A REMARK ABOUT A CERTAIN CLASS OF DISTRIBUTION SPACES

S. R. HARASYMIV
(Received 19 August 1968)
Communicated by J. B. Miller

1. Introduction

The object of this note is to exhibit a certain class of distribution spaces as being c-admissible in the sense of [1] and [2]. Throughout the terminology and notation are the same as in [1] and [2]. The only addition to this is that if \(x \in \mathbb{R}^n \) then \(\tau_x \) will denote the translation operator which carries each distribution \(u \) onto the distribution \(u_x \).

2. c-admissibility of certain spaces

We shall prove the following result.

Proposition. Let \(E \) be an admissible space which is barrelled and \(B_r \)-complete, and which is a module over \(S \) with respect to convolution.

Consider the following two hypotheses:

(i) \(E \) is translation-invariant and for each \(u \in E \) the mapping \(x \rightarrow u_x \) of \(\mathbb{R}^n \) into \(E \) is bounded on compact subsets of \(\mathbb{R}^n \).

(ii) \(E \) is dilation-invariant and for each \(u \in E \) the mapping \(x \rightarrow u^x \) of \(\mathbb{R}^\# \) into \(E \) is bounded on compact subsets of \(\mathbb{R}^\# \).

Then the conclusions are:

(a) If (i) holds then \(E \) is c-admissible.

(b) If both (i) and (ii) hold then \(E \) is a dilation space.

Proof. We shall begin with the proof of assertion (a). Thus we assume that (i) holds.

Our first task is to show that for each \(x \in \mathbb{R}^n \) the mapping \(u \rightarrow u_x \) of \(E \) into itself is continuous. Since \(E \) is both barrelled and \(B_r \)-complete, the closed graph theorem (Theorem 8.9.4 in Edwards [3] and the first Remark following it) tells us that it is sufficient to show that the linear operator \(\tau_x \) (considered as a mapping of \(E \) into itself) has a closed graph. To this end
we assume that \(x \in R^n \) is fixed, and that \((u_i)\) is a net in \(E \) such that \(\lim_i u_i = u \) in \(E \) and \(\lim \tau_x u_i = w \) in \(E \). Then for each \(\phi \in S \) it follows (because of relation (2.1) in [1]) that

\[
w * \phi(0) = \lim_i (\tau_x u_i) * \phi(0) = \lim_i u_i * \phi_x(0) = u * \phi_x(0) = (\tau_x u) * \phi(0).
\]

Thus \(w = \tau_x u \) and the graph of \(\tau_x \) is indeed closed.

Our second requirement is to show that for each \(u \in E \) and each \(v \in E' \) the mapping \(x \mapsto \langle u_x, v \rangle \) defines a continuous function on \(R^n \). With this end in mind, let \(b \in R^n \) be arbitrary but fixed. Let \(K \) be the set \(\{ x \in R^n : |x-b| \leq 1 \} \) and consider the set \(\{ \tau_x : x \in K \} \) of continuous linear mappings of \(E \) into itself. Write \(E_0 \) for the set of all \(u \in E \) for which \(\lim_{x \to b} \tau_x u \) exists in \(E \) and define the mapping \(T \) of \(E_0 \) into \(E \) by \(Tu = \lim_{x \to b} \tau_x u(u \in E_0) \). We notice that for each fixed \(\phi \in S \), the mapping \(x \in R^n \to \phi_x \in S \to \phi_x \in E \) is continuous; and hence that

\[
(2.1) \quad \lim_{x \to b} \tau_x \phi = \tau_b \phi \quad \text{in} \quad E.
\]

It follows from this that \(E_0 \) contains \(S \), which is dense in \(E \). Secondly, our assumption that (i) holds entails that the set \(\{ \tau_x : x \in K \} \) of continuous linear mappings is bounded at each point of \(E \). Thus, since \(E \) is \(B_r \)-complete and hence quasi-complete, we may refer to Corollary 7.1.4 in Edwards [3] and deduce that \(E_0 = E \) and that \(T \) is a continuous linear mapping of \(E \) into itself. But relation (2.1) shows that \(T \) coincides with the continuous linear mapping \(\tau_b \) on the dense vector subspace \(S \) of \(E \); whence it follows that the two mappings are identical. Thus \(\lim_{x \to b} \tau_x u = \tau_b u \) for each \(u \in E \).

