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Introduction. This paper deals with the following problem: Can an arbitrary continuous
function on [0, 1], which vanishes at the origin, be represented in some sense as a series of
constant multiples of indefinite integrals of a complete orthonormal set of functions on [0,1]?
Four contexts in which this problem arises naturally will be given in the introduction and the
remainder of the paper will be devoted to giving a partial answer to the specific problem
formulated in one of these contexts.

Some notation will first be needed. Let C be the space of continuous functions x(s) on
[0,1] such that x(Q) = 0. Let {a,(s)} be a C.O.N. set of functions of bounded variation,
normalized so that a,(l) = 0. Finally let

= {\(s)dx(s) (= - f x(s)doii(s)\.

The question of the possibility of representation of xeC by

fU (0-1)
where the right side of (0.1) will be called the eft expansion of x, arises in the following four
ways.

(i) If C is given the uniform norm, and if each fi'^s) exists except for a finite number of
points and is continuous except at these points and is bounded, then the set {/?„(/), £„(*)} is a
biorthogonal system [1, p. 106] in terms of which the biorthogonal expansion of xeC is
given by the right side of (0.1). In this context then a relevant question is whether (0.1) holds
as an equality uniformly in t.

(ii) Paley, Wiener and Zygmund [12] have defined the P.W.Z. integral, denoted by

i:
which, for any/e£2(0,1), is defined for almost all xeC (in the sense of Wiener measure on
C). It will be shown in § 1 that, for given xeC and given/of bounded variation such that
/ ( I ) = 0 (it will be seen that no loss of generality results from the assumption of this equality),

f1
the question of whether the P.W.Z. integral f(s)dx(s), when it exists, agrees with thef

Jo
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30 H. C. FINLAYSON

PRiemann-Stieltjes integral f(s)dx(s) is settled in the affirmative provided that suitable

summability conditions of the cfl series of x are satisfied. Theorem 1 of § 1 specifies such
conditions.

(iii) In the problem of approximating a Wiener integral

I.F[x]dx

it would be convenient to be able to approximate x(s) by a sum

x(s)=tbk(s)ck(x) (0.2)

for suitable functions bk(s). The reason is that then the simple integration formula [3, p. 115]
for the Wiener integral of a functional f{cY{x),..., cB{x)) could be used. Routine formal
computation from (0.2) suggests bk(s) = fik(s). In this context convergence for almost all x

n

of the right side of (0.1) to x(s) in the uniform (or L2) topology along with /*"[ £ ct(x)/?n( •)]

dominated by a Wiener integrable functional and F continuous in the uniform (or L2) topology
would ensure that

lim f Ft t ck(x)fik(-y]dx = [ J[x(•)]<**•
"-•oojc k = l Je

(For results of this sort see [3], [5], [6], [9], [11].)
(iv) If x'(t) is continuous, indefinite integration of

j= 1J 0

followed by an application of the Schwarz inequality shows that the c/? expansion of x(t)
converges uniformly to x(t).

In this paper attention is focused on the problem as motivated in (ii) above by the P.W.Z.
integral. As noted in (ii), Theorem 1 of § 1 is then one of the important results. Theorem 2
specifies several C.O.N. sets of functions for which the conditions of Theorem 1 are satisfied
for arbitrary xeC. Also contained in § 1 is an expansion theorem (Theorem 3) of arbitrary
jce C in terms of the normalized characteristic functions of the Sturm-Liouville problem

: °'l (0.3)

where w(s) > 0 and w(s) has a continuous third derivative. The author believes this theorem
is probably known but has been unable to find a reference for it. Thus an outline of the
proof of this theorem is given as the content of § 3. In § 4 are given some concluding remarks
about the c/? expansions considered in this paper.
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1. Agreement of I /(s) 2x(s) with f(s)dx(s).
Jo Jo

p
The symbol / (0 a n(0 dt will be replaced by gn below.

Jo
DEFINITION. [12, p. 652]. For/eZ,2(0, 1) and xe C the limit

n(s)dx(s),
oo p i

Z 9* «»
n=l Jo

'f
Jo

if it exists, will be denoted by f(s)dx(s) and called the P.W.Z. integral of/with respect to x

f1
(i.e. the nth approximation of I f(s) 3x(s) is fn(s) dx(s), where fn(s) is the nth partial sum

Jo Jo
in the a-expansion of / ) .

