
Canad. J. Math. Vol. 52 (3), 2000 pp. 522–538

On Multiple Mixed Interior
and Boundary Peak Solutions
for Some Singularly Perturbed
Neumann Problems
Changfeng Gui and Juncheng Wei

Abstract. We consider the problem

{
ε2∆u− u + f (u) = 0, u > 0 in Ω
∂u
∂ν
= 0 on ∂Ω,

where Ω is a bounded smooth domain in RN , ε > 0 is a small parameter and f is a superlinear, subcritical
nonlinearity. It is known that this equation possesses multiple boundary spike solutions that concentrate, as
ε approaches zero, at multiple critical points of the mean curvature function H(P), P ∈ ∂Ω. It is also proved
that this equation has multiple interior spike solutions which concentrate, as ε → 0, at sphere packing points
in Ω.

In this paper, we prove the existence of solutions with multiple spikes both on the boundary and in the
interior. The main difficulty lies in the fact that the boundary spikes and the interior spikes usually have
different scales of error estimation. We have to choose a special set of boundary spikes to match the scale of
the interior spikes in a variational approach.

1 Introduction

Recently there is a large literature on the existence of spike layer solutions to the following
singularly perturbed elliptic problem{

ε2∆u− u + f (u) = 0, u > 0 in Ω
∂u
∂ν
= 0 on ∂Ω,

(1.1)

where∆ =
∑N

i=1
∂2

∂x2
i

is the Laplace operator, Ω is a bounded smooth domain in RN , ε > 0

is a constant, the exponent p satisfies 1 < p < N+2
N−2 for N ≥ 3 and 1 < p <∞ for N = 2

and ν(x) denotes the normal derivative at x ∈ ∂Ω.
Equation (1.1) is known as the stationary equation of the Keller-Segal system in chemo-

taxis. It can also be seen as the limiting stationary equation of the so-called Gierer-
Meinhardt system in biological pattern formation, see [18], [21] and [23] for more details.

It is known that equation (1.1) admits boundary and interior spike solutions. For single
boundary spike solutions, please see [7], [18], [21], [22], [28], etc. For multiple boundary
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spikes, please see [5], [10], [13], [14], [19], [23], [32], etc. (When p = N+2
N−2 , similar

results for the boundary spike layer solutions have been obtained by [1], [2], [3], [15],
[20], [24], etc.) For single interior spikes, please see [8], [26], [27], [29], [31], etc. For
multiple interior spikes, please see [4], [6], [17], etc. In particular, in [14], it was proved
that at a local minimum point P0 of the mean curvature function H(P), for any positive
integer K ∈ N, there exists a solution of (1.1) with K boundary local maximum points
Q1
ε, . . . ,Q

K
ε such that Qi

ε → P0 as ε → 0. On the other hand, in [17] it was proved that
for any positive integer K, there exists a solution of (1.1) with K interior maximum points
P1
ε, . . . , P

K
ε such that

ϕK (P1
ε, . . . , P

K
ε )→ max

Pi∈Ω
ϕK(P1, . . . , PK )

where ϕK(P1, . . . , PK) = mini �= j,k

(
d(Pk, ∂Ω), 1

2 |Pi − P j |
)
.

In all the above papers, the boundary and interior spikes are separated. An interesting
question is the following: can we construct multiple spike solutions with both boundary
and interior spikes? The purpose of this paper is to construct such mixed boundary and
interior spike solutions.

The main difficulty in constructing mixed boundary and interior spike solutions is that
we need to deal with two completely different order of small terms. It is known that the
order of boundary spike is of algebraic while the order of interior spike is of exponentially
small. Since these two orders are simply incomparable, a new method should be employed
so as to separate the two scales.

In fact we will consider a more general problem (as in [14] and [17]){
ε2∆u− u + f (u) = 0, u > 0 in Ω
∂u
∂ν
= 0 on ∂Ω,

(1.2)

where f : R+ → R is of class C1+σ and satisfies the following conditions
(f1) f (t) ≡ 0 for t ≤ 0 and f (t)→ +∞ as t →∞.
(f2) f (0) = 0, f

′

(0) = 0 and f (u) = O(|u|p1 ), f
′

(u) = O(|u|p2−1) as |u| → ∞ for
some 1 < p1, p2( N+2

N−2 )+(= N+2
N−2 if N > 2;= ∞ if N ≤ 2) and there exists 1 < p3 <

( N+2
N−2 )+ such that

| fu(u + φ)− fu(u)| ≤

{
C|φ|p3−1 if p3 > 2

C(|φ| + |φ|p3−1) if p3 ≤ 2

(f3) The following equation{
	w − w + f (w) = 0,w > 0 in RN

w(0) = maxy∈RN w(y),w→ 0 at∞
(1.3)

has a unique solution w(y) (by the results of [12], w is radial, i.e., w = w(r) and w
′
< 0 for

r = |y| 
= 0) and w is nondegenerate. Namely the operator

L := 	− 1 + f
′

(w)(1.4)
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is invertible in the space H2
r (RN ) := {u = u(|y|) ∈ H2(RN )}

