftrightarrow & \neg \varphi_{1} \wedge \neg \varphi_{2} \\
\text { H.] U U } \\
\longleftrightarrow & \neg \neg \varphi_{1}^{\prime} \wedge \neg \neg \varphi_{2}^{\prime} \\
\longleftrightarrow & \neg \neg\left(\varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime}\right) \\
\longleftrightarrow & \neg \neg \varphi^{\prime} .
\end{array}
$$

Next, assume $\varphi_{1} \vee \varphi_{2} \in \mathrm{U}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1}, \varphi_{2} \in \mathrm{U}_{k}^{+}$. By induction hypothesis, there exist $\varphi_{1}^{\prime}, \varphi_{2}^{\prime} \in \Pi_{k}$ such that $\mathrm{HA}+\mathrm{U}_{k}^{+}$-DNS proves $\neg \neg \varphi_{1} \leftrightarrow \neg \neg \varphi_{1}^{\prime}$ and $\neg \neg \varphi_{2} \leftrightarrow \neg \neg \varphi_{2}^{\prime}$. By Lemma 4.7, there exists $\varphi^{\prime} \in \Pi_{k}$ such that

$$
\mathrm{HA}+\neg \neg \Sigma_{k-1}-\mathrm{DNE} \vdash \neg \neg\left(\varphi_{1}^{\prime} \vee \varphi_{2}^{\prime}\right) \leftrightarrow \neg \neg \varphi^{\prime} .
$$

By Corollary 4.11, $\mathrm{HA}+\mathrm{U}_{k}^{+}$- DNS proves

$$
\begin{array}{cl}
& \neg \neg\left(\varphi_{1} \vee \varphi_{2}\right) \\
\longleftrightarrow & \neg \neg\left(\neg \neg \varphi_{1} \vee \neg \neg \varphi_{2}\right) \\
\longleftrightarrow & \neg \neg\left(\neg \neg \varphi_{1}^{\prime} \vee \neg \neg \varphi_{2}^{\prime}\right) \\
\text { [I.H.] U Uk- -DNS }
\end{array} \quad \begin{array}{ll}
\longleftrightarrow & \neg \neg\left(\varphi_{1}^{\prime} \vee \varphi_{2}^{\prime}\right) \\
\neg \neg \Sigma_{k-1} \text {-DNE } & \neg \neg \varphi^{\prime} .
\end{array}
$$

The case of $\varphi_{1} \rightarrow \varphi_{2}$: First, assume $\varphi_{1} \rightarrow \varphi_{2} \in \mathrm{E}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1} \in \mathrm{U}_{k}^{+}$and $\varphi_{2} \in \mathrm{E}_{k}^{+}$. By induction hypothesis, there exist $\varphi_{1}^{\prime}, \varphi_{2}^{\prime} \in \Pi_{k}$ such that $\mathrm{HA}+\mathrm{U}_{k}^{+}$-DNS proves $\neg \neg \varphi_{1} \leftrightarrow \neg \neg \varphi_{1}^{\prime}$ and $\neg \varphi_{2} \leftrightarrow \neg \neg \varphi_{2}^{\prime}$. By Lemma 4.3, there exists $\varphi^{\prime} \in \Pi_{k}$ such that $\mathrm{HA} \vdash \varphi^{\prime} \leftrightarrow \varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime}$. Then HA $+\mathrm{U}_{k}^{+}-\mathrm{DNS}$ proves

$$
\begin{array}{cl}
& \neg\left(\varphi_{1} \rightarrow \varphi_{2}\right) \\
\longleftrightarrow & \neg \neg \varphi_{1} \wedge \neg \varphi_{2} \\
\begin{array}{|c|c}
\longleftrightarrow & \neg \neg \varphi_{1}^{\prime} \wedge \neg \neg \varphi_{2}^{\prime} \\
\text { [I.H.] U } \\
\longleftrightarrow & \\
\longleftrightarrow & \neg \neg\left(\varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime}\right) \\
\longleftrightarrow & \neg \neg \varphi^{\prime} .
\end{array} .
\end{array}
$$

Next, assume $\varphi_{1} \rightarrow \varphi_{2} \in \mathrm{U}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1} \in \mathrm{E}_{k}^{+}$and $\varphi_{2} \in \mathrm{U}_{k}^{+}$. By induction hypothesis, there exist $\varphi_{1}^{\prime}, \varphi_{2}^{\prime} \in \Pi_{k}$ such that $\mathrm{HA}+\mathrm{U}_{k}^{+}$-DNS proves $\neg \varphi_{1} \leftrightarrow \neg \neg \varphi_{1}^{\prime}$ and $\neg \neg \varphi_{2} \leftrightarrow \neg \neg \varphi_{2}^{\prime}$. By Lemma 4.7, there exists $\varphi^{\prime} \in \Pi_{k}$ such that

$$
\mathrm{HA}+\neg \neg \Sigma_{k-1}-\mathrm{DNE} \vdash \neg \neg\left(\varphi_{1}^{\prime} \vee \varphi_{2}^{\prime}\right) \leftrightarrow \neg \neg \varphi^{\prime} .
$$

By Corollary 4.11, $\mathrm{HA}+\mathrm{U}_{k}^{+}-$DNS proves

$$
\begin{array}{cl}
& \neg \neg\left(\varphi_{1} \rightarrow \varphi_{2}\right) \\
\longleftrightarrow & \neg\left(\neg \neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\longleftrightarrow & \neg\left(\neg \varphi_{1}^{\prime} \wedge \neg \varphi_{2}^{\prime}\right) \\
\text { [I.H.] U } \\
\stackrel{\longleftrightarrow}{4} \text {-DNS } & \\
\stackrel{\rightharpoonup}{\longleftrightarrow} & \neg \neg\left(\varphi_{1}^{\prime} \vee \varphi_{2}^{\prime}\right) \\
\longleftrightarrow & \neg \neg \varphi^{\prime} .
\end{array}
$$

The case of $\forall x \varphi_{1}(x)$: First, assume $\forall x \varphi_{1}(x) \in \mathrm{E}_{k}^{+}$. By Lemma 4.5, we have $\forall x \varphi_{1}(x) \in \mathrm{U}_{k-1}^{+}$. By the item 2 for $k-1$, there exists $\varphi^{\prime} \in \Pi_{k-1}$ such that

$$
\mathrm{HA}+\mathrm{U}_{k-1}^{+}-\mathrm{DNS} \vdash \neg \neg \forall x \varphi_{1}(x) \leftrightarrow \neg \neg \varphi^{\prime} .
$$

By Lemma 4.9, there exists $\varphi^{\prime \prime} \in \Sigma_{k-1} \subseteq \Pi_{k}$ (see Remark 2.5) such that

$$
\mathrm{HA}+\neg \neg \Sigma_{k-1}-\mathrm{DNE} \vdash \neg \varphi^{\prime} \leftrightarrow \neg \neg \varphi^{\prime \prime} .
$$

By Corollary 4.11, $\mathrm{HA}+\mathrm{U}_{k}^{+}$- DNS proves

$$
\neg \forall x \varphi_{1}(x) \underset{\left[\text { I.H.] } \mathrm{U}_{k-1}^{+}-\mathrm{DNS}\right.}{\longleftrightarrow} \neg \varphi^{\prime} \underset{\neg \neg \Sigma_{k-1}-\mathrm{DNE}}{\longleftrightarrow} \neg \neg \varphi^{\prime \prime}
$$

Next, assume $\forall x \varphi_{1}(x) \in \mathrm{U}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1}(x) \in \mathrm{U}_{k}^{+}$. By induction hypothesis, there exists $\varphi_{1}^{\prime}(x) \in \Pi_{k}$ such that

$$
\mathrm{HA}+\mathrm{U}_{k}^{+}-\mathrm{DNS} \vdash \neg \neg \varphi_{1}(x) \leftrightarrow \neg \neg \varphi_{1}^{\prime}(x)
$$

Then HA $+\mathrm{U}_{k}^{+}$-DNS proves

$$
\neg \neg \forall x \varphi_{1}(x) \underset{\mathrm{U}_{k}^{+}-\mathrm{DNS}}{\longleftrightarrow} \forall x \neg \neg \varphi_{1}(x) \underset{[I . \mathrm{H} .]}{\longleftrightarrow} \underset{\mathrm{U}_{k}^{+}-\mathrm{DNS}}{ } \forall x \neg \neg \varphi_{1}^{\prime}(x) \underset{\mathrm{U}_{k}-\mathrm{DNS}}{\overleftrightarrow{ }} \neg \neg \forall x \varphi_{1}^{\prime}(x)
$$

The case of $\exists x \varphi_{1}(x)$: First, assume $\exists x \varphi_{1}(x) \in \mathrm{E}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1}(x) \in \mathrm{E}_{k}^{+}$. By induction hypothesis, there exists $\varphi_{1}^{\prime}(x) \in \Pi_{k}$ such that

$$
\mathrm{HA}+\mathrm{U}_{k}^{+}-\mathrm{DNS} \vdash \neg \varphi_{1}(x) \leftrightarrow \neg \neg \varphi_{1}^{\prime}(x) .
$$

Then HA $+\mathrm{U}_{k}^{+}$-DNS proves

$$
\neg \exists x \varphi_{1}(x) \leftrightarrow \forall x \neg \varphi_{1}(x) \underset{\text { [....] } \mathrm{U}_{k}^{+} \text {-DNS }}{\longrightarrow} \forall x \neg \neg \varphi_{1}^{\prime}(x) \underset{\mathrm{U}_{k}^{+} \text {-DNS }}{\longleftrightarrow} \neg \neg \forall x \varphi_{1}^{\prime}(x)
$$

Next, assume that $\exists x \varphi_{1}(x) \in \mathrm{U}_{k}^{+}$. By Lemma 4.5, we have $\exists x \varphi_{1}(x) \in \mathrm{E}_{k-1}^{+}$. By the item 1 for $k-1$, there exists $\varphi^{\prime} \in \Pi_{k-1}$ such that

$$
\mathrm{HA}+\mathrm{U}_{k-1}^{+}-\mathrm{DNS} \vdash \neg \exists x \varphi_{1}(x) \leftrightarrow \neg \neg \varphi^{\prime} .
$$

By Lemma 4.9, there exists $\varphi^{\prime \prime} \in \Sigma_{k-1} \subseteq \Pi_{k}$ (see Remark 2.5) such that

$$
\mathrm{HA}+\neg \neg \Sigma_{k-1}-\mathrm{DNE} \vdash \neg \varphi^{\prime} \leftrightarrow \neg \neg \varphi^{\prime \prime} .
$$

By Corollary 4.11, $\mathrm{HA}+\mathrm{U}_{k}^{+}$- DNS proves

$$
\neg \neg \exists x \varphi_{1}(x) \underset{[\text { I.H.]] }}{\overleftrightarrow{U_{k-1}^{+}} \text {-DNS }} \quad \neg \varphi^{\prime} \underset{\neg \neg \Sigma_{k-1} \text {-DNE }}{\longleftrightarrow} \neg \neg \varphi^{\prime \prime}
$$

The following lemma is used a lot of times implicitly in the proof of our prenex normal form theorem (Theorem 5.3).

Lemma 5.2 (cf. Fact 2.2 in [1]). Let k be a natural number.

1. $\mathrm{HA}+\Sigma_{k+1}-\mathrm{DNE} \vdash\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE.
2. $\mathrm{HA}+\left(\Pi_{k+1} \vee \Pi_{k+1}\right)$-DNE $\vdash \Sigma_{k}$-DNE.
3. $\mathrm{HA}+\neg \neg\left(\Pi_{k+1} \vee \Pi_{k+1}\right)$-DNE $\vdash \neg \neg \Sigma_{k}$-DNE.
4. $\mathrm{HA}+\Sigma_{k}$-DNE $\vdash \Pi_{k+1}$-DNE.