The principal theorems of the paper are the following.
THEOREM 1. Suppose that, for fixed xeC, the following conditions are met:

00

0 ) Z c*(x)At(O *s summable by some permanent triangular series-to-sequence matrix

method A = (amn) to x(t).
00

(2) The A-transform of Z C*(X)A(O 's bounded in t and n.

f1
Then, for any f of bounded variation, the series defining f(t)ax(t) is A-summable to

Jo
f(t)dx(f) (which of course exists). Also, if \ f(t)3x(t) exists, it equals f(t)dx(t).

Jo Jo Jo
THEOREM 2. (i) The two conditions of Theorem 1 are satisfied, for all xeC,by the following

complete orthonormal sets of functions (normalized to be 0 at t = 1):

(a) the sine functions,
(b) the cosine functions,
(c) the characteristic functions of (0.3),
(d) the Haar functions normalized to be right continuous.

(ii) Condition (1) of Theorem 1 is satisfied by
(e) the even Legendre polynomials.

The following theorem will be required in connection with (c) of Theorem 2.

THEOREM 3. The expansion of arbitrary xeC in the characteristic functions of (0.3) is,
for 8>0, uniformly (C, 5) summable to x on [0, 1].

Before a proof is given for Theorem 1 it will be noted in passing that Paley, Wiener and
Zygmund [12] have shown that, for fixed/eL2(0,1), the P.W.Z. integral exists for almost all
xeC and that, fo r /of bounded variation (in which case of course the R.S. integral exists for
all xeC), the two integrals agree for almost all x.
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The following lemma of Burkill [2, p. 74] will be required in the proof of Theorem 1.

LEMMA. Let g(s) and gn(s) (n = 1, 2, 3 , . . . ) be continuous on [0, 1] and suppose that
CO

Z 9k(s) *s summable by some permanent triangular series-to-sequence method (amn) (m, n =
n

1, 2, 3 , . . . ) to g(s) on [0, 1]. If the A-transform Gn(s) = £ ank9k(s) converges boundedly to

g(s), then, for h(s) of bounded variation,

(i)lim (1Gn(
n-»oo J 0

n pi pi
(ii) / / lim £ 9k(s)dh(s) exists, then this limit also equals g(s)dh(s).

n-»oot=ljo Jo
Proof, (i) appears in Burkill [2, p. 74]. The proof of (ii) follows from the fact that

(amn) to g(s) is a permanent triangular matrix method. For then

YJgk(s)dh(s)-^K
0 t=l

implies that

or

n pi

I a<* \ i
t=i Jo

f1 I ankgk(s)dh(s)(=\lGn(s)dKs))->K.
J o * = i \ Jo /

f1

From (i) it follows that K = g(s) dh(s) and the proof of (ii) is complete.
Jo

Next follows the proof of Theorem 1. It is first noted that / ( I ) = 0 can (and will) be
assumed so far as the existence of, or the value of, either /(s)3x(s) or f(s)dx(s) is

Jo Jo
concerned. Now, for/of bounded variation (recall the definition of gn at the beginning of
this section),

0t = / ( 0 ['«&)ds\h- fX ['<xk(s)dsdKt)
Jo Jo Jo

= - I I ak(s) ds df(t) (because / (I) = 0)
J o j o

(1.1)
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Thus

n r rn i
= Z 0*at(s)x(s)|£- x(s)d\ Z 9k<*k(s)

*=i Jo L*=i J

= - f * x(s) d \ Z 9k «k(s)"| (since ak(l) = x(0) = 0)
Jo |_*=i J

r 1 B r 1

= YJ x(s)dak(s)fik(t)df(i) (because of (1.1))
Jo fc= 1J O

Jo *=i

Also

(1.3)
Jo o

It follows from (1.2) and (1.3) and the lemma that the series defining the P.W.Z. integral is
f1

/4-summable to the R.S. integral and that, if this series converges, it equals /(() dx(t). The
Jo

proof is complete.

2. Convergence behaviour for specific a-sets. The proof of Theorem 2 will now be given.
It is important to note that a(l) = 0. Furthermore, each of the a-sets investigated, except the
Haar set, has each a absolutely continuous on [0, 1) and so in these cases

I c*(x)ft(0 = - t f 1x(s)cfc'(
=1 *=ljo

(2.1)

(where <xk(l —) is the limit from the left). Now follows the convergence investigation for the
special cases mentioned.