Remark Nonlinearities satisfying (f1)–(f3) can be found in [9] and [17].
Fix any two positive integers K1 ∈ N, K2 ∈ N. We shall construct solutions to (1.1) with

K1 interior peaks and K2 boundary peaks.
Our first assumption on the domain is the following:

(H1) ∃Q0
j ∈ ∂Ω and r j > 0 such that H(Q0

j ) < H(Q), ∀Q ∈ Br j (Q0
j )∩∂Ω, j = 1, . . . ,K2.

Remark Here we allow Q0
i = Q0

j if i 
= j. Hence if the domain admits one strict local

minimum point Q0, we may take Q0
j = Q0, j = 1, . . . ,K2, ri = r j .

Set

ΓB
j = Br j (Q0

j ) ∩ ∂Ω,Γ
B = ΓB

1 × · · · × Γ
B
K2
,H j = H(Q0

j ),

ΛB
ε =

{
Q = (Q1, . . . ,QK2 ) ∈ ΓB,w

(
|Qk − Ql|

ε

)
< ηε, k, l = 1, . . . ,K2, k 
= l

}

where η is a small number and w is the unique solution of (1.3).
For any P = (P1, . . . , PK1 ) ∈ ΩK1 = Ω × Ω × · · · × Ω, the following function was

introduced in [17]

ϕK1 (P1, P2, . . . , PK1 ) = min
i,k,l=1,...,K1;k�=l

(
d(Pi , ∂Ω),

1

2
|Pk − Pl|

)
.

In order to include the boundary-interior-spike interactions, we introduce

ϕ̃K1 (P1, P2, . . . , PK1 ) = min
i=1,...,K1, j=1,...,K2

(
ϕK1 (P1, . . . , PK1 ),

1

2
|Pi − Q0

j |
)
.

Our second assumption on the domain is the following: there exists an open subset ΛI

of ΩK1 such that

(H2) maxP1,...,PK1 )∈ΛI ϕ̃K1 (P1, . . . , PK1 ) > max(P1,...,PK1 )∈∂ΛI ϕ̃K1 (P1, . . . , PK1 ).

We emphasize that such a set ΛI always exists. For example, we can take Λ = ΩK1 . We
also observe that any such ΛI can be modified so that for P = (P1, . . . , PK1 ) ∈ ΛI we have

d(Pi , ∂Ω) > δ > 0, |Pi − Q0
j | > 2δ > 0, |Pk − Pl| > 2δ > 0(1.5)

for some sufficiently small δ > 0, where i, k, l = 1, . . . ,K1, k 
= l, j = 1, . . . ,K2.
The main result of this paper is the following.

Theorem 1.1 Assume that conditions (H1) and (H2) are satisfied. Let f satisfy assumptions
(f1)–(f3). Then for any K1,K2 ∈ N and for ε sufficiently small problem (1.2) has a solution
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uε which possesses exactly K = K1 + K2 local maximum points Pε1, . . . , P
ε
K1

, Qε
1, . . . ,Q

ε
K2

with
Pε = (Pε1, . . . , P

ε
K1

) ∈ ΛI , Qε = (Qε
1, . . . ,Q

ε
K2

) ∈ ΛB. Moreover Qε
j → Q0

j and

ϕ̃K1 (Pε1, . . . , P
ε
K1

)→ max
P∈ΛI

ϕ̃K1 (P).(1.6)

Furthermore, we have

uε(x) ≤ C exp
(
−

b mini=1,...,K1, j=1,...,K2 (|x − Pεi |, |x − Qε
j |)

ε

)
(1.7)

for certain positive constants C, b.

Remark (1) Note that we can put K2, j ≥ 0 boundary spikes at Q0
j as long as we have

K2 =
∑K2

j=1 K2, j . So there are many possibilities on the combinations.
(2) When (H1) is satisfied, for any positive integers K1, K2 there exists a solution with

K1 +K2 spikes which are located near the centers of spheres packed in the following way: All
sphere are of largest possible equal radia, K2 of them to be centered at Q0

j , j = 1, 2, . . . ,K2

(which are defined in (H1) and could be repeated) and K1 of them are packed inside the
domain with the existence of of the above mentioned K2 spheres. This follows from the
above theorem in the simplest cases when ΛI = ΩK1 or its modifications such that P =
(P1, . . . , PK1 ) ∈ ΛI implies

d(Pi , ∂Ω) > δ > 0, |Pi − Q0
j | > 2δ > 0, |Pk − Pl| > 2δ > 0(1.8)

for some sufficiently small δ > 0, where i, k, l = 1, . . . ,K1, k 
= l, j = 1, . . . ,K2.
(3) Note that there are domains which don’t satisfy condition (H1). A simple example

is a ball Ω = BR. In this case, one may use the symmetry to construct mixed boundary and
interior spike solutions. It is an open question whether or not there always exists mixed
multiple spike solutions.