Proof. (1): For formulas φ_{1} and φ_{2} in $\Pi_{k}, \varphi_{1} \vee \varphi_{2}$ is equivalent (over HA) to

$$
\exists k\left(\left(k=0 \rightarrow \varphi_{1}\right) \wedge\left(k \neq 0 \rightarrow \varphi_{2}\right)\right),
$$

which is equivalent to some $\varphi \in \Sigma_{k+1}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi_{1} \vee \varphi_{2}\right)$ over HA by Lemma 4.3.(2). Therefore any instance of $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE is derived from some instance of Σ_{k+1}-DNE.
(2): Any instance of Σ_{k}-DNE is derived from some instance of $\left(\Pi_{k+1} \vee \Pi_{k+1}\right)$-DNE since $\varphi \in \Sigma_{k}$ is equivalent to $\forall y \varphi \in \Pi_{k+1}$ with a variable y not occurring freely in φ (cf. Lemma 2.3).
(3): Immediate from (2) and Corollary 4.2.
(4): Note that $\neg \neg \forall x \varphi(x)$ implies $\neg \neg \forall x \neg \neg \varphi(x)$, which is intuitionistically equivalent to $\forall x \neg \neg \varphi(x)$. Then any instance of $\Pi_{k+1}-$ DNE is derived from some instance of Σ_{k}-DNE.

We are now ready to show the modified version of [1, Theorem 2.7].
Theorem 5.3. For each natural number k and a formula φ, the following hold:

1. If $\varphi \in \mathrm{E}_{k}^{+}$, then there exists $\varphi^{\prime} \in \Sigma_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and

$$
\mathrm{HA}+\Sigma_{k}-\mathrm{DNE}+\mathrm{U}_{k}-\mathrm{DNS} \vdash \varphi \leftrightarrow \varphi^{\prime} ;
$$

2. If $\varphi \in \mathrm{U}_{k}^{+}$, then there exists $\varphi^{\prime} \in \Pi_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and

$$
\mathrm{HA}+\left(\Pi_{k} \vee \Pi_{k}\right) \text {-DNE } \vdash \varphi \leftrightarrow \varphi^{\prime} .
$$

Proof. For the proof, we prepare the following auxiliary assertion (which is in fact a consequence of the item 2):
3. If $\varphi \in \mathrm{E}_{k}^{+}$, then there exists $\varphi^{\prime} \in \Pi_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and

$$
\mathrm{HA}+\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right) \text {-DNE } \vdash \neg \varphi \leftrightarrow \neg \neg \varphi^{\prime} .
$$

We show the items $1-3$ by induction on k simultaneously. The base case is trivial (one can take φ^{\prime} as φ itself). In what follows, we show the induction step.

Assume the items $1-3$ for $k-1$. Since HA $+\Pi_{k-1}$-DNE $\vdash \Pi_{k-1}$-DNS, by the item 2 for $k-1$, we have

$$
\begin{equation*}
\mathrm{HA}+\left(\Pi_{k-1} \vee \Pi_{k-1}\right) \text {-DNE } \vdash \mathrm{U}_{k-1}^{+} \text {-DNS. } \tag{3}
\end{equation*}
$$

We show the items $1-3$ simultaneously by induction on the structure of formulas. When φ is a prime formula, by Lemma 2.3, we have φ^{\prime} which satisfies the requirement. For the induction step, assume that the items $1-3$ hold for φ_{1} and φ_{2}. When it is clear from the context, we suppress the argument on free variables.

The case of $\varphi_{1} \wedge \varphi_{2}$: For the second item, assume $\varphi_{1} \wedge \varphi_{2} \in \mathrm{U}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1}, \varphi_{2} \in \mathrm{U}_{k}^{+}$. By induction hypothesis, there exist $\varphi_{1}^{\prime}, \varphi_{2}^{\prime} \in \Pi_{k}$ such that $\mathrm{HA}+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE proves $\varphi_{1} \leftrightarrow \varphi_{1}^{\prime}$ and $\varphi_{2} \leftrightarrow \varphi_{2}^{\prime}$. By Lemma 4.3, there exists $\varphi^{\prime} \in \Pi_{k}$ such that $\mathrm{HA} \vdash \varphi^{\prime} \leftrightarrow \varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime}$. Then $\mathrm{HA}+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE proves

$$
\varphi_{1} \wedge \varphi_{2} \underset{\text { [I.H. }]}{ }\left(\Pi_{k} \vee \Pi_{k}\right) \text {-DNE } \varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime} \leftrightarrow \varphi^{\prime}
$$

For the first and third items, assume $\varphi_{1} \wedge \varphi_{2} \in \mathrm{E}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1}, \varphi_{2} \in \mathrm{E}_{k}^{+}$. Then we have $\varphi^{\prime} \in \Sigma_{k}$ such that $\mathrm{HA}+\Sigma_{k}$ - $\mathrm{DNE}+\mathrm{U}_{k}^{+}$- $\mathrm{DNS} \vdash \varphi_{1} \wedge$ $\varphi_{2} \leftrightarrow \varphi^{\prime}$ as in the second item. On the other hand, by induction hypothesis, there exist $\varphi_{1}^{\prime \prime}, \varphi_{2}^{\prime \prime} \in \Pi_{k}$ such that HA $+\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE proves $\neg \varphi_{1} \leftrightarrow \neg \neg \varphi_{1}^{\prime \prime}$ and $\neg \varphi_{2} \leftrightarrow \neg \neg \varphi_{2}^{\prime \prime}$. In addition, by Lemma 4.7, there exists $\varphi^{\prime \prime} \in \Pi_{k}$ such that HA + $\neg \neg \Sigma_{k-1}-$ DNE $\vdash \neg \neg \varphi^{\prime \prime} \leftrightarrow \neg \neg\left(\varphi_{1}^{\prime \prime} \vee \varphi_{2}^{\prime \prime}\right)$. Then, by Lemma 5.2, we have that HA + $\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE proves

The case of $\varphi_{1} \vee \varphi_{2}$: For the second item, assume $\varphi_{1} \vee \varphi_{2} \in \mathrm{U}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1}, \varphi_{2} \in \mathrm{U}_{k}^{+}$. Then, by induction hypothesis, there exist $\rho_{1}\left(x_{1}\right), \rho_{2}\left(x_{2}\right) \in$ Σ_{k-1} such that HA $+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE proves $\varphi_{1} \leftrightarrow \forall x_{1} \rho_{1}\left(x_{1}\right)$ and $\varphi_{2} \leftrightarrow \forall x_{2} \rho_{2}\left(x_{2}\right)$. By Lemma 5.2, HA $+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE proves

$$
\begin{array}{cl}
& \forall x_{1} \rho_{1}\left(x_{1}\right) \vee \forall x_{2} \rho_{2}\left(x_{2}\right) \\
\longrightarrow & \forall x_{1}, x_{2}\left(\rho_{1}\left(x_{1}\right) \vee \rho_{2}\left(x_{2}\right)\right) \\
\longrightarrow & \neg\left(\exists x_{1} \neg \rho_{1}\left(x_{1}\right) \wedge \exists x_{2} \neg \rho_{2}\left(x_{2}\right)\right) \\
\longleftrightarrow & \neg\left(\neg \neg \exists x_{1} \neg \rho_{1}\left(x_{1}\right) \wedge \neg \neg \exists x_{2} \neg \rho_{2}\left(x_{2}\right)\right) \\
\Sigma_{k-1} \text {-DNE } & \neg\left(\neg \forall x_{1} \rho_{1}\left(x_{1}\right) \wedge \neg \forall x_{2} \rho_{2}\left(x_{2}\right)\right) \\
\stackrel{\longleftrightarrow}{\longleftrightarrow} & \neg \neg\left(\forall x_{1} \rho_{1}\left(x_{1}\right) \vee \forall x_{2} \rho_{2}\left(x_{2}\right)\right) \\
\left(\Pi_{k} \vee \Pi_{k}\right) \text {-DNE } & \forall x_{1} \rho_{1}\left(x_{1}\right) \vee \forall x_{2} \rho_{2}\left(x_{2}\right) .
\end{array}
$$

By Lemma 4.4, there exists $\xi\left(x_{1}, x_{2}\right) \in \Sigma_{k-1}$ such that $\mathrm{HA} \vdash \xi\left(x_{1}, x_{2}\right) \leftrightarrow \rho_{1}\left(x_{1}\right) \vee$ $\rho_{2}\left(x_{2}\right)$. Then we have that HA $+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE proves

For the first and third items, assume $\varphi_{1} \vee \varphi_{2} \in \mathrm{E}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1}, \varphi_{2} \in \mathrm{E}_{k}^{+}$. By induction hypothesis, there exist $\rho_{1}\left(x_{1}\right), \rho_{2}\left(x_{2}\right) \in \Pi_{k-1}$ such that
$\mathrm{HA}+\Sigma_{k}$ - $\mathrm{DNE}+\mathrm{U}_{k}^{+}$-DNS proves $\varphi_{1} \leftrightarrow \exists x_{1} \rho_{1}\left(x_{1}\right)$ and $\varphi_{2} \leftrightarrow \exists x_{2} \rho_{2}\left(x_{2}\right)$. By the item 2 for $k-1$, there exists $\xi\left(x_{1}, x_{2}\right) \in \Pi_{k-1}$ such that

$$
\mathrm{HA}+\left(\Pi_{k-1} \vee \Pi_{k-1}\right) \text {-DNE } \vdash \xi\left(x_{1}, x_{2}\right) \leftrightarrow \rho_{1}\left(x_{1}\right) \vee \rho_{2}\left(x_{2}\right) .
$$

By Lemma 5.2, we have that $\mathrm{HA}+\Sigma_{k}$ - $\mathrm{DNE}+\mathrm{U}_{k}^{+}$-DNS proves

\[

\]

Thus we are done for the first item. For the third item, by induction hypothesis, there exist $\varphi_{1}^{\prime \prime}, \varphi_{2}^{\prime \prime} \in \Pi_{k}$ such that HA $+\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE proves $\neg \varphi_{1} \leftrightarrow \neg \neg \varphi_{1}^{\prime \prime}$ and $\neg \varphi_{2} \leftrightarrow \neg \neg \varphi_{2}^{\prime \prime}$. In addition, by Lemma 4.3, there exists $\varphi^{\prime \prime} \in \Pi_{k}$ such that HA $\vdash \varphi^{\prime \prime} \leftrightarrow \varphi_{1}^{\prime \prime} \wedge \varphi_{2}^{\prime \prime}$. Then HA $+\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE proves

$$
\begin{aligned}
\neg\left(\varphi_{1} \vee \varphi_{2}\right) \leftrightarrow \neg \varphi_{1} \wedge \neg \varphi_{2} & \underset{\text { II.H.] }}{\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right) \text {-DNE }}{\neg \neg \varphi_{1}^{\prime \prime} \wedge \neg \neg \varphi_{2}^{\prime \prime}}_{\leftrightarrow}^{\leftrightarrow} \neg \neg\left(\varphi_{1}^{\prime \prime} \wedge \varphi_{2}^{\prime \prime}\right) \leftrightarrow \neg \neg \varphi^{\prime \prime} .
\end{aligned}
$$

The case of $\varphi_{1} \rightarrow \varphi_{2}$: For the second item, assume $\varphi_{1} \rightarrow \varphi_{2} \in \mathrm{U}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1} \in \mathrm{E}_{k}^{+}$and $\varphi_{2} \in \mathrm{U}_{k}^{+}$. By induction hypothesis, there exist $\rho_{1}\left(x_{1}\right), \rho_{2}\left(x_{2}\right) \in$ Σ_{k-1} such that $\mathrm{HA}+\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE $\vdash \neg \varphi_{1} \leftrightarrow \neg \neg \forall x_{1} \rho_{1}\left(x_{1}\right)$ and $\mathrm{HA}+$ $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE $\vdash \varphi_{2} \leftrightarrow \forall x_{2} \rho_{2}\left(x_{2}\right)$. By Lemma 4.5, we have that $\neg \rho_{1}\left(x_{1}\right) \rightarrow \rho_{2}\left(x_{2}\right)$ is in E_{k-1}^{+}. Then, by the item 1 for $k-1$, there exists $\xi\left(x_{1}, x_{2}\right) \in \Sigma_{k-1}$ such that

$$
\mathrm{HA}+\Sigma_{k-1}-\mathrm{DNE}+\mathrm{U}_{k-1}^{+}-\mathrm{DNS} \vdash \xi\left(x_{1}, x_{2}\right) \leftrightarrow\left(\neg \rho_{1}\left(x_{1}\right) \rightarrow \rho_{2}\left(x_{2}\right)\right) .
$$

Then, using Lemma 5.2 and (3), we have that $\mathrm{HA}+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE proves