(a) Sines: <xk(s) — y/2sinkns.

E ck(x)Pk(t)= £ | f x(s)s/2cosknsds y2cosknt-\ x(s) J 2cosknsds. (2.2)
fc»l it= 1 LJ 0 J Jo t = l

By a standard theorem in Fourier series the first member in the right side of (2.2) is, for «5 > 0,
Puniformly (C, 8) summable to x(t)— x(s)ds on [0, 1] and the second member is uniformly
Jo

P(C, 5) summable to -x(0)+ x(s)ds, so that the left side is uniformly (C, 8) summable to
Jo

x(t) on [0,1]. The conditions of Theorem 1 are thus clearly satisfied.
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(b) Cosines: 1, y/2cosns, yj2cos2ns,.... Here

n+l n pi

E ck(x)Pk(t) = *(!)*+ E x(s)V2 s i n k 7 t s d s V2 sinknt
J k = l fc = l J 0

+ x(l)2 J (-Ifsiaknt/kn. (2.3)
*=i

The sum of the two sums on the right of (2.3) is the nth partial sum of the Fourier series
expansion of x(t)—x(l)t on [0,1] and so, by a standard theorem, is uniformly (C, 5) summable
on [0,1] to x(t)—x(l)t. Again then the conditions of Theorem 1 are satisfied.

(c) The normalized characteristic functions of the Sturm-Liouville problem:

a'(0) = a(l) = 0 on [0,1]J

where w(s) > 0 and w(s) has a continuous third derivative.
In this case

- f'x(sK'(s)ds = [\{s)Xkw(s)/Sk(s)ds,
Jo Jo

where the X"s are the characteristic numbers of (2.4) (because u'k(s) — - Xk w(s)pk(s)) and thus

t c*«ft(0 = {1/K0]} Z [ f '{xWVK*)] V[^Ks)]^(s)dsV[Atw(O])St(O}l. (2.5)
* LJ J
* = 1

Now {s/[Xnw(t)]Pn(t)} is known to be C.O.N. [5, p. 463]. In fact {/?„(<)} c a n easily be shown
to be the set of characteristic functions of the S-L problem (0.3); this set is orthogonal with
respect to the weight w(t). Since x(t)y/[w(t)]eC, Theorem 3 shows that the right side of
(2.5) is uniformly Cesaro summable to x(t) and again the conditions of Theorem 1 have been
shown to be satisfied.

(d) The Haar functions normalized to be right continuous. Ciesielski [4] has shown that
n+l n

for each xe C the graph of £ ck(x)f}k(t) has at least the same vertices as that of £ ck(x)Pk(i)
k = l Jt = l

and that { £ ck(x)f}k(t)} converges uniformly to x(t). An outline of a proof of this is given
t=i

in [6]. In this case then the conditions of Theorem 1 are of course satisfied and in fact for
f1

every xeC and every/of bounded variation (with/(I) = 0) f(t)dx(t) exists and equals
Jo

Jo
(e) The even Legendre polynomials on [0,1]:

) (* = 0,1, 2,...)•
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(cf. [10, (4.7.15), p. 81] and note that the nth Legendre polynomial Pn(s) is there given as the
nth ultraspherical polynomial P(

n
1/2\s)),

_jt (k = 0), "I
Puit) ~ \y/W + W2 - l)P'2k(t)l[2K2k +1)] (fc ̂  1) J

(because [(u2- l)P'2k(u)]' = 2k(2k+ l)P2k(u) [10, (4.7.5)] and because P'2k(0) = 0 [10, (4.7.14)
and (4.7.4)]).

Now

po'(0 = 0, 1

P'IM = Pg'-21(O (fc ^ 1) [9. (4.7.14)] J

and it is easy to verify [10, (4.7.15) and (4.7.4)] that the set

is C.O.N. on [0, 1]. Also the first sum on the right of (2.1) is easily verified by (2.6) and (2.7)
to be

[ (2.8)

i.e. y/(l—t2) times the nth partial sum in a Jacobi expansion of x(t)lyj(l — t2). The second
sum on the right of (2.1) is

i(0] (2-9)