We now outline the main idea of the proof of Theorem 1.1. Our idea is similar to that
of [14] and [17]. However, the key step lies in separating the boundary spikes and inte-
rior spikes. As we mentioned earlier, boundary spikes are driven by algebraic order terms.
Therefore, to minimize the algebraic effect of boundary spikes, one needs to find a func-
tion which approximates the boundary spikes up to exponentially small errors. To be more
precise, we introduce some notations first.

Let w be the unique solution of (1.3). For any smooth bounded domain U , we set PU w
to be the unique solution of {

∆u− u + f (w) = 0 in U ,
∂u
∂ν
= 0 on U .

(1.9)

For P ∈ Ω̄, we set

Ωε = {y : εy ∈ Ω}, Ωε,P = {y : εy + P ∈ Ω},

wε,P = PΩε,P w.
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If P ∈ Ω, we set

ψε,P(x) = −ε log

(
−
(

w
(
(x − P)/ε

)
− wε,P

))

ψε(P) = ψε,P(P).

(It is known (see [27]) that as ε→ 0, ψε(P)→ 2d(P, ∂Ω).)
Associated with problem (1.2) is the following energy functional

Jε(u) =
1

2

∫
Ω

(ε2|∇u|2 + u2)−

∫
Ω

F(u)

where F(u) =
∫ u

0 f (s) ds and u ∈ H1(Ω).
Let

Sε(u) = ε2∆u− u + f (u).

Fix P = (P1, P2, . . . , PK1 ) ∈ Λ̄I , we let

wε,P =

K1∑
i=1

wε,Pi ,

Kε,P = span
{∂wε,Pi

∂Pi,l
, i = 1, . . . ,K1, l = 1, . . . ,N

}
⊂ H2(Ωε)

Cε,P = span
{∂wε,Pi

∂Pi,l
, i = 1, . . . ,K1, l = 1, . . . ,N

}
⊂ L2(Ωε)

Similarly, if Q = (Q1, . . . ,QK2 ) ∈ Λ̄B, we can define

wε,Q =

K2∑
j=1

wε,Q j ,

Kε,Q = span
{ ∂wε,Q j

∂τl(Q j)
, l = 1, . . . ,N − 1, j = 1, . . . ,K2

}
⊂∈ H2(Ωε)

Cε,P = span
{ ∂wε,Q j

∂τl(Q j)
, l = 1, . . . ,N − 1, j = 1, . . . ,K2

}
∈ L2(Ωε)

where τl(Q j) is the l-th tangential derivatives of Q j on ∂Ω.
For mixed boundary and interior spikes, we define

wε,P,Q = wε,P + wε,Q,

Kε,P,Q = Kε,P ∪Kε,Q ⊂ H2(Ωε),

Cε,P,Q = Cε,P ∪ Cε,Q ⊂ L2(Ωε).
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In [14] and [17], the following two propositions are proved, respectively.

Proposition A (See Lemma 3.4 in [14]) For any (Q1, . . . ,QK2 ) ∈ Λ̄B, there exists a unique
ΦB
ε,Q such that

Sε(wε,Q + ΦB
ε,Q) ∈ Cε,Q,Φ

⊥
ε,Q ∈ K⊥ε,Q.(1.10)

Proposition B (See Lemma 3.4 in [17]) For any (P1, . . . , PK1 ) ∈ Λ̄I , there exists a unique
ΦI
ε,P such that

Sε(wε,P + ΦI
ε,P) ∈ Cε,P,Φ

⊥
ε,P ∈ K⊥ε,P.(1.11)

We now define

w̃ε,Q = wε,Q + ΦB
ε,Q, w̃ε,P = wε,P + ΦI

ε,P

Our main idea is to use w̃ε,Q + w̃ε,P as approximate solution. It turns out this choice
separates the boundary and interior spikes.

Thus we let

uε = w̃ε,Q + w̃ε,P + Φε,P,Q.