Since \(b \in R^n \) is arbitrary, we now infer that for each \(u \in E \), the mapping \(x \to u_x \) is continuous from \(R^n \) into \(E \). It follows immediately that for each \(u \in E \) and each \(v \in E' \), the mapping \(x \to \langle u_x, v \rangle \) defines a continuous function on \(R^n \), which is what we wished to prove.

Next consider a fixed \(\phi \in S \). We claim that the mapping \(u \to u * \phi \) of \(E \) into itself is continuous. To verify this assertion, it is sufficient to show that the graph of this mapping is closed; the desired conclusion will then follow from the closed graph theorem. Thus let \((u_i) \) be a net in \(E \) such that \(\lim_i u_i = w \) in \(E \) and \(\lim_i u_i * \phi = w \) in \(E \). Then for each \(\psi \in S \) we have \(w * \psi(0) = \lim_i u_i * \phi * \psi(0) = u * \phi * \psi(0) \). Hence \(w = u * \phi \) and the mapping \(u \in E \to u * \phi \in E \) is closed, as required.

If we recall that \(S \) is barrelled, then a similar argument shows that for each \(u \in E \), the mapping \(\phi \to u * \phi \) of \(S \) into \(E \) is continuous.
We shall now complete the proof of part (a) of the Proposition. Let \(u \in E \) and \(v \in E' \) be arbitrary but fixed. We must show that the continuous function \(x \to \langle u_x, v \rangle \) \((x \in \mathbb{R}^n)\) generates a temperate distribution on \(\mathbb{R}^n \). In view of the last paragraph, the mapping \(\phi \to \langle u * \phi, v \rangle \) \((\phi \in S)\) defines a temperate distribution, which we denote by \(s \). We shall show that the function \(x \to \langle u_x, v \rangle \) \((x \in \mathbb{R}^n)\) generates precisely this distribution \(s \). To do this it is sufficient to show that for each \(\psi \in D \)

\[
\int_{\mathbb{R}^n} \langle u_x, v \rangle \psi(-x) \, dx = s \ast \psi(0).
\]

Let \(\psi \in D \) be arbitrary. Choose a net \((\phi_i) \) in \(S \) such that \(\lim_i \phi_i = u \) in \(E \). We notice that, because of Theorem 2.2(a) in [1] and the continuity of the functions \(x \to \langle u_x, v \rangle \) on \(\mathbb{R}^n \), the mapping \(x \to u_x \) is continuous from \(\mathbb{R}^n \) into \(E' \) for the weak topology on \(E' \). Therefore the set \(\{v_x : x \in \text{supp} \psi\} \) is a weakly compact, hence weakly bounded, hence equicontinuous (because \(E \) is barrelled) subset of \(E' \). In view of this we conclude that

\[
\lim_i \phi_i \ast v(x) = \lim_i \langle \phi_i, v_x \rangle = \langle u, v_x \rangle = \langle u_x, v \rangle
\]

uniformly for \(x \in \text{supp} \psi \). It follows that

\[
\int_{\mathbb{R}^n} \langle u_x, v \rangle \psi(-x) \, dx = \lim_i \int_{\mathbb{R}^n} \phi_i \ast v(x) \psi(-x) \, dx = \lim_i \phi_i \ast \psi \ast v(0) = \lim_i \langle \phi_i \ast \psi, v \rangle.
\]

Now we have shown above that the mapping \(w \in E \to w \ast \psi \in E \) is continuous. Therefore

\[
\lim_i \langle \phi_i \ast \psi, v \rangle = \langle u \ast \psi, v \rangle = s \ast \psi(0).
\]

Relations (2.3) and (2.4) together ensure that (2.2) holds; whence we infer that the function \(x \to \langle u_x, v \rangle \) can indeed be identified with a temperate distribution on \(\mathbb{R}^n \). Since \(u \in E \) and \(v \in E' \) were arbitrary, this completes the proof of (a).

The validity of part (b) of the Proposition will be established if we can show that (ii) entails that the mapping \(x \to u^x \) of \(\mathbb{R}^n \) into \(E \) and the mapping \(u \to u^x \) of \(E \) into itself are both continuous (for the given topology on \(E \)); and the truth of this may be verified by using arguments analogous to those which we employed above to establish the continuity of the mappings \(x \to u_x \) of \(\mathbb{R}^n \) into \(E \) and \(u \to u_x \) of \(E \) into itself.

References

ston, New York, 1965).

Department of Mathematics
University of Connecticut