For the first and third items, assume $\varphi_{1} \rightarrow \varphi_{2} \in \mathrm{E}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1} \in$ U_{k}^{+}and $\varphi_{2} \in \mathrm{E}_{k}^{+}$. By induction hypothesis, there exists $\rho_{2}\left(x_{2}\right) \in \Pi_{k-1}$ such that $\mathrm{HA}+$ Σ_{k}-DNE $+\mathrm{U}_{k}^{+}$-DNS $\vdash \varphi_{2} \leftrightarrow \exists x_{2} \rho_{2}\left(x_{2}\right)$. In addition, by Lemma 5.1, there exists $\rho_{1}\left(x_{1}\right) \in \Sigma_{k-1}$ such that $\mathrm{HA}+\mathrm{U}_{k}^{+}-\mathrm{DNS} \vdash \neg \neg \varphi_{1} \leftrightarrow \neg \neg \forall x_{1} \rho_{1}\left(x_{1}\right)$. By Lemma 4.5, we have $\neg \rho_{2}\left(x_{2}\right) \rightarrow \neg \rho_{1}\left(x_{1}\right)$ is in U_{k-1}^{+}. Then, by the item 2 for $k-1$, there exists

$$
\begin{aligned}
& \xi\left(x_{1}, x_{2}\right) \in \Pi_{k-1} \text { such that } \\
& \quad \mathrm{HA}+\left(\Pi_{k-1} \vee \Pi_{k-1}\right) \text {-DNE } \vdash \xi\left(x_{1}, x_{2}\right) \leftrightarrow\left(\neg \rho_{2}\left(x_{2}\right) \rightarrow \neg \rho_{1}\left(x_{1}\right)\right) .
\end{aligned}
$$

Then, using Lemma 5.2, we have that HA $+\Sigma_{k}$ - DNE $+\mathrm{U}_{k}^{+}$-DNS proves

$$
\begin{aligned}
& \varphi_{1} \rightarrow \varphi_{2} \\
& \text { [I.H.] } \Sigma_{k} \text {-DNE, } \mathrm{U}_{k}^{+} \text {-DNS } \\
& \varphi_{1} \rightarrow \exists x_{2} \rho_{2}\left(x_{2}\right) \\
& \underset{\Sigma_{k}-\mathrm{DNE}}{\longleftrightarrow} \\
& \varphi_{1} \rightarrow \neg \neg \exists x_{2} \rho_{2}\left(x_{2}\right) \\
& \longrightarrow \quad \neg \neg \varphi_{1} \rightarrow \neg \neg \exists x_{2} \rho_{2}\left(x_{2}\right) \\
& \underset{\mathrm{U}_{k}-\text { DNS }}{\longleftrightarrow} \quad \neg \neg \forall x_{1} \rho_{1}\left(x_{1}\right) \rightarrow \neg \neg \exists x_{2} \rho_{2}\left(x_{2}\right) \\
& \stackrel{\mathrm{U}_{k}^{+} \text {- } \mathrm{DNS}}{\longleftrightarrow} \\
& \neg \neg \exists x_{2}\left(\forall x_{1} \rho_{1}\left(x_{1}\right) \rightarrow \rho_{2}\left(x_{2}\right)\right) \\
& \stackrel{\Pi_{k-1} \text {-DNE }}{\longleftrightarrow} \\
& \neg \neg \exists x_{2}\left(\neg \rho_{2}\left(x_{2}\right) \rightarrow \neg \forall x_{1} \rho_{1}\left(x_{1}\right)\right) \\
& \stackrel{\Sigma_{k-1} \text {-DNE }}{\longleftrightarrow} \\
& \neg \neg \exists x_{2}\left(\neg \rho_{2}\left(x_{2}\right) \rightarrow \neg \neg \exists x_{1} \neg \rho_{1}\left(x_{1}\right)\right) \\
& \neg \neg \exists x_{2} \neg \neg \exists x_{1}\left(\neg \rho_{2}\left(x_{2}\right) \rightarrow \neg \rho_{1}\left(x_{1}\right)\right)
\end{aligned}
$$

Thus we are done for the first item. For the third item, by induction hypothesis, there exist $\varphi_{1}^{\prime}, \varphi_{2}^{\prime} \in \Pi_{k}$ such that $\mathrm{HA}+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE $\vdash \varphi_{1} \leftrightarrow \varphi_{1}^{\prime}$ and HA + $\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE $\vdash \neg \varphi_{2} \leftrightarrow \neg \neg \varphi_{2}^{\prime}$. On the other hand, by Lemma 4.3, there exists $\xi^{\prime} \in \Pi_{k}$ such that HA $\vdash \varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime} \leftrightarrow \xi^{\prime}$. Then HA $+\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE proves

$$
\begin{aligned}
\neg\left(\varphi_{1} \rightarrow \varphi_{2}\right) \leftrightarrow\left(\neg \neg \varphi_{1} \wedge \neg \varphi_{2}\right) & \underset{\text { [I.H.] }}{\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right) \text {-DNE }}{\neg \neg \varphi_{1}^{\prime} \wedge \neg \neg \varphi_{2}^{\prime}}_{\longleftrightarrow}^{\leftrightarrow} \neg \neg\left(\varphi_{1}^{\prime} \wedge \varphi_{2}^{\prime}\right) \leftrightarrow \neg \neg \xi^{\prime} .
\end{aligned}
$$

The case of $\forall x \varphi_{1}(x)$: For the second item, assume $\forall x \varphi_{1}(x) \in \mathrm{U}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1}(x) \in \mathrm{U}_{k}^{+}$. By induction hypothesis, there exists $\varphi_{1}^{\prime}(x) \in \Pi_{k}$ such that $\mathrm{HA}+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE $\vdash \varphi_{1}(x) \leftrightarrow \varphi_{1}^{\prime}(x)$. Then $\forall x \varphi_{1}(x)$ is equivalent to $\forall x \varphi_{1}^{\prime}(x) \in$ Π_{k} over HA $+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE.

For the first and third items, assume $\forall x \varphi_{1}(x) \in \mathrm{E}_{k}^{+}$. By Lemma 4.5, we have $\forall x \varphi_{1}(x) \in \mathrm{U}_{k-1}^{+}$. Then, by the item 2 for $k-1$, there exists $\xi \in \Pi_{k-1} \subseteq \Sigma_{k}$ (see Remark 2.5) such that

$$
\begin{equation*}
\mathrm{HA}+\left(\Pi_{k-1} \vee \Pi_{k-1}\right) \text {-DNE } \vdash \forall x \varphi_{1}(x) \leftrightarrow \xi . \tag{4}
\end{equation*}
$$

By Lemma 5.2, we are done for the first item. For the third item, by Lemma 4.8, there exists $\xi^{\prime} \in \Sigma_{k-1} \subseteq \Pi_{k}$ (see Remark 2.5) such that HA $+\Sigma_{k-1}$-DNE $\vdash \neg \xi \leftrightarrow \xi^{\prime}$. By Corollary 4.2, we have HA $+\neg \neg \Sigma_{k-1}-$ DNE $\vdash \neg \xi \leftrightarrow \neg \neg \xi^{\prime}$. In addition,

$$
\mathrm{HA}+\neg \neg\left(\Pi_{k-1} \vee \Pi_{k-1}\right) \text {-DNE } \vdash \neg \neg \forall x \varphi_{1}(x) \leftrightarrow \neg \neg \xi
$$

follows from (4). Then, by Lemma 5.2, we have that HA $+\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE proves

Thus we have shown the third item.

The case of $\exists x \varphi_{1}(x)$: For the second item, assume $\exists x \varphi_{1}(x) \in \mathrm{U}_{k}^{+}$. By Lemma 4.5, we have $\exists x \varphi_{1}(x) \in \mathrm{E}_{k-1}^{+}$. Then, by the item 1 for $k-1$, there exists $\xi \in \Sigma_{k-1} \subseteq$ Π_{k} (see Remark 2.5) such that HA $+\Sigma_{k-1}$-DNE $+\mathrm{U}_{k-1}^{+}$-DNS $\vdash \exists x \varphi_{1}(x) \leftrightarrow \xi$. By Lemma 5.2 and (3), we have $\mathrm{HA}+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE $\vdash \exists x \varphi_{1}(x) \leftrightarrow \xi$.

For the first and third items, assume $\exists x \varphi_{1}(x) \in \mathrm{E}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1}(x) \in \mathrm{E}_{k}^{+}$. By induction hypothesis, there exist $\varphi_{1}^{\prime}(x) \in \Sigma_{k}$ and $\varphi_{1}^{\prime \prime}(x) \in \Pi_{k}$ such that $\mathrm{HA}+\Sigma_{k}$-DNE $+\mathrm{U}_{k}^{+}$-DNS $\vdash \varphi_{1}(x) \leftrightarrow \varphi_{1}^{\prime}(x)$ and $\mathrm{HA}+\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE \vdash $\neg \varphi_{1}(x) \leftrightarrow \neg \neg \varphi_{1}^{\prime \prime}(x)$. Then $\exists x \varphi_{1}(x)$ is equivalent to $\exists x \varphi_{1}^{\prime}(x) \in \Sigma_{k}$ over HA + Σ_{k}-DNE $+\mathrm{U}_{k}^{+}$-DNS. Thus we are done for the first item. For the third item, since $\mathrm{HA}+\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE proves

$$
\neg \exists x \varphi_{1}(x) \leftrightarrow \forall x \neg \varphi_{1}(x) \underset{[I . \mathrm{H.}]}{\square \neg\left(\Pi_{k} \vee \Pi_{k}\right) \text {-DNE }} \underset{\longrightarrow}{\longleftrightarrow} \forall \neg \varphi_{1}^{\prime \prime}(x),
$$

we have that $\mathrm{HA}+\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE proves

$$
\neg \exists x \varphi_{1}(x) \leftrightarrow \neg \neg \forall x \neg \neg \varphi_{1}^{\prime \prime}(x) .
$$

On the other hand, the latter is equivalent to $\neg \neg \forall x \varphi_{1}^{\prime \prime}(x)$ in the presence of $\neg \neg \Pi_{k}$-DNE. Thus we have $\mathrm{HA}+\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE $\vdash \neg \exists x \varphi_{1}(x) \leftrightarrow$ $\neg \neg \forall x \varphi_{1}^{\prime \prime}(x)$.

Corollary 5.4. HA $+\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE $\vdash \mathrm{U}_{k}$-DNS.
Proof. Since U_{k}-DNS is intuitionistically equivalent to $\neg \neg \mathrm{U}_{k}$-DNS (see Remark 2.8), it suffices to show HA $+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE $\vdash \mathrm{U}_{k}$-DNS. By Theorem 5.3.(2), any formula $\varphi \in \mathrm{U}_{k}$ is equivalent to some $\varphi^{\prime} \in \Pi_{k}$ such that $\mathrm{FV}(\varphi)=$ FV $\left(\varphi^{\prime}\right)$ over HA $+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE. Since HA $+\Pi_{k}$-DNE $\vdash \Pi_{k}$-DNS, we have $\mathrm{HA}+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE $\vdash \mathrm{U}_{k}$-DNS.

Remark 5.5. Corollary 5.4 shows that Lemma 5.1 (equivalent to the item 1 in the proof of Lemma 5.1) is a stronger statement of the item 3 in the proof of Theorem 5.3. On the other hand, it is still open whether HA $+\mathrm{U}_{k}$-DNS is a proper sub-theory of HA $+\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE. In fact, in the proof of Theorem 5.3, Lemma 5.1 is only used for obtaining $\psi_{1} \in \Pi_{k}$ such that $\neg \neg \psi_{1} \leftrightarrow \neg \neg \varphi_{1}$ (where $\varphi_{1} \in \mathrm{U}_{k}^{+}$) in the verification theory of the first item. Since this argument is available in $\mathrm{HA}+\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE with assuming the second item for φ_{1}, one can show the alternative assertions of Theorem 5.3 where U_{k}-DNS is replaced by $\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE without using Lemma 5.1. Thus, if HA $+\mathrm{U}_{k}$-DNS proves $\neg \neg\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE, we can simplify the proof of Theorem 5.3.
Remark 5.6. It follows from Theorem 5.3 and the results in $\S 3$ that HA $+\Sigma_{1}$-DNE does not prove U_{1}-DNS.