We first solve Φε,P,Q in K⊥ε,P,Q by using the standard Liapunov-Schmidt reduction
method. We show that Φε,P,Q is C1 in P, Q. After that, we define a new function

Mε(P,Q) := ε−N Jε(w̃ε,Q + w̃ε,Q + Φε,P,Q)(1.12)

We maximize Mε(P,Q) over Λ̄B × Λ̄I . We show that the resulting solution has the
properties of Theorem 1.1.

The paper is organized as follows. We present some important estimates in Section 2.
Section 3 contains Liapunov-Schmidt procedure and we solve (1.2) up to approximate ker-
nel and cokernel, respectively. We set up a maximizing problem in Section 4. Finally we
show that the solution to the maximizing problem is indeed a solution of (1.2) and satisfies
all properties of Theorem 1.1.

Throughout this paper, unless otherwise stated, the letter C will always denote various
generic constants which are independent of ε, for ε sufficiently small. δ > 0 is a very small
number.

We set

γ1 :=

∫
RN

f (w)ey1 dy

Σ :=
{∫

RN
+

f
(

w(y)
)

e〈b,y〉 dy | b ∈ RN , |b| = 1
}

Σ1 :=
{∫

RN
+

f
(
w(y)
)

e〈b,y〉 dy | b = (b1, . . . , bN ) ∈ RN , bN = 0, |b| = 1
}
.
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2 Important Estimates

In this section, we first study boundary spikes and interior spikes separately. Then we ob-
tain some important estimates on the interactions of boundary spikes and interior spikes.
Many of the results are obtained in [14] and [17].

We introduce some notations first. For P ∈ Λ̄I , Q ∈ Λ̄B, we define

〈u, v〉ε =

∫
Ωε

(∇u∇v + uv), 〈u, u〉ε = ‖u‖
2
ε.

Let

I(w) :=

∫
RN

1

2
(|∇w|2 + w2)−

∫
RN

F(w).

We first consider boundary spikes.

Lemma 2.1 (See Lemma 3.4, Lemma 3.5 and Lemma 3.6 in [14]) For any Q =
(Q1, . . . ,QK2 ) ∈ Λ̄B and ε sufficiently small, there exists a unique ΦB

ε,Q ∈ K⊥ε,Q such that

Sε(wε,Q + ΦB
ε,Q) ∈ Cε,Q.

Moreover ΦB
ε,Q is C1 in Q and we have

Jε(wε,Q + ΦB
ε,Q) = εN

[
K2

2
I(w)− ε

(
γ0 + o(1)

) K∑
i=1

H(Qi)

−
1

2

K∑
k,l=1,k�=l

(
γkl + o(1)

)
w

(
|Qk − Ql|

ε

)
+ o(ε)

]
,(2.1)

where γ0 > 0 is a positive number and γkl = γlk ∈ Σ. Furthermore, if w( |Pk−Pl|
ε

) = ηε, we
have γkl ∈ Σ1.

We need some properties of ΦB
ε,Q.

Lemma 2.2 Let ΦB
ε,Q be the solution constructed in Lemma 2.1. Then we have

ΦB
ε,Q = O(ε)

( K2∑
j=1

w1−η
ε,Q j

)
(2.2)

for any 0 < η < 1.

Proof Note that ΦB
ε,Q satisfies

Sε(wε,Q + Φε,Q) =
∑

j=1,...,K2,l=1,...,N−1

cB
jl

∂wε,Q j

∂τlQ j
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Moreover by Lemma 7.1 in [31], one can show that

cB
jl = O(ε2).

Hence for fixed R large, ΦB
ε,Q satisfies the following equation

∆ΦB
ε,Q − (1− η)2ΦB

ε,Q + O

(
ε

K2∑
j=1

w
(

y −
Q j

ε

))
= 0 in Ωε

∖ K2⋃
j=1

BR(Q j/ε)

|ΦB
ε,Q| ≤ Cε on ∂

( K2⋃
j=1

BR(Q j/ε)
)

∂ΦB
ε,Q

∂ν
= 0 on ∂Ω.

Lemma 2.2 follows by comparison principle.
Next we consider the interior spikes. The following lemma is proved in [17].

Lemma 2.3 (Lemma 2.6, Lemma 3.4 and Lemma 3.5 in [17]) For any P =
(P1, . . . , PK1 ) ∈ Λ̄I and ε sufficiently small, there exists a unique ΦI

ε,P ∈ K⊥ε,P such that

Sε(wε,P + ΦI
ε,P) ∈ Cε,P.

Moreover ΦI
ε,P is C1 in P and we have

Jε(wε,P + ΦI
ε,P) = εN

[
K1I(w)−

1

2

(
γ1 + o(1)

) K1∑
i=1

e−
1
ε ψε(Pi )

−
(
γ1 + o(1)

) K1∑
i,l=1,i �=l

w

(
|Pi − Pl|

ε

)]
,(2.3)

where γ1 > 0 is given at the end of Section 1.