(which follows easily from

and

[10, (4.7.29)]

along with P2k-1(0) = 0). Now (2.9) converges to 0 on [0,1) because of the telescoping
property, the estimate [10, (7.3.8), p. 160] for Pn(t), and the fact that P^t) = 1. At 1, (2.9)
converges to x(\) because P2k+ x(l) = 0. Also, it is easy to see that the convergence is bounded
on [0, 1] and uniform on [0, 1 - e]. By a theorem of Szego [10, Theorem 9.1.2, p. 239] the
expression (2.8) is, for 5 > 0, summable (C, 5) uniformly on [0, 1 — e] to x(t) and clearly (2.8)
converges to 0 at t = 1 (there it is always 0). Thus the c/? series satisfies condition (1) of
Theorem 1. The author has been unable to find whether condition (2) is also satisfied. What
is required is to show that, for suitable M > 0, Mly/(l — t2) is a majorant for the Cesaro
approximations in the Jacobi expansion of x(t)lj(l — t2). That there is such a majorant for
the partial sums of an ordinary Fourier series can be shown from the results of Zygmund
[13, p. 154] but a similar technique for Jacobi series does not seem to follow easily.
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3. Theorem 3. An outline of the proof of Theorem 3 will now be given. First one
verifies that for vv(s) = 1 there results for the characteristic functions of (0.3)

Then it is easy to verify that, for xeC, the ordinary Fourier sine expansion of z(t), defined by

jx(O for *e[0,l],
z(0 = <

\x(2-0 for te[l,2],
is

t ('1 (3.1)

(the inclusion of the zero terms in (3.1) is important in the context of summability below).
The theory of Cesaro summability for Fourier series ensures that the series for which (3.1) is
the nth partial sum is uniformly summable (C, 1) to z{t) on the real line. Thus the yk expansion
of x(s) on [0, 1], the nth partial sum of which is also computed to be (3.1) with the zero terms
deleted, is uniformly summable to x(t) (= z(f) on [0, 1]) by the permanent triangular method
whose matrix is that of (C, 1) means with alternate columns deleted.

In fact, the series having the nth partial sum of (3.1) with the zeros deleted as its nth partial
sum is uniformly (C, 5) summable for <5 > 0. This can be proved as follows from the
equivalence, for 5 > 0, of Cesaro summability (C, 5) and Riesz summability (R, n, §). Let
the series corresponding to (3.1) with alternate zero terms deleted and the series corresponding
to (3.1) as it stands be denoted respectively by

(3-2)

(3.3)
where

The (R, n, 8) summability of (3.2) or (3.3) is defined as meaning respectively that a^u, t) -»/(0
or a2(u, t) -*f(t) as u -* oo, where

u

By (3.4),
ff2(M) = K-' Z (« - (

2n-l<u

Thus <r2(u, t) -»/(/) uniformly as u -* oo if and only if a^u, t) -*f(t) uniformly as u -* oo.
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The proof of the theorem for w(s) = 1 is complete.
Next, for general w(s), the expansion result is obtained in terms of the characteristic

functions of the Liouville normal form of (0.3) by means of the estimate in Kamke [8, p. 263]
for the characteristic functions and the expansion theorem [8, p. 261], along with the technique
given by Ince [7, pp. 276-278]. Finally, the expansion is obtained in terms of the characteristic
functions of (0.3) (not in normal form) by the observation that the expansion of x(t) in
characteristic functions of (0.3) is {w[f(.s)]}1/4 times the expansion of x[t(s)]l{w[t(s)]}1'* in

characteristic functions of the normal form of (0.3), where s = V M " ) ] dv/K as used in the

JJLiouville transformation. The outline of the proof is complete.

4. Concluding remarks. It will be noted that in examples (a)-(c) convergence properties
of the c/? series were obtained from the fact that the first sum on the right of (2.1) is a partial
sum in an orthonormal expansion. This in turn was due to the fact that the a's were solutions
of a Sturm-Liouville problem for which the differential equation was of the form

where p = 0 and g(x) is a constant M. This results in

and so makes the /Ts be of the form (const.)(r(*)a'(x)); hence the summands in the first term
of the right side of (2.1) are then at least of the form of summands in an O.N. expansion.

The Legendre example is of interest in that only for that case is the differential equation
singular.

The Haar functions, which yield fi's having no nice orthogonality properties, give the
best eft series of those considered.

It would be interesting to find a technique for investigating the c/? series convergence
properties of more general Sturm-Liouville problems—perhaps the ultrasphericals for example.
The author has been unable to do so.

The author thanks the referee for several corrections and helpful suggestions.
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