At the end of this section, we study the prenex normal form theorem for formulas which do not contain the disjunction \vee. In fact, the proof of Theorem 5.3 suggests that the unusual form $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE of the double negation elimination is caused by the argument especially in the case of $\varphi_{1} \vee \varphi_{2}$. On the other hand, if a formula φ does not contain \vee, one can intuitionistically derive the original formula φ from a formula in prenex normal form which is classically equivalent to φ (cf. [10, Lemma 6.2.1]). Then the proof of the prenex normal form theorem for those formulas becomes to be fairly simple.

Theorem 5.7. For each natural number k and a formula φ which does not contain \vee, the following hold:

1. If $\varphi \in \mathrm{E}_{k}^{+}$, then there exists $\varphi^{\prime} \in \Sigma_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and

$$
\mathrm{HA}+\Sigma_{k}-\mathrm{DNE} \vdash \varphi \leftrightarrow \varphi^{\prime} .
$$

2. If $\varphi \in \mathrm{U}_{k}^{+}$, then there exists $\varphi^{\prime} \in \Pi_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and

$$
\mathrm{HA}+\Sigma_{k-1}-\mathrm{DNE}(\mathrm{HA} \text { if } k=0) \vdash \varphi \leftrightarrow \varphi^{\prime} .
$$

Proof. We mimic the proof of Theorem 5.3. Thus we first prepare the following auxiliary assertion (which is in fact a consequence of the item 2):
3. If $\varphi \in \mathrm{E}_{k}^{+}$, then there exists $\varphi^{\prime} \in \Pi_{k}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and

$$
\mathrm{HA}+\neg \neg \Sigma_{k-1}-\mathrm{DNE} \vdash \neg \varphi \leftrightarrow \neg \neg \varphi^{\prime} .
$$

Then we show the items $1-3$ by induction on k simultaneously. The base case is trivial. Most of the parts for the induction step is the same as those for Theorem 5.3. The same proof works since each of the logical principles in the items 1 and 2 implies both of them for $k-1$ and the logical principle in the item 3 is the double negation of the logical principle in the item 2 as in Theorem 5.3.

Only the difference with the proof of Theorem 5.3 is in proving the item 1 for $\varphi: \equiv \varphi_{1} \rightarrow \varphi_{2} \in \mathrm{E}_{k}^{+}$, where we use Lemma 5.1. Here one can use the item 2 instead of Lemma 5.1. This is because Σ_{k}-DNE includes Σ_{k-1}-DNE while the verification theory of the item 1 in Theorem 5.3 contains the verification theory of Lemma 5.1. To be absolutely clear, we present the proof of this part: Let $\varphi_{1} \rightarrow \varphi_{2} \in \mathrm{E}_{k}^{+}$. By Lemma 4.5, we have $\varphi_{1} \in \mathrm{U}_{k}^{+}$and $\varphi_{2} \in \mathrm{E}_{k}^{+}$. By induction hypothesis, there exists $\rho_{1}\left(x_{1}\right) \in \Sigma_{k-1}$ and $\rho_{2}\left(x_{2}\right) \in \Pi_{k-1}$ such that HA $+\Sigma_{k-1}$-DNE $\vdash \varphi_{1} \leftrightarrow \forall x_{1} \rho_{1}\left(x_{1}\right)$ and $\mathrm{HA}+\Sigma_{k}$-DNE $\vdash \varphi_{2} \leftrightarrow \exists x_{2} \rho_{2}\left(x_{2}\right)$. By Lemma 4.5, we have $\neg \rho_{2}\left(x_{2}\right) \rightarrow \neg \rho_{1}\left(x_{1}\right)$ is in U_{k-1}^{+}. Then, by the item 2 for $k-1$, there exists $\xi\left(x_{1}, x_{2}\right) \in \Pi_{k-1}$ such that

$$
\mathrm{HA}+\Sigma_{k-2}-\mathrm{DNE} \vdash \xi\left(x_{1}, x_{2}\right) \leftrightarrow\left(\neg \rho_{2}\left(x_{2}\right) \rightarrow \neg \rho_{1}\left(x_{1}\right)\right) .
$$

Then HA $+\Sigma_{k}$-DNE proves

Remark 5.8. It follows from Theorem 5.3 and Corollary 5.4 that E_{k}-LEM, U_{k}-LEM and U_{k}-DNE are equivalent to Σ_{k}-LEM, Π_{k}-LEM and $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE
respectively over HA (cf. [1, Corollary 2.9]). This may not be the case for E_{k}-DNE and Σ_{k}-DNE. On the other hand, Theorem 5.7 implies that HA $+\Sigma_{k}$-DNE proves the double negation elimination for all formulas in E_{k} which do not contain \vee.
§6. A conservation theorem. In this section, we generalize a well-known fact that PA is Π_{2}-conservative over HA in the context of semi-classical arithmetic (see Theorem 6.14). The fact is normally shown by applying the negative translation followed by the Friedman A-translation (see e.g., [6, Chapter 14]). As for the negative translation, there are several equivalent forms (see [8, §1.10.1]). Here we employ Kuroda's negative translation among them.

Definition 6.1 (cf. [6, Definition 10.1]). Let φ be a HA-formula. Then its negative translation φ^{N} is defined as $\varphi^{N}: \equiv \neg \neg \varphi_{N}$, where φ_{N} is defined inductively as follows:

- $\left(\varphi_{\mathrm{p}}\right)_{N}: \equiv \varphi_{\mathrm{p}}$ if φ_{p} is a prime formula;
- $\left(\varphi_{1} \circ \varphi_{2}\right)_{N}: \equiv\left(\varphi_{1}\right)_{N} \circ\left(\varphi_{2}\right)_{N}$, where $\circ \in\{\wedge, \vee, \rightarrow\}$;
- $\left(\exists x \varphi_{1}\right)_{N}: \equiv \exists x\left(\varphi_{1}\right)_{N}$;
- $\left(\forall x \varphi_{1}\right)_{N}: \equiv \forall x \neg \neg\left(\varphi_{1}\right)_{N}$.

Remark 6.2. By induction on the structure of formulas, one can show $\mathrm{FV}(\varphi)=$ $\operatorname{FV}\left(\varphi_{N}\right)=\mathrm{FV}\left(\varphi^{N}\right)$ for all formulas φ. When it is clear from the context, we suppress the argument on free variables.

Lemma 6.3. For any HA-formula φ in prenex normal form, HA proves $\varphi \rightarrow \varphi_{N}$.
Proof. By induction on the structure of formulas in prenex normal form. \dashv
Proposition 6.4. For any HA -formula φ, if $\mathrm{PA} \vdash \varphi$, then $\mathrm{HA} \vdash \varphi^{N}$.
Proof. By induction on the length of the derivations (see the proof of [6, Proposition 10.3]).

Lemma 6.5. Let k be a natural number.

1. For any HA-formula $\varphi \in \Sigma_{k}$, HA $+\Sigma_{k}$-DNE proves $\varphi^{N} \leftrightarrow \varphi$.
2. For any HA -formula $\varphi \in \Pi_{k}$, $\mathrm{HA}+\Sigma_{k-1}$-DNE (HA if $k=0$) proves $\varphi^{N} \leftrightarrow \varphi$.

Proof. By simultaneous induction on k. The base case is trivial. For the induction step, assume the items 1 and 2 for k to show those for $k+1$. For the first item, let $\exists x \varphi_{1} \in \Sigma_{k+1}$ where $\varphi_{1} \in \Pi_{k}$. We have that HA $+\Sigma_{k+1}$-DNE proves

$$
\left(\exists x \varphi_{1}\right)^{N} \equiv \neg \neg \exists x\left(\varphi_{1}\right)_{N} \leftrightarrow \neg \neg \exists x \neg \neg\left(\varphi_{1}\right)_{N} \underset{[\text { I.H.] }]}{\overleftrightarrow{\Sigma_{k-1}-\mathrm{DNE}}} \neg \neg \exists x \varphi_{1} \underset{\Sigma_{k+1} \text {-DNE }}{\overleftrightarrow{\longrightarrow}} \exists x \varphi_{1}
$$

For the second item, let $\forall x \varphi_{1} \in \Pi_{k+1}$ where $\varphi_{1} \in \Sigma_{k}$. Since Π_{k+1}-DNE is derived from Σ_{k}-DNE (see Lemma 5.2.(4)), we have that HA $+\Sigma_{k}$-DNE proves

$$
\left(\forall x \varphi_{1}\right)^{N} \equiv \neg \neg \forall x \neg \neg\left(\varphi_{1}\right)_{N} \underset{\text { [I.H. }] \Sigma_{k} \text {-DNE }}{\longrightarrow} \neg \neg \forall x \varphi_{1} \underset{\Pi_{k+1} \text {-DNE }}{\overleftrightarrow{\longrightarrow}} \forall x \varphi_{1}
$$

Let HA^{*} denote HA in the extended language where a predicate symbol $*$ of arity 0 , which behaves as a "place holder", is added. In particular, HA^{*} has $\perp \rightarrow$ * as an axiom. To make our arguments absolutely clear, we prefer to add the distinguished new predicate $*$ rather than discussing about A-translation inside the original language as done in [2, 6].

Definition 6.6 (A-translation [2]). For a HA-formula φ, we define φ^{*} as a formula obtained from φ by replacing all the prime formulas φ_{p} in φ with $\varphi_{\mathrm{p}} \vee *$. Officially, φ^{*} is defined inductively as in Definition 6.1. In particular, $\perp^{*}: \equiv(\perp \vee *)$, which is equivalent to $*$ over HA^{*}. In what follows, $\neg_{*} \varphi$ denotes $\varphi \rightarrow *$.

Remark 6.7. By induction on the structure of formulas, one can show $\mathrm{FV}(\varphi)=$ $\mathrm{FV}\left(\varphi^{*}\right)$ for all HA-formulas φ.

Proposition 6.8 (cf. [2, Lemma 2]). For any HA-formula φ, if $\mathrm{HA} \vdash \varphi$, then $\mathrm{HA}^{*} \vdash \varphi^{*}$.

Proof. By induction on the length of the derivations.
Remark 6.9. An analogous assertion of Proposition 6.8 holds for HA $+\Sigma_{1}$-LEM and HA* $+\Sigma_{1}$-LEM instead of HA and HA* respectively (see [7, Lemma 3.1]).

The following substitution result is important in the application of the Atranslation:

Lemma 6.10 (cf. [10, Theorem 6.2.4]). Let X be a set of HA-sentences and φ be a HA^{*}-formula. If $\mathrm{HA}^{*}+X \vdash \varphi$, then $\mathrm{HA}+X \vdash \varphi[\psi / *]$ for any HA -formula ψ such that the free variables of ψ are not bounded in φ, where $\varphi[\psi / *]$ is the HA-formula obtained from φ by replacing all the occurrences of $*$ in φ with ψ.

Proof. Fix a set X of HA-sentences. By induction on k, one can show straightforwardly that for any k and any HA^{*}-formula φ, if $\mathrm{HA}^{*}+X \vdash \varphi$ with the proof of length k, then $\mathrm{HA}+X \vdash \varphi[\psi / *]$ for any HA-formula ψ such that the free variables of ψ is not bounded in φ. The variable condition is used to verify the case of the axioms and rules for quantifiers.

The following lemma is a key for our generalized conservation result.
Lemma 6.11. Let k be a natural number.

1. For any HA-formula $\varphi \in \Sigma_{k}, \mathrm{HA}^{*}+\Sigma_{k-1}-\mathrm{LEM}\left(\mathrm{HA}^{*}\right.$ if $\left.k=0\right)$ proves $\left(\varphi_{N}\right)^{*} \leftrightarrow$ $\varphi_{N} \vee *$.
2. For any HA-formula $\varphi \in \Pi_{k}, \mathrm{HA}^{*}+\Sigma_{k}$-LEM proves $\left(\varphi_{N}\right)^{*} \leftrightarrow \varphi_{N} \vee *$.