We need some properties of ΦI
ε,P.

Lemma 2.4 Let ΦI
ε,P be the solution constructed in Lemma 2.3. Then we have

ΦI
ε,P = O(e−2δ/ε)

( K1∑
j=1

w1−η
ε,P j

)
(2.4)

for any 0 < η < 1.
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Proof Note that ΦI
ε,P satisfies

Sε(wε,P + Φε,P) =
∑

i=1,...,K1,l=1,...,N

cI
il
∂wε,Pi

∂Pi,l

Moreover as Lemma 7.1 in [27], one can show that (since P ∈ Λ̄I)

cI
il = O

(
e−ϕK1 (P)/ε

)
= O(e−2δ/ε).

The rest of the proof is similar to that of Lemma 2.2.
Let w̃ε,P = wε,P + ΦI

ε,P and w̃ε,Q = wε,Q + ΦB
ε,Q.

The next proposition considers the interaction between boundary and interior spikes.

Lemma 2.5 ∫
Ω

f (w̃ε,Q)w̃ε,P = ε
N
(
γi j + o(1)

)∑
i, j

w(|Pi − Q j |/ε),(2.5)

∫
Ω

f (w̃ε,P)wε,Q = ε
N
(
γ1 + o(1)

)∑
i, j

w(|Pi − Q j |/ε).(2.6)

where γi j ∈ Σ.

Proof We first note that∫
Ωε

f (wε,Q j )wε,Pi =
(
1 + o(1)

) ∫
RN

+

f
(
w(y)
)

w

(
|Q j − Pi + εy|

ε

)

=
(
1 + o(1)

)
w(|Q j − Pi |/ε)

∫
RN

+

f (w)e
−
〈Q j−Pi ,y〉

|Q j−Pi |

=
(
γi j + o(1)

)
w(|Q j − Pi |/ε)

and ∫
Ωε

f ′(wε,Q j )|Φ
B
ε,Q||wε,Pi | =

∫
Ωε

O(εwp−1+1−η
ε,Q j

wε,Pi )

= o
(
w(|Pi − Q j |/ε)

)
(2.7)

by Lemma 2.2.
Hence ∫

Ωε

f (w̃ε,Q)wε,P =
∑

i=1,...,K1, j=1,...,K2

∫
Ωε

f (wε,Q j )wε,Pi

+

∫
Ωε

f ′(wε,Q)ΦI
ε,Qwε,P

+ o
( ∑

i=1,...,K1, j=1,...,K2

w(|Pi − Q j |/ε)
)

=
∑

i=1,...,K1, j=1,...,K2

(
γi j + o(1)

)
w(|Pi − Q j |/ε).
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This proves (2.5).
For (2.6), we observe that by Lemma 2.4∫

Ω

f (wε,Q j )Φ
I
ε,P = ε

N

∫
Ωε

O

(
wp
(x − Q j

ε

)
e−δ/εw1−η

(x − Pi

ε

))

= εN o
(
w(|Pi − Q j |/ε)

)
(2.8)

if η small, and∫
Ωε

f (wε,Pi )wε,Q j =
(
1 + o(1)

) ∫
RN

f
(
w(y)
)

w

(
|Q j − Pi − εy|

ε

)

=
(
1 + o(1)

)
w(|Q j − Pi |/ε)

∫
RN

f (w)e
〈Q j−Pi ,y〉

|Q j−Pi | .

Combining all the above estimates, we obtain the lemma.

Lemma 2.6

ε−N Jε(w̃ε,P + w̃ε,Q) = ε−N Jε(w̃ε,Q) + K1I(w)−
1

2

(
γ1 + o(1)

) K1∑
i=1

e−
1
ε ψε,Pi (Pi )

−
(
γ1 + o(1)

) K1∑
i,l=1,i �=l

w

(
|Pi − Pl|

ε

)

−
∑

i=1,...,K1, j=1,...,K2

(1

2
γ1 +

1

2
γi j + o(1)

)
w
( |Pi − Q j |

ε

)

Proof

ε−N Jε(w̃ε,P + w̃ε,Q) = ε−N Jε(w̃ε,Q) + ε−N Jε(w̃ε,P) +

∫
Ωε

[∇w̃ε,P∇w̃ε,Q + w̃ε,Pw̃ε,Q]

−

∫
Ωε

[F(w̃ε,P + w̃ε,Q)− F(w̃ε,P)− F(w̃ε,Q)]

= ε−N Jε(w̃ε,Q) + ε−N Jε(w̃ε,P)