Proof. We show the items 1 and 2 simultaneously by induction on k.
The base case: Since every quantifier-free formula φ_{qf} such that $\mathrm{FV}\left(\varphi_{\mathrm{qf}}\right)=\{\bar{x}\}$ is equivalent to a prime formula $t(\bar{x})=0$ for some closed term t (see e.g., [6, Proposition 3.8]), by Proposition 6.8, it suffices to show the assertions only for prime formulas. Since $\left(\left(\varphi_{\mathrm{p}}\right)_{N}\right)^{*} \equiv \varphi_{\mathrm{p}}{ }^{*} \equiv \varphi_{\mathrm{p}} \vee * \equiv\left(\varphi_{\mathrm{p}}\right)_{N} \vee *$, we are done.

The induction step: Assume that the items 1 and 2 hold for k. We first show the item 1 for $k+1$. Let $\varphi_{1} \in \Pi_{k}$. Since

$$
\left(\left(\exists x \varphi_{1}\right)_{N}\right)^{*} \equiv\left(\exists x\left(\varphi_{1}\right)_{N}\right)^{*} \equiv \exists x\left(\left(\varphi_{1}\right)_{N}\right)^{*},
$$

by induction hypothesis, we have

$$
\mathrm{HA}^{*}+\Sigma_{k}-\mathrm{LEM} \vdash\left(\left(\exists x \varphi_{1}\right)_{N}\right)^{*} \leftrightarrow \exists x\left(\left(\varphi_{1}\right)_{N} \vee *\right) .
$$

Since HA* proves $\exists x\left(\left(\varphi_{1}\right)_{N} \vee *\right) \leftrightarrow\left(\exists x\left(\varphi_{1}\right)_{N} \vee *\right) \equiv\left(\left(\exists x \varphi_{1}\right)_{N} \vee *\right)$, we have $\mathrm{HA}^{*}+\Sigma_{k}$-LEM $\vdash\left(\left(\exists x \varphi_{1}\right)_{N}\right)^{*} \leftrightarrow\left(\left(\exists x \varphi_{1}\right)_{N} \vee *\right)$.
Thus we have shown the item 1 for $k+1$.

Next, we show the item 2 for $k+1$. Let $\varphi_{2} \in \Sigma_{k}$. We shall show that HA* + Σ_{k}-DNE (and hence, HA* $+\Sigma_{k+1}$-LEM) proves $\left(\forall x \varphi_{2}\right)_{N} \vee * \rightarrow\left(\left(\forall x \varphi_{2}\right)_{N}\right)^{*}$. By Lemma 6.5.(1), we have

$$
\begin{equation*}
\mathrm{HA}+\Sigma_{k}-\mathrm{DNE} \vdash \varphi_{2} \leftrightarrow\left(\varphi_{2}\right)^{N} \equiv \neg \neg\left(\varphi_{2}\right)_{N} . \tag{5}
\end{equation*}
$$

Then we have that HA* Σ_{k}-DNE proves

$$
\left(\forall x \varphi_{2}\right)_{N} \vee * \equiv\left(\forall x \neg \neg\left(\varphi_{2}\right)_{N} \vee *\right) \leftrightarrow \forall x \varphi_{2} \vee * .
$$

By Lemma 6.3, HA proves $\varphi_{2} \rightarrow\left(\varphi_{2}\right)_{N}$. Then, using induction hypothesis and the fact that Σ_{k}-DNE derives Σ_{k-1}-LEM, we have that $\mathrm{HA}^{*}+\Sigma_{k}$-DNE proves

$$
\begin{array}{rll}
\left(\forall x \varphi_{2}\right)_{N} \vee * & \forall x \varphi_{2} \vee * \\
\stackrel{\Sigma_{k} \text {-DNE }}{\longrightarrow} & \forall x\left(\varphi_{2}\right)_{N} \vee * \\
& \forall x\left(\left(\varphi_{2}\right)_{N} \vee *\right) \\
{\left[\begin{array}{l}
\text { [.H.] }] \\
\longleftrightarrow
\end{array}\right.} & \forall x\left(\left(\varphi_{2}\right)_{N}\right)^{*} \\
& \longleftrightarrow & \forall x\left(\left(\left(\left(\varphi_{2}\right)_{N}\right)^{*} \rightarrow *\right) \rightarrow *\right) \\
& \left(\left(\forall x \varphi_{2}\right)_{N}\right)^{*} .
\end{array}
$$

In the following, we show the converse direction:

$$
\begin{equation*}
\mathrm{HA}^{*}+\Sigma_{k+1}-\mathrm{LEM} \vdash\left(\left(\forall x \varphi_{2}\right)_{N}\right)^{*} \rightarrow\left(\forall x \varphi_{2}\right)_{N} \vee * . \tag{6}
\end{equation*}
$$

Reason in $\mathrm{HA}^{*}+\Sigma_{k+1}$-LEM. Suppose $\left(\left(\forall x \varphi_{2}\right)_{N}\right)^{*}$, equivalently,

$$
\begin{equation*}
\forall x\left(\left(\left(\left(\varphi_{2}\right)_{N}\right)^{*} \rightarrow *\right) \rightarrow *\right) . \tag{7}
\end{equation*}
$$

By induction hypothesis, (7) is equivalent to $\forall x\left(\left(\left(\varphi_{2}\right)_{N} \vee * \rightarrow *\right) \rightarrow *\right)$, which is intuitionistically equivalent to

$$
\forall x\left(\left(\left(\varphi_{2}\right)_{N} \rightarrow *\right) \rightarrow *\right) .
$$

Then we have

$$
\begin{equation*}
\exists x \neg\left(\varphi_{2}\right)_{N} \rightarrow * . \tag{8}
\end{equation*}
$$

By Lemma 4.8.(2), there exists $\psi_{2} \in \Pi_{k}$ such that $\mathrm{FV}\left(\varphi_{2}\right)=\mathrm{FV}\left(\psi_{2}\right)$ and $\neg \varphi_{2}$ is equivalent to ψ_{2}. Since $\exists x \psi_{2} \in \Sigma_{k+1}$, by Σ_{k+1}-LEM, we have $\exists x \psi_{2} \vee \neg \exists x \psi_{2}$, and hence,

$$
\exists x \neg \varphi_{2} \vee \forall x \neg \neg \varphi_{2} .
$$

Then, by (5), we obtain

$$
\exists x \neg\left(\varphi_{2}\right)_{N} \vee \forall x \neg \neg\left(\varphi_{2}\right)_{N} .
$$

In the former case, we have $*$ by (8). In the latter case, we have $\left(\forall x \varphi_{2}\right)_{N}$. Thus we have shown (6).
Lemma 6.12. Let φ be a HA^{*}-formula.

1. $\mathrm{HA}^{*} \vdash \varphi \rightarrow \neg_{*} \neg_{*} \varphi$.
2. $\mathrm{HA}^{*} \vdash \forall x \neg_{*} \varphi \leftrightarrow \neg_{*} \exists x \varphi$.
3. $\mathrm{HA}^{*} \vdash \neg_{*} \neg_{*} \neg_{*} \varphi \rightarrow \neg_{*} \varphi$.
4. $\mathrm{HA}^{*} \vdash \exists x \neg_{*} \neg_{*} \varphi \rightarrow \neg_{*} \neg_{*} \exists x \varphi$.

Proof. (1)-(3) are immediate from the definition of \neg_{*} (see Definition 6.6). (4) follows from (1)-(3).

Lemma 6.13. For any HA-formula φ in prenex normal form, $\mathrm{HA}^{*} \vdash \varphi \rightarrow\left(\varphi^{N}\right)^{*}$.
Proof. Since there exists a closed term t such that $\mathrm{HA} \vdash \varphi_{\mathrm{qf}}\left(x_{1}, \ldots, x_{k}\right) \leftrightarrow$ $t\left(x_{1}, \ldots, x_{k}\right)=0$ for each quantifier-free formula φ_{qf} such that $\mathrm{FV}\left(\varphi_{\mathrm{qf}}\right)=$ $\left\{x_{1}, \ldots, x_{k}\right\}$ (see e.g., [6, Proposition 3.8]), by Proposition 6.4 and Proposition 6.8, one can assume that formulas in prenex normal form consist of the formulas of form $Q_{1} x_{1} \ldots Q_{k} x_{k} \varphi_{\mathrm{p}}$ where $Q_{i} \mathrm{~s}$ are quantifiers and φ_{p} is prime. We show our assertion by induction on the structure of formulas of this form.

For a prime formula φ_{p}, it is trivial to see that HA^{*} proves

$$
\varphi_{\mathrm{p}} \rightarrow \varphi_{\mathrm{p}} \vee * \rightarrow \neg_{*} \neg_{*}\left(\varphi_{\mathrm{p}} \vee *\right) \leftrightarrow\left(\left(\varphi_{\mathrm{p}}\right)^{N}\right)^{*}
$$

Assume the assertion for φ. Then, using Lemma 6.12, HA* proves

$$
\begin{aligned}
\exists x \varphi \underset{\text { [I.H.] }}{\longrightarrow} \exists x\left(\varphi^{N}\right)^{*} \equiv \exists x\left(\neg \neg \varphi_{N}\right)^{*} \leftrightarrow \exists x \neg_{*} \neg *\left(\varphi_{N}\right)^{*} \rightarrow{\neg * \neg * \exists x\left(\varphi_{N}\right)^{*}} & \leftrightarrow\left((\exists x \varphi)^{N}\right)^{*}
\end{aligned}
$$

and

$$
\begin{aligned}
& \forall x \varphi \underset{\text { [I.H.] }}{\longrightarrow} \forall x\left(\varphi^{N}\right)^{*} \equiv \forall x\left(\neg \neg \varphi_{N}\right)^{*} \leftrightarrow \forall x \neg_{*} \neg_{*}\left(\varphi_{N}\right)^{*} \rightarrow \neg * \neg *^{\forall} x \rightarrow \neg_{*} \neg_{*}\left(\varphi_{N}\right)^{*} \\
& \leftrightarrow\left((\forall x \varphi)^{N}\right)^{*} . \dashv
\end{aligned}
$$

Theorem 6.14. Let k be a natural number. For any $\varphi \in \Pi_{k+2}$ and any ψ in prenex normal form, if $\mathrm{PA} \vdash \psi \rightarrow \varphi$, then $\mathrm{HA}+\Sigma_{k}$-LEM $\vdash \psi \rightarrow \varphi$.

Proof. Let $\varphi: \equiv \forall x \exists y \varphi_{1}$ where $\varphi_{1} \in \Pi_{k}$. Since one can freely replace the bound variables, assume that the free variables of $\exists y \varphi_{1}$ are not bounded in ψ and x does not occur in ψ without loss of generality.

Suppose PA $\vdash \psi \rightarrow \forall x \exists y \varphi_{1}$. By Proposition 6.4, we have that HA proves $\neg \neg\left(\psi_{N} \rightarrow \forall x \neg \neg \exists y\left(\varphi_{1}\right)_{N}\right)$, which is intuitionistically equivalent to $\neg \neg \psi_{N} \rightarrow$ $\forall x \neg \neg \exists y\left(\varphi_{1}\right)_{N}$, namely, $\psi^{N} \rightarrow \forall x \neg \neg \exists y\left(\varphi_{1}\right)_{N}$. Then we have

$$
\mathrm{HA} \vdash \psi^{N} \rightarrow \neg \neg \exists y\left(\varphi_{1}\right)_{N} .
$$

By Proposition 6.8, we have

$$
\mathrm{HA}^{*} \vdash\left(\psi^{N}\right)^{*} \rightarrow \neg_{*} \neg_{*} \exists y\left(\left(\varphi_{1}\right)_{N}\right)^{*},
$$

and hence,

$$
\mathrm{HA}^{*} \vdash \psi \rightarrow \neg_{*} \neg_{*} \exists y\left(\left(\varphi_{1}\right)_{N}\right)^{*}
$$

by Lemma 6.13. Then, by Lemma 6.11.(2), we have that $\mathrm{HA}^{*}+\Sigma_{k}$-LEM proves

$$
\psi \rightarrow \neg_{*} \neg_{*} \exists y\left(\left(\varphi_{1}\right)_{N} \vee *\right),
$$

which is intuitionistically equivalent to

$$
\psi \rightarrow \neg_{*} \neg_{*} \exists y\left(\varphi_{1}\right)_{N} .
$$

Since the free variables of $\exists y \varphi_{1}$ are not bounded in ψ, using Lemma 6.10 with Remark 6.2, we have

$$
\begin{equation*}
\mathrm{HA}+\Sigma_{k} \text {-LEM } \vdash \psi \rightarrow\left(\left(\exists y\left(\varphi_{1}\right)_{N} \rightarrow \exists y \varphi_{1}\right) \rightarrow \exists y \varphi_{1}\right) . \tag{9}
\end{equation*}
$$

On the other hand, by Lemma 6.5.(2) and the fact that Σ_{k}-LEM derives Σ_{k}-DNE, we have that HA $+\Sigma_{k}$-LEM proves

$$
\left(\varphi_{1}\right)_{N} \rightarrow \neg \neg\left(\varphi_{1}\right)_{N} \equiv\left(\varphi_{1}\right)^{N} \underset{\Sigma_{k-1}-\mathrm{DNE}}{\overleftrightarrow{\longrightarrow}} \varphi_{1}
$$

and hence, $\exists y\left(\varphi_{1}\right)_{N} \rightarrow \exists y \varphi_{1}$. Then, by (9), we have HA $+\Sigma_{k}$-LEM $\vdash \psi \rightarrow \exists y \varphi_{1}$. By our assumption, x does not occur in ψ, and hence, HA $+\Sigma_{k}$-LEM $\vdash \psi \rightarrow$ $\forall x \exists y \varphi_{1}$ follows.

Corollary 6.15. $\mathrm{HA}+\Sigma_{k}$-LEM is closed under the Σ_{k+1}-generalization of Markov's rule: If $\mathrm{HA}+\Sigma_{k}$-LEM proves $\neg \neg \varphi$ where $\varphi \in \Sigma_{k+1}$, then $\mathrm{HA}+\Sigma_{k}$-LEM proves φ.

Corollary 6.15 is announced in [5, §4.4] without proof and the proof for $k=1$ with using the soundness of the A-translation for HA $+\Sigma_{1}$-LEM (cf. Remark 6.9) can be found in [7, Proposition 3.2]. In fact, by using the latter, Kohlenbach and Safarik essentially show an instance of Theorem 6.14 for $k=1$ and $\psi \equiv 0=0$ in [7, Proposition 3.3].

In this paper, we have shown Theorem 6.14 in order to prove the optimality of our prenex normal form theorems in $\S 5$ (see $\S 7$). On the other hand, the conservation result on semi-classical arithmetic itself is interesting. This will be studied comprehensively in [4].

§7. Characterizations.

Notation 2. Let T be an extension of HA. Let Γ and Γ^{\prime} be classes of HA-formulas. Then $\operatorname{PNFT}_{T}\left(\Gamma, \Gamma^{\prime}\right)$ denotes the following statement: for any $\varphi \in \Gamma$, there exists $\varphi^{\prime} \in \Gamma^{\prime}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and $T \vdash \varphi \leftrightarrow \varphi^{\prime}$.

Under this notation, Theorem 5.3 asserts (modulo Lemma 2.3) that for a semiclassical theory T containing HA $+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE, $\mathrm{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}, \Pi_{k^{\prime}}\right)$ holds for all $k^{\prime} \leq k$ as well as the analogous assertion for E_{k} and Σ_{k}. It is natural to ask whether the verification theories are optimal. In this section, among other things (see Table 1), we show that this is exactly the case:

1. For a theory T in-between HA and PA, $T \vdash\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE if and only if $\operatorname{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}, \Pi_{k^{\prime}}\right)$ for all $k^{\prime} \leq k$. (Theorem 7.3)
2. For a theory T in-between HA $+\Pi_{k-1}$-LEM (HA if $k=0$) and PA, $T \vdash$ Σ_{k}-DNE $+\mathrm{U}_{k}$-DNS if and only if $\mathrm{PNFT}_{T}\left(\mathrm{E}_{k^{\prime}}, \Sigma_{k^{\prime}}\right)$ for all $k^{\prime} \leq k$. (Theorem 7.11)

Lemma 7.1. Let T be a theory in-between $\mathrm{HA}+\Sigma_{k-2}-\mathrm{LEM}(\mathrm{HA}$ if $k<2)$ and PA . If $\mathrm{PNFT}_{T}\left(\mathrm{U}_{k}, \Pi_{k}\right)$, then $T \vdash\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE.

P_{k}	$\left(\Gamma_{k}, \Delta_{k}\right)$	Q_{k}	cf.
$\neg \neg \Sigma_{k-1}$-DNE	$\left(\left(\mathrm{U}_{k}{ }^{\mathrm{dn}}\right)^{\mathrm{df}}, \Pi_{k}{ }^{\mathrm{dn}}\right)$	$\neg \neg \Pi_{k-2}$-LEM	Thm. 7.18
U_{k}-DNS	$\left(\mathrm{U}_{k}^{\mathrm{dn}}, \Pi_{k}{ }^{\mathrm{dn}}\right)$	\emptyset	Thm. 7.6
Σ_{k-1}-DNE	$\left(\mathrm{U}_{k}^{\mathrm{df}}, \Pi_{k}\right)$	Π_{k-2}-LEM	Thm. 7.16.(2)
Σ_{k-1}-DNE	$\left(\mathrm{U}_{k}{ }^{\mathrm{dn}}, \Pi_{k}\right)$	Π_{k-2}-LEM	Thm. 7.17
$+\mathrm{U}_{k}$-DNS	$\left(\mathrm{E}_{k}{ }^{\mathrm{df}}, \Sigma_{k}\right)$	Π_{k-1}-LEM	Thm. 7.16.(1)
Σ_{k}-DNE	$\left(\mathrm{E}_{k}, \Sigma_{k}\right)$	Π_{k-1}-LEM	Thm. 7.11
Σ_{k}-DNE			
$+\mathrm{U}_{k}$-DNS	$\left(\mathrm{U}_{k}, \Pi_{k}\right)$	\emptyset	Thm. 7.3
$\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE	Σ_{k}-DNE	$\left(\mathrm{U}_{k}, \Pi_{k}\right) \&\left(\mathrm{E}_{k}, \Sigma_{k}\right)$	\emptyset
$+\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE	Cor. 7.14		

Table 1. Characterizations of the prenex normal form theorems

Proof. Fix an instance of $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE

$$
\varphi: \equiv \forall x\left(\neg \neg\left(\varphi_{1}(x) \vee \varphi_{2}(x)\right) \rightarrow \varphi_{1}(x) \vee \varphi_{2}(x)\right)
$$

where $\varphi_{1}(x), \varphi_{2}(x) \in \Pi_{k}(x)$. Since $\neg \neg\left(\varphi_{1}(x) \vee \varphi_{2}(x)\right)$ and $\varphi_{1}(x) \vee \varphi_{2}(x)$ are in U_{k}, by our assumption, there exist $\rho(x)$ and $\rho^{\prime}(x)$ in $\Pi_{k}(x)$ such that T proves $\rho(x) \leftrightarrow \varphi_{1}(x) \vee \varphi_{2}(x)$ and $\rho^{\prime}(x) \leftrightarrow \neg \neg\left(\varphi_{1}(x) \vee \varphi_{2}(x)\right)$. Since PA $\vdash \varphi$ and PA is an extension of T, we have PA $\vdash \rho^{\prime}(x) \rightarrow \rho(x)$. By Theorem 6.14, we have that HA $+\Sigma_{k-2}$-LEM proves $\rho^{\prime}(x) \rightarrow \rho(x)$, and hence, $\forall x\left(\rho^{\prime}(x) \rightarrow \rho(x)\right)$. Since T is an extension of HA $+\Sigma_{k-2}$ LEM, we have $T \vdash \forall x\left(\rho^{\prime}(x) \rightarrow \rho(x)\right)$, and hence, $T \vdash \varphi$. \dashv

Lemma 7.2. Let T be a theory in-between HA and PA . If $\mathrm{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}, \Pi_{k^{\prime}}\right)$ for all $k^{\prime} \leq k$, then $T \vdash \Sigma_{k-1}-$ LEM.

Proof. By induction on k. The base case is trivial. For the induction step, assume $\operatorname{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}, \Pi_{k^{\prime}}\right)$ for all $k^{\prime} \leq k+1$. Then, by induction hypothesis, we have $T \vdash$ Σ_{k-1}-LEM. Fix an instance of Σ_{k}-LEM

$$
\varphi: \equiv \forall x\left(\varphi_{1}(x) \vee \neg \varphi_{1}(x)\right),
$$

where $\varphi_{1}(x) \in \Sigma_{k}(x)$. Since $\varphi \in \mathrm{U}_{k+1}$, by our assumption, there exists a sentence $\varphi^{\prime} \in \Pi_{k+1}$ such that $T \vdash \varphi \leftrightarrow \varphi^{\prime}$. Since PA $\vdash \varphi$, we have PA $\vdash \varphi^{\prime}$. Then, by Theorem 6.14, we have HA $+\Sigma_{k-1}$-LEM $\vdash \varphi^{\prime}$, and hence, $T \vdash \varphi^{\prime}$. Thus we have $T \vdash \varphi$.

Theorem 7.3. Let T be a theory in-between HA and PA. Then $T \vdash$ $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE if and only if $\mathrm{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}, \Pi_{k^{\prime}}\right)$ for all $k^{\prime} \leq k$.

Proof. The "only if" direction is immediate from Theorem 5.3.(2). We show the converse direction. Assume $\mathrm{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}, \Pi_{k^{\prime}}\right)$ for all $k^{\prime} \leq k$. Let $k>0$ without loss of generality. By Lemma 7.2, $T \vdash \Sigma_{k-1}$-LEM. Then, by Lemma 7.1, we have $T \vdash\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE.

Definition 7.4. Let Γ be a class of formulas. Then Γ^{dn} denotes the class of HA-formulas $\neg \neg \varphi$ where $\varphi \in \Gamma$, and Γ^{n} denotes that for $\neg \varphi$ where $\varphi \in \Gamma$.
Lemma 7.5. Let T be a theory in-between HA and PA . If $\mathrm{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}{ }^{\mathrm{dn}}, \Pi_{k^{\prime}}{ }^{\mathrm{dn}}\right)$ for all $k^{\prime} \leq k$, then $T \vdash \neg \neg \Sigma_{k-1}$-LEM.

Proof. By induction on k. The base case is trivial. For the induction step, assume $\operatorname{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}^{\mathrm{dn}}, \Pi_{k^{\prime}}^{\mathrm{dn}}\right)$ for all $k^{\prime} \leq k+1$. Then, by induction hypothesis, T proves $\neg \neg \Sigma_{k-1}$-LEM. Fix an instance of $\neg \neg \Sigma_{k}$-LEM

$$
\varphi: \equiv \neg \neg \forall x\left(\varphi_{1}(x) \vee \neg \varphi_{1}(x)\right),
$$

where $\varphi_{1}(x) \in \Sigma_{k}(x)$. Since $\varphi \in \mathrm{U}_{k+1}{ }^{\text {dn }}$, by our assumption, there exists a sentence $\varphi^{\prime} \in \Pi_{k+1}$ such that $T \vdash \varphi \leftrightarrow \neg \neg \varphi^{\prime}$. Since PA $\vdash \forall x\left(\varphi_{1}(x) \vee \neg \varphi_{1}(x)\right)$, we have PA $\vdash \varphi^{\prime}$. Then, by Theorem 6.14, we have HA $+\Sigma_{k-1}-$ LEM $\vdash \varphi^{\prime}$, and hence, HA $+\neg \neg \Sigma_{k-1}-$ LEM $\vdash \neg \neg \varphi^{\prime}$ by Lemma 4.1. Then $T \vdash \varphi$.

Theorem 7.6. Let T be a theory in-between HA and PA. The following are pairwise equivalent:

1. $\mathrm{PNFT}_{T}\left(\mathrm{E}_{k^{\prime}}{ }^{\mathrm{n}}, \Pi_{k^{\prime}}^{\mathrm{dn}}\right)$ for all $k^{\prime} \leq k$;
2. $\operatorname{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}{ }^{\mathrm{dn}}, \Pi_{k^{\prime}}{ }^{\mathrm{dn}}\right)$ for all $k^{\prime} \leq k$;
3. $T \vdash \mathrm{U}_{k}$-DNS.