+

∫
Ωε

f (w̃ε,P)w̃ε,Q +

∫
Ωε

cI
il
∂wε,Pi

∂Pi,l
w̃ε,Q

−

∫
Ωε

[F(w̃ε,P + w̃ε,Q)− F(w̃ε,P)− F(w̃ε,Q)]

= ε−N Jε(w̃ε,Q) + ε−N Jε(w̃ε,P)

−

∫
Ωε

f (w̃ε,Q)w̃ε,P + o
( ∑

i=1,...,K1, j=1,...,K2

w(|Pi − Q j |/ε)
)

By Lemma 2.5, Lemma 2.1 and Lemma 2.3, Lemma 2.6 is thus proved.
The following lemma will be useful in the next section.
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Lemma 2.7

‖ f (w̃ε,P + w̃ε,Q)− f (w̃ε,P)− f (w̃ε,Q)‖L2(Ωε)

= O
( ∑

i=1,...,K1, j=1,...,K2

w(|Pi − Q j |/ε)(1+η0)/2
)

for any η0 < σ = min(1, p − 1).

Proof Observe that

| f (w̃ε,P + w̃ε,Q)− f (w̃ε,P)− f (w̃ε,Q)| ≤ C| f ′(w̃ε,P)|w̃ε,Q + | f ′(w̃ε,Q)|w̃ε,P.

Let us consider the first term on the right hand. We have∫
Ωε

| f ′(w̃ε,P)|2w̃2
ε,Q ≤ C

∑
i, j

∫
Ωε

| f ′(wε,Pi )|
2|wε,Q j |

2 + C

∫
Ωε

| f ′(wε,P)| |ΦB
ε,Q|

2

≤ C
∑

i, j

|w(|Q j − Pi|/ε)1+σ| + O(ε2)
∑

i, j

|w(|Q j − Pi |/ε)1+σ−2η|

≤ C
∑

i, j

|w(|Q j − Pi|/ε)1+σ−2η|

where η > 0 is any small number.
The second term on the right hand side can be estimated similarly.

3 Liapunov-Schmidt Reduction

In this section, we use the standard Liapunov-Schmidt reduction procedure to solve prob-
lem (1.2). Since this is a routine procedure, we omit most of the proofs. We refer [17] and
[14] for technical details.

We first introduce some notations.
Let H2

N (Ωε) be the Hilbert space defined by

H2
N (Ωε) =

{
u ∈ H2(Ωε)

∣∣∣ ∂u

∂νε
= 0 on ∂Ωε

}
.

Define

Sε(u) = ∆u− u + f (u)

for u ∈ H2
N (Ωε). Then solving equation (1.2) is equivalent to

Sε(u) = 0, u ∈ H2
N (Ωε).

Fix P = (P1, . . . , PK1 ) ∈ Λ̄I , Q = (Q1, . . . ,QK2 ) ∈ Λ̄B. Let w̃ε,P = wε,P + ΦI
ε,P be given by

Lemma 2.3 and w̃ε,Q = wε,Q + ΦB
ε,Q be given by Lemma 2.1.

In this section we solve the following equation

Sε(w̃ε,P + w̃ε,Q + Φ) ∈ Cε,P,Q, Φ ∈ K⊥ε,P,Q.

We first have
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Proposition 3.1 For each (P,Q) ∈ Λ̄I × Λ̄B, there exists a uniqueΦε,P,Q ∈ K⊥ε,P,Q such that

Sε(w̃ε,P + w̃ε,Q + Φε,P,Q) ∈ Cε,P,Q(3.1)

Moreover,

‖Φε,P,Q‖H2(Ωε) ≤ C‖ f (w̃ε,P + w̃ε,Q)− f (w̃ε,P)− f (w̃ε,Q)‖L2(Ωε)(3.2)

and Φε,P,Q is C1 smooth in P,Q.

Let us now define a new functional:

Mε(P,Q) = ε−N Jε(w̃ε,Q + w̃ε,P + Φε,P,Q)

Mε : Λ̄I × Λ̄B → R.

The following energy estimate for Mε,P,Q is very important.

Proposition 3.2 For any (P,Q) ∈ ΛB × ΛI , we have

Mε(P,Q) = ε−N Jε(w̃ε,Q) + K1I(w)

−
1

2

(
γ1 + o(1)

) K1∑
i=1

(e−
1
ε ψε(Pi ))−

(
γ1 + o(1)

) K1∑
i,l=1,i �=l

w

(
|Pi − Pl|

ε

)

−
∑

i=1,...,K1, j=1,...,K2

(1

2
γ1 +

1

2
γi j + o(1)

)
w

(
|Pi − Q j |

ε

)

Proof By Lemma 2.5, we just need to show that the introduction of Φε,P,Q is negligible.
Note that by Lemma 2.6 and Proposition 3.1, we have

‖Φε,P,Q‖
2
H2(Ωε) = O

(∑
i, j

w1+η0 (|Pi − Q j |/ε)
)
.