Proof. The equivalence of (1) and (2) is trivial (cf. the proof of Lemma 5.1). In addition, $(3 \rightarrow 2)$ is immediate from Lemma 5.1 and Proposition 4.6. In what follows, we show $(2 \rightarrow 3)$. Assume $\operatorname{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}{ }^{\mathrm{dn}}, \Pi_{k^{\prime}}{ }^{\mathrm{dn}}\right)$ for all $k^{\prime} \leq k$. Since U_{k}-DNS is intuitionistically equivalent to $\neg \neg \mathrm{U}_{k}$-DNS (See Remark 2.8), it suffices to show $T \vdash \neg \neg \mathrm{U}_{k}$-DNS. Let $k>0$ without loss of generality. Fix an instance of $\neg \neg \mathrm{U}_{k}$-DNS

$$
\varphi: \equiv \neg \neg \forall x\left(\forall y \neg \neg \varphi_{1}(x, y) \rightarrow \neg \neg \forall y \varphi_{1}(x, y)\right),
$$

where $\varphi_{1}(x, y) \in \mathrm{U}_{k}(x, y)$. Since $i(s) \equiv-$ for all alternation paths s of $\forall y \neg \neg \varphi_{1}(x, y)$ and $\forall y \varphi_{1}(x, y)$, it is straightforward to show that $\forall y \neg \neg \varphi_{1}(x, y)$ and $\forall y \varphi_{1}(x, y)$ are in $\mathrm{U}_{k}(x)$. Then, by $\mathrm{PNFT}_{T}\left(\mathrm{U}_{k}{ }^{\mathrm{dn}}, \Pi_{k}{ }^{\mathrm{dn}}\right)$, there exist $\rho(x), \rho^{\prime}(x) \in \Pi_{k}(x)$ such that T proves $\neg \neg \rho(x) \leftrightarrow \neg \neg \forall y \varphi_{1}(x, y)$ and $\neg \neg \rho^{\prime}(x) \leftrightarrow \neg \neg \forall y \neg \neg \varphi_{1}(x, y)$. Since PA is an extension of T and $\mathrm{PA} \vdash \varphi$, we have $\mathrm{PA} \vdash \rho^{\prime}(x) \rightarrow \rho(x)$. Then, by Theorem 6.14, we have that HA $+\Sigma_{k-2}$-LEM (HA if $k<2$) proves $\rho^{\prime}(x) \rightarrow \rho(x)$, and hence, $\forall x\left(\neg \neg \rho^{\prime}(x) \rightarrow \neg \neg \rho(x)\right)$. By Lemma 4.1, we have

$$
\mathrm{HA}+\neg \neg \Sigma_{k-2} \text {-LEM } \vdash \neg \neg \forall x\left(\neg \neg \rho^{\prime}(x) \rightarrow \neg \neg \rho(x)\right) .
$$

On the other hand, by Lemma 7.5 and our assumption, we have $T \vdash \neg \neg \Sigma_{k-1}$-LEM. Then we have

$$
T \vdash \neg \neg \forall x\left(\neg \neg \forall y \neg \neg \varphi_{1}(x, y) \rightarrow \neg \neg \forall y \varphi_{1}(x, y)\right),
$$

and hence, $T \vdash \varphi$.

Remark 7.7. Theorem 7.6 shows that the verification theory for Lemma 5.1 is optimal.

Definition 7.8. Let Γ be a class of HA -formulas. Γ^{df} denotes the class of formulas in Γ which do not contain \vee.

Lemma 7.9. Let T be a theory in-between $\mathrm{HA}+\Pi_{k-1}$-LEM $(\mathrm{HA}$ if $k=0)$ and PA . If $\mathrm{PNFT}_{T}\left(\mathrm{E}_{k^{\prime}}{ }^{\mathrm{dff}}, \Sigma_{k^{\prime}}\right)$ for all $k^{\prime} \leq k$, then $T \vdash \Sigma_{k}$-DNE.

Proof. By induction on k. The base case is trivial. For the induction step, assume the assertion for k and let T be a theory in-between HA $+\Pi_{k}$-LEM and PA. Assume also that $\mathrm{PNFT}_{T}\left(\mathrm{E}_{k^{\prime}}{ }^{\text {df }}, \Sigma_{k^{\prime}}\right)$ holds for all $k^{\prime} \leq k+1$. Then, by induction hypothesis, T proves Σ_{k}-DNE. Since T contains HA $+\Pi_{k}$-LEM, we have $T \vdash \Sigma_{k}$-LEM by [1, Theorem 3.1(ii)]. Fix an instance of Σ_{k+1}-DNE

$$
\varphi: \equiv \forall x\left(\neg \neg \varphi_{1}(x) \rightarrow \varphi_{1}(x)\right),
$$

where $\varphi_{1}(x) \in \Sigma_{k+1}(x)$. Without loss of generality, one can assume that $\varphi_{1}(x)$ does not contain \vee (cf. [6, Proposition 3.8]). Since $\neg \neg \varphi_{1}(x) \in \mathrm{E}_{k+1}{ }^{\mathrm{df}}$, By $\operatorname{PNFT}_{T}\left(\mathrm{E}_{k+1}{ }^{\mathrm{df}}, \Sigma_{k+1}\right)$, there exists $\varphi_{1}^{\prime}(x) \in \Sigma_{k+1}(x)$ such that $T \vdash \neg \neg \varphi_{1}(x) \leftrightarrow$ $\varphi_{1}^{\prime}(x)$. Since PA is an extension of T and PA $\vdash \varphi$, we have PA $\vdash \varphi_{1}^{\prime}(x) \rightarrow \varphi_{1}(x)$. Then, by Theorem 6.14, we have that HA $+\Sigma_{k}$-LEM proves $\varphi_{1}^{\prime}(x) \rightarrow \varphi_{1}(x)$, and hence, $\forall x\left(\varphi_{1}^{\prime}(x) \rightarrow \varphi_{1}(x)\right)$. Since T is an extension of HA $+\Sigma_{k}$-LEM, we have $T \vdash \varphi$.

Lemma 7.10. Let T be an extension of $\mathrm{HA}+\neg \neg \Sigma_{k-1}$-DNE (HA if $k=0$). If $\operatorname{PNFT}_{T}\left(\mathrm{E}_{k^{\prime}}, \Sigma_{k^{\prime}}\right)$ for all $k^{\prime} \leq k$, then $\mathrm{PNFT}_{T}\left(\mathrm{E}_{k^{\prime}}{ }^{\mathrm{n}}, \Pi_{k^{\prime}}{ }^{\mathrm{dn}}\right)$ for all $k^{\prime} \leq k$.

Proof. Assume $\operatorname{PNFT}_{T}\left(\mathrm{E}_{k^{\prime}}, \Sigma_{k^{\prime}}\right)$ for all $k^{\prime} \leq k$. Fix $k^{\prime} \leq k$ and $\varphi \in \mathrm{E}_{k^{\prime}}$. By $\operatorname{PNFT}_{T}\left(\mathrm{E}_{k^{\prime}}, \Sigma_{k^{\prime}}\right)$, there exists $\varphi^{\prime} \in \Sigma_{k^{\prime}}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and $T \vdash \varphi \leftrightarrow$ φ^{\prime}. Then

$$
T \vdash \neg \varphi \leftrightarrow \neg \varphi^{\prime} .
$$

On the other hand, by Lemma 4.8.(2), there exists $\varphi^{\prime \prime} \in \Pi_{k^{\prime}}$ such that $\mathrm{FV}\left(\varphi^{\prime}\right)=$ FV $\left(\varphi^{\prime \prime}\right)$ and HA $+\Sigma_{k^{\prime}-1}-\mathrm{DNE} \vdash \neg \varphi^{\prime} \leftrightarrow \varphi^{\prime \prime}$. Then, by Corollary 4.2, we have

$$
\mathrm{HA}+\neg \neg \Sigma_{k^{\prime}-1}-\mathrm{DNE} \vdash \neg \varphi^{\prime} \leftrightarrow \neg \neg \varphi^{\prime \prime} .
$$

Then $\mathrm{FV}(\neg \varphi)=\mathrm{FV}\left(\neg \neg \varphi^{\prime \prime}\right)$ and $T \vdash \neg \varphi \leftrightarrow \neg \neg \varphi^{\prime \prime}$. Thus we have shown $\operatorname{PNFT}_{T}\left(\mathrm{E}_{k^{\prime}}, \Sigma_{k^{\prime}}{ }^{\mathrm{dn}}\right)$.

Theorem 7.11. Let T be a theory in-between $\mathrm{HA}+\Pi_{k-1}-\mathrm{LEM}(\mathrm{HA}$ if $k=0)$ and PA . Then $T \vdash \Sigma_{k}-\mathrm{DNE}+\mathrm{U}_{k}-\mathrm{DNS}$ if and only if $\mathrm{PNFT}_{T}\left(\mathrm{E}_{k^{\prime}}, \Sigma_{k^{\prime}}\right)$ for all $k^{\prime} \leq k$.

Proof. The "only if" direction is immediate from Theorem 5.3.(1). We show the converse direction. Assume $\operatorname{PNFT}_{T}\left(\mathrm{E}_{k^{\prime}}, \Sigma_{k^{\prime}}\right)$ for all $k^{\prime} \leq k$. Let $k>0$ without loss of generality. By Lemma 7.9, we have $T \vdash \Sigma_{k}$-DNE. Then, by Lemma 7.10 and Theorem 7.6, we have $T \vdash \mathrm{U}_{k}$-DNS.

Remark 7.12. It is still open whether the assumption that T contains Π_{k-1}-LEM can be omitted in Theorem 7.11.

Remark 7.13. Akama et al. [1] shows that Π_{k}-LEM does not derive Σ_{k}-DNE and Σ_{k}-DNE does not derive $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE. Theorem 7.11 reveals that the prenex normal form theorem for E_{k} and Σ_{k} does not hold in $\mathrm{HA}+\Pi_{k}$-LEM, and Theorem 7.3 reveals that the prenex normal form theorem for U_{k} and Π_{k} does not hold in $\mathrm{HA}+\Sigma_{k}$-DNE.

Corollary 7.14. Let T be a theory in-between HA and PA . Then $T \vdash \Sigma_{k}$-DNE + $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE if and only if $\mathrm{PNFT}_{T}\left(\mathrm{E}_{k^{\prime}}, \Sigma_{k^{\prime}}\right)$ and $\mathrm{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}, \Pi_{k^{\prime}}\right)$ for all $k^{\prime} \leq$ k.

Proof. Let T be a theory in-between HA and PA. The "only if" direction follows from Theorem 5.3 and Corollary 5.4.

For the converse direction, assume that $\mathrm{PNFT}_{T}\left(\mathrm{E}_{k^{\prime}}, \Sigma_{k^{\prime}}\right)$ and $\mathrm{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}, \Pi_{k^{\prime}}\right)$ hold for all $k^{\prime} \leq k$. By Theorems 7.3, we have $T \vdash\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE. Since Π_{k-1}-LEM is derived from $\left(\Pi_{k} \vee \Pi_{k}\right)$-DNE (cf. [1, Theorem 3.1(1)]), by Theorem 7.11, we also have $T \vdash \Sigma_{k}$-DNE.

In the following, we show the optimality of Theorem 5.7 (see Theorem 7.16).
Lemma 7.15. Let T be a theory in-between $\mathrm{HA}+\Pi_{k-2}$-LEM $(\mathrm{HA}$ if $k<2)$ and PA. If $\operatorname{PNFT}_{T}\left(\left(\mathrm{U}_{k^{\prime}}{ }^{\mathrm{dn}}\right)^{\mathrm{df}}, \Pi_{k^{\prime}}\right)$ for all $k^{\prime} \leq k$, then $T \vdash \Sigma_{k-1}$-DNE.

Proof. By induction on k. The base case is trivial. For the induction step, assume the assertion for k and let T be a theory in-between HA $+\Pi_{k-1}$-LEM and PA. Assume also that $\mathrm{PNFT}_{T}\left(\left(\mathrm{U}_{k^{\prime}}{ }^{\mathrm{dn}}\right)^{\mathrm{df}}, \Pi_{k^{\prime}}\right)$ holds for all $k^{\prime} \leq k+1$. Then, by induction hypothesis, T proves Σ_{k-1}-DNE. Since T contains HA $+\Pi_{k-1}$-LEM, we have $T \vdash \Sigma_{k-1}$-LEM by [1, Theorem 3.1(ii)]. Fix an instance of Σ_{k}-DNE

$$
\varphi: \equiv \forall x\left(\neg \neg \varphi_{1}(x) \rightarrow \varphi_{1}(x)\right),
$$

where $\varphi_{1}(x) \in \Sigma_{k}(x)$. Without loss of generality, one can assume that $\varphi_{1}(x)$ does not contain \vee (cf. [6, Proposition 3.8]). From the perspective of Remark 2.5, $\varphi_{1}(x)$ is in $\Pi_{k+1}(x)$. Then, by $\operatorname{PNFT}_{T}\left(\left(\mathrm{U}_{k+1}^{\mathrm{dn}}\right)^{\mathrm{df}}, \Pi_{k+1}\right)$, there exists $\varphi_{1}^{\prime}(x) \in \Pi_{k}(x)$ such that $T \vdash \neg \neg \varphi_{1}(x) \leftrightarrow \varphi_{1}^{\prime}(x)$. Since PA is an extension of T and PA $\vdash \varphi$, we have PA $\vdash \varphi_{1}^{\prime}(x) \rightarrow \varphi_{1}(x)$. By Theorem 6.14, we have that HA $+\Sigma_{k-1}-$ LEM proves $\varphi_{1}^{\prime}(x) \rightarrow \varphi_{1}(x)$, and hence, $\forall x\left(\varphi_{1}^{\prime}(x) \rightarrow \varphi_{1}(x)\right)$. Since T is an extension of HA + Σ_{k-1}-LEM, we have $T \vdash \varphi$.

Theorem 7.16.

1. Let T be a theory in-between $\mathrm{HA}+\Pi_{k-1}$-LEM $(\mathrm{HA}$ if $k=0)$ and PA. Then $T \vdash \Sigma_{k}$ - DNE if and only if $\mathrm{PNFT}_{T}\left(\mathrm{E}_{k^{\prime}}{ }^{\mathrm{df}}, \Sigma_{k^{\prime}}\right)$ for all $k^{\prime} \leq k$.
2. Let T be a theory in-between $\mathrm{HA}+\Pi_{k-2}$-LEM $(\mathrm{HA}$ if $k<2)$ and PA. Then $T \vdash \Sigma_{k-1}-\mathrm{DNE}$ if and only if $\mathrm{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}{ }^{\mathrm{df}}, \Pi_{k^{\prime}}\right)$ for all $k^{\prime} \leq k$.
Proof. (1): The "only if" direction is by Theorem 5.7.(1). The converse direction is by Lemma 7.9.
(2): The "only if" direction is by Theorem 5.7.(2). Note that any formula in $\left(\mathrm{U}_{k^{\prime}}{ }^{\mathrm{dn}}\right)^{\mathrm{df}}$ is in $\mathrm{U}_{k^{\prime}}{ }^{\mathrm{df}}$. Then the converse direction follows from Lemma 7.15.

At the end of this section, we characterize some variants of prenex normal form theorems.

Theorem 7.17. Let T be a theory in-between $\mathrm{HA}+\Pi_{k-2}$-LEM (HA if $k<2$) and PA. Then $T \vdash \Sigma_{k-1}-\mathrm{DNE}+\mathrm{U}_{k}$-DNS if and only if $\mathrm{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}{ }^{\mathrm{dn}}, \Pi_{k^{\prime}}\right)$ for all $k^{\prime} \leq k$.

Proof. We first show the "only if" direction. Let $k>0$ without loss of generality. Assume $T \vdash \Sigma_{k-1}$-DNE $+\mathrm{U}_{k}$-DNS and fix $k^{\prime} \leq k$. Since $T \vdash \mathrm{U}_{k^{\prime}}$-DNS (cf. Proposition 4.6), by Lemma 5.1, for any $\varphi \in \mathrm{U}_{k^{\prime}}$, there exists $\varphi^{\prime} \in \Pi_{k^{\prime}}$ such that $\mathrm{FV}(\varphi)=\mathrm{FV}\left(\varphi^{\prime}\right)$ and

$$
T \vdash \neg \neg \varphi \leftrightarrow \neg \neg \varphi^{\prime} .
$$

Since $T \vdash \Sigma_{k-1}$-DNE, by Lemma 5.2.(4), we have $T \vdash \neg \neg \varphi^{\prime} \leftrightarrow \varphi^{\prime}$, and hence, $T \vdash$ $\neg \neg \varphi \leftrightarrow \varphi^{\prime}$. Thus we have $\mathrm{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}{ }^{\mathrm{dn}}, \Pi_{k^{\prime}}\right)$.

Next, we show the converse direction. Assume that $\operatorname{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}{ }^{\mathrm{dn}}, \Pi_{k^{\prime}}\right)$ holds for all $k^{\prime} \leq k$. By Lemma 7.15, we have $T \vdash \Sigma_{k-1}$-DNE. Then, by the assumption, we have $\operatorname{PNFT}_{T}\left(\mathrm{U}_{k^{\prime}}{ }^{\mathrm{dn}}, \Pi_{k^{\prime}}{ }^{\mathrm{dn}}\right)$ for all $k^{\prime} \leq k$, and hence, $T \vdash \mathrm{U}_{k}$-DNS by Theorem 7.6.

Theorem 7.18. Let T be a theory in-between $\mathrm{HA}+\neg \neg \Pi_{k-2}-\mathrm{LEM}(\mathrm{HA}$ if $k<2)$ and PA . The following are pairwise equivalent:

1. $\operatorname{PNFT}_{T}\left(\left(\mathrm{E}_{k^{\prime}}{ }^{\mathrm{n}}\right)^{\mathrm{df}}, \Pi_{k^{\prime}}{ }^{\mathrm{dn}}\right)$ for all $k^{\prime} \leq k$;
2. $\operatorname{PNFT}_{T}\left(\left(\mathrm{U}_{k^{\prime}}{ }^{\mathrm{dn}}\right)^{\mathrm{df}}, \Pi_{k^{\prime}}{ }^{\mathrm{dn}}\right)$ for all $k^{\prime} \leq k$; and
3. $T \vdash \neg \neg \Sigma_{k-1}$-DNE.

Proof. The equivalence of (1) and (2) is trivial (cf. the proof of Lemma 5.1). In addition, $(3 \rightarrow 1)$ is immediate from the item 3 in the proof of Theorem 5.7. Then it suffices to show $(1 \rightarrow 3)$. We show this by induction on k. The base case is trivial. For the induction step, assume the assertion for k and let T be a theory in-between $\mathrm{HA}+\neg \neg \Pi_{k-1}$-LEM and PA. Assume also that $\mathrm{PNFT}_{T}\left(\left(\mathrm{E}_{k^{\prime}}{ }^{\mathrm{n}}\right)^{\mathrm{df}}, \Pi_{k^{\prime}}{ }^{\mathrm{dn}}\right)$ holds for all $k^{\prime} \leq k+1$. Then, by induction hypothesis, we have $T \vdash \neg \neg \Sigma_{k-1}$-DNE. Since T contains HA $+\neg \neg \Pi_{k-1}$-LEM, we have $T \vdash \neg \neg \Sigma_{k-1}$-LEM by [1, Theorem 3.1(ii)]. Fix an instance of $\neg \neg \Sigma_{k}$-DNE

$$
\varphi: \equiv \neg \neg \forall x\left(\neg \neg \varphi_{1}(x) \rightarrow \varphi_{1}(x)\right),
$$

where $\varphi_{1}(x) \in \Sigma_{k}(x)$. Without loss of generality, one can assume that $\varphi_{1}(x)$ does not contain \vee (cf. [6, Proposition 3.8]). Note $\forall x\left(\neg \neg \varphi_{1}(x) \rightarrow \varphi_{1}(x)\right) \in \mathrm{U}_{k+1}{ }^{\mathrm{df}}$, and hence, $\varphi \in\left(\mathrm{E}_{k+1}{ }^{\mathrm{n}}\right)^{\mathrm{df}}$. By $\left.\mathrm{PNFT}_{T}\left(\left(\mathrm{E}_{k+1}\right)^{\mathrm{n}}\right)^{\mathrm{df}}, \Pi_{k+1}{ }^{\mathrm{dn}}\right)$, there exists a sentence $\varphi^{\prime} \in$ Π_{k+1} such that $T \vdash \varphi \leftrightarrow \neg \neg \varphi^{\prime}$. Since PA is an extension of T and PA $\vdash \varphi$, we have PA $\vdash \varphi^{\prime}$. By Theorem 6.14, we have HA $+\Sigma_{k-1}$-LEM $\vdash \varphi^{\prime}$. Then, by Lemma 4.1, we have

$$
\text { HA }+\neg \neg \Sigma_{k-1} \text {-LEM } \vdash \neg \neg \varphi^{\prime} .
$$

Since T is an extension of HA $+\neg \neg \Sigma_{k-1}$-LEM, we have $T \vdash \varphi$.

All of our characterization results are of the following form: For any theory T in-between $\mathrm{HA}+\mathrm{Q}_{k}$ and PA, $T \vdash \mathrm{P}_{k}$ if and only if $\operatorname{PNFT}_{T}\left(\Gamma_{k^{\prime}}, \Delta_{k^{\prime}}\right)$ holds for all $k^{\prime} \leq k$, where $\mathrm{P}_{k}, \mathrm{Q}_{k}$ are logical principles and $\Gamma_{k^{\prime}}, \Delta_{k^{\prime}}$ are classes of formulas. Based on this representation, our results are summarized in Table 1.

Acknowledgements. The authors thank to Ulrich Kohlenbach for his helpful comments. The first author was supported by JSPS KAKENHI Grant Numbers JP18K13450, JP19J01239 and JP20K14354, and the second author by JP19K14586.

REFERENCES

[1] Y. Akama, S. Berardi, S. Hayashi, and U. Kohlenbach, An arithmetical hierarchy of the law of excluded middle and related principles, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS'04), Turku, Finland, IEEE, 2004, pp. 192-201.
[2] H. Friedman, Classically and intuitionistically provably recursive functions, Higher Set Theory (G. H. Müller and D. S. Scott, editors), Springer, Berlin/Heidelberg, 1978, pp. 21-27.
[3] M. Fujiwara and U. Kohlenbach, Interrelation between weak fragments of double negation shift and related principles, this Journal, vol. 83 (2018), no. 3, pp. 991-1012.
[4] M. Fujiwara and T. Kurahashi, Conservation theorems on semi-classical arithmetic, preprint, 2020.
[5] S. Hayashi and M. Nakata, Towards limit computable mathematics, Types for Proofs and Programs (P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, editors), R. Pollack Edn, Springer, Berlin/Heidelberg, 2002, pp. 125-144.
[6] U. Kohlenbach, Applied Proof Theory: Proof Interpretations and their Use in Mathematics, Springer Monographs in Mathematics, Springer-Verlag, Berlin, Germany, 2008.
[7] U. Kohlenbach and P. Safarik, Fluctuations, effective learnability and metastability in analysis. Annals of Pure and Applied Logic, vol. 165 (2014), no. 1, pp. 266-304, The Constructive in Logic and Applications (A. Nerode and M. Fitting, editors).
[8] A. S. Troelstra (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Lecture Notes in Mathematics, vol. 344, Springer-Verlag, Berlin, New York, 1973.
[9] A. S. Troelstra and D. van Dalen, Constructivism in Mathematics, An Introduction, vol. 1, Studies in Logic and the Foundations of Mathematics, vol. 121, North Holland, Amsterdam, 1988.
[10] D. van Dalen, Logic and Structure, fifth Edn., Universitext, Springer-Verlag, London, 2013.

```
SCHOOL OF SCIENCE AND TECHNOLOGY
    MEIJI UNIVERSITY,
        1-1-1 HIGASHI-MITA, TAMA-KU, KAWASAKI-SHI 214-8571
            KANAGAWA, JAPAN
    E-mail:makotofujiwara@meiji.ac.jp
    GRADUATE SCHOOL OF SYSTEM INFORMATICS
        KOBE UNIVERSITY,
        1-1 ROKKODAI, NADA 657-8501
            KOBE, JAPAN
    E-mail: kurahashi@people.kobe-u.ac.jp
```


[^0]: Received September 4, 2020.
 2020 Mathematics Subject Classification. 03B20, 03F03, 03F30, 03F50
 Key words and phrases. Prenex normal form theorem, semi-classical arithmetic, intuitionistic arithmetic