Hence

Mε(P,Q) = ε−N Jε(w̃ε,Q + w̃ε,P) + 〈w̃ε,P,Φε,P,Q〉ε + 〈w̃ε,Q,Φε,P,Q〉ε

− ε−N

∫
Ωε

f (w̃ε,P + w̃ε,Q)Φε,P,Q + O(‖Φε,P,Q‖
2
ε)

= ε−N Jε(w̃ε,Q + w̃ε,P) +

∫
Ωε

[ f (w̃ε,P + w̃ε,Q

− f (w̃ε,P)− f (w̃ε,Q)]Φε,P,Q + o
(∑

i, j

w(|Pi − Q j |/ε)
)

= ε−N Jε(w̃ε,Q + w̃ε,P) + o
(
w(|P−Q|/ε)

)
.
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4 The Reduced Problem: A Maximizing Procedure

In this section, we study a maximizing problem.
Fix P ∈ Λ̄I , Q ∈ Λ̄B. Let Φε,P,Q be the solution given by Proposition 3.1. We define a

new functional

Mε(P,Q) = Jε(w̃ε,P + w̃ε,Q + Φε,P,Q) : Λ̄I × Λ̄B → R(4.1)

We shall prove

Proposition 4.1 For ε small, the following maximizing problem

max{Mε(P,Q) : (P,Q) ∈ Λ̄I × Λ̄B}(4.2)

has a solution (Pε,Qε) ∈ ΛI × ΛB.

Proof Since Mε(P,Q) is continuous in P,Q, the maximizing problem has a solution. Let
Mε(Pε,Qε) be the maximum where Pε ∈ Λ̄I , Qε ∈ Λ̄B.

We first claim that Qε ∈ ΛB.
In fact, suppose not. Note that ∂ΛB ⊂ {Q j ∈ ∂ΓB

j or w( |Qk−Ql|
ε

) = εη}. Hence if

Q ∈ ∂ΛB, we have that either

H(Q j) ≥ min
P∈∂ΓB

j

H(P) ≥ H j + 2δ0

for some j = 1, . . . ,K2 and δ0 > 0 (by condition (H1)) or

1

ε
w

(
|Qk − Ql|

ε

)
= η

for some k 
= l.
Hence if Q ∈ ∂ΛB we have

γ1

K2∑
j=1

H(Qε
j ) +

1

ε

∑
k�=l

(1

2
γkl + o(1)

)
w

(
|Qε

k − Qε
l |

ε

)

≥ γ1

K2∑
j=1

H j + min
(
γ1δ0, min

k�=l,w(
|Qk−Ql|

ε )=ηε

γklη
)
.

Note that min
k�=l,w(

|Pk−Pl|
ε )=ηε

γkl ≥ infτ∈Σ1 τ ≥ γ0 > 0 since for any τ ∈ Σ1, we have

τ =

∫
RN

+

f (w)e〈b,y〉 =
1

2

∫
RN

f (w)e〈b,y〉 > 0.

Therefore we have

Mε(P,Q) ≤
(

K1 +
K2

2

)
I(w)− ε

[
γ1

K2∑
j=1

H j + min
(
γ1δ0, min

k�=l,w(
|Pk−Pl|

ε )=ηε

γklη
)]

+ O(e−δ/ε).
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On the other hand, if we choose Q j such that H(Q j) → H j and w( |Qk−Ql|
ε

) 1
ε
→ 0. We

will have

Mε(P,Q) ≥ (K1 + K2/2)I(w)− εγ1

K2∑
i=1

H(Qε
i )−
∑
k�=l

(1

2
γkl + o(1)

)
w

(
|Qε

k − Qε
l |

ε

)

≥ (K1 + K2/2)I(w)− ε
[
γ1

K2∑
j=1

H j − δ
]

for any δ > 0.
A contradiction!
Hence Qε ∈ ΛB. Moreover the above argument also shows that Qε

j → Q0
j as ε→ 0.

We next claim that Pε ∈ ΛI .
In fact suppose not, we have that Pε ∈ ∂ΛI and hence

βε := ϕ̃K1 (Pε) ≤ max
P∈∂Λ̄I

ϕ̃K1 (P) := β1.

Note that since Qε
j → Q0

j , |P
ε
i − Qε

j | ≥ 2δ + o(1) for i = 1, . . . ,K1, j = 1, . . . ,K2.
In this case, we have by Lemma 3.2 and Lemma 2.5

Mε(Pε,Qε) = ε−N Jε(w̃ε,Pε + w̃ε,Qε + Φε,Pε,Qε)

= ε−N Jε(w̃ε,Qε) + K1I(w)−
1

2

(
γ1 + o(1)

) K1∑
i=1

e−ψε(Pεi )

−
∑

k�=l,k,l=1,...,K1

(
γ1 + o(1)

)
w

(
|Pεk − Pεl |

ε

)

−
∑

i=1,...,K1, j=1,...,K2

(1

2
γ +

1

2
γi j + o(1)

)
w

(
|Pεi − Qε

j |

ε

)

≤ max
Q∈Λ̄B

ε−N Jε(w̃ε,Q) + K1I(w)− c1e−(2+o(1))βε/ε(4.3)

On the other hand, if we take Qε
0 such that

max
Q∈Λ̄B

ε−N Jε(w̃ε,Q) = ε−N Jε(w̃ε,Qε
0
)

(hence Qε
0 → Q0) and Pε such that it attains the following maximizing problem

max
P∈ΛI

min
(
ϕK1 (P),

1

2
|Pi − (Q0

ε) j |
)

:= dε(4.4)

we obtain that

Mε(P0,Qε) ≥ max
Q∈Λ̄B

ε−N Jε(w̃ε,Q) + K1I(w)− c2e−(2+o(1)) dε/ε(4.5)
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for some c2 > 0.
Note that as ε→ 0,

lim
ε→0

dε → max
P∈ΛI

ϕ̃K1 (P) > β1 ≥ lim
ε→0

βε(4.6)

by assumption (H2).
Since Mε(Pε) is the maximum, we have by (4.3) and (4.5)

dε ≤ βε + o(1)

A contradiction to (4.6)!
Therefore Pε ∈ ΛI .
Moreover, the same arguments show that

ϕ̃K1 (Pε1, . . . , P
ε
K1

)→ max
P∈ΛI

ϕ̃K1 (P)

as ε→ 0. This completes the proof of Proposition 4.1.

5 Proof of Theorem 1.1

In this section, we apply results in Section 3 and Section 4 to prove Theorem 1.1.

Proof of Theorem 1.1 By Proposition 3.1, there exists ε0 such that for ε < ε0 we have a
C1 map which, to any P ∈ Λ̄I , Q ∈ Λ̄B, associates Φε,P,Q ∈ K⊥ε,P,Q such that

Sε(w̃ε,P + w̃ε,Q + Φε,P,Q) =
∑

il

αI
il
∂wε,Pi

∂Pi,l
+
∑

jl

αB
jl

∂wε,Q j

∂τlQ j

for some constants αI
il ∈ RK1N , αB

jl ∈ RK2(N−1).

By Proposition 4.1, we have (Pε,Qε) ∈ ΛI × ΛB, achieving the maximum of the maxi-
mization problem in Proposition 4.1. Let Φε = Φε,Pε,Qε and uε = w̃ε,Pε + w̃ε,Qε + Φε,Pε,Qε .
Then we have

Proposition 5.1 uε is a critical point of Jε if and only if (Pε,Qε) is a critical point of Mε.

Proof The proof is similar to the proof of Proposition 4.1 in [17].
By the above Proposition, uε is a critical point of Jε. Hence uε satisfies

ε2∆uε − uε + f (uε) = 0, in Ω

∂uε
∂ν
= 0 on ∂Ω.

Multiplying the above equation by u−ε = min(0, uε), we obtain

〈u−ε , u
−
ε 〉ε =

∫
Ωε

f (u−ε )u−ε .
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Hence we have

(∫
Ωε

(u−ε )p+1
)2/(p+1)

≤ C‖u−ε ‖
2
ε ≤ C

∫
Ωε

|u−ε |
p+1

since p is subcritical.
Thus either ∫

Ωε

|u−ε |
p+1 ≥ C

or

u−ε ≡ 0.

By our construction, it is easy to see that
∫
Ωε
|u−ε |

p+1 = o(1). Hence uε ≥ 0. By Max-
imum Principle uε > 0 in Ω. Moreover εN Jε(uε) → (K1 + K2/2)I(w) and uε has only
K local maximum points P̃ε1, . . . , P̃

ε
K1

, Q̃ε
1, . . . , Q̃

ε
K2

. By the structure of uε we see that
(up to a permutation) P̃εi − Pεi = o(1), Q̃ε

j − Qε
j = o(1). Hence ϕ̃K1 (P̃ε1, . . . , P̃

ε
K1

) →
maxP∈ΛI ϕ̃K1 (P1, . . . , PK1 ). This proves Theorem 1.1.
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