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Abstract The singular boundary-value problem (g(x′))′ = µf(t, x, x′), x′(0) = 0, x(T ) = b > 0 is
considered. Here µ is the parameter and f(t, x, y), which satisfies local Carathéodory conditions on
[0, T ] × (R \ {b}) × (R \ {0}), may be singular at the values x = b and y = 0 of the phase variables x and
y, respectively. Conditions guaranteeing the existence of a positive solution to the above problem for
suitable positive values of µ are given. The proofs are based on regularization and sequential techniques
and use the topological transversality theorem.
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1. Introduction

Let b, T be positive numbers, J = [0, T ] and Ra = R \ {a} for a ∈ [0,∞). Consider the
boundary-value problem (BVP)

(g(x′(t)))′ = µf(t, x(t), x′(t)), (1.1)

x′(0) = 0, x(T ) = b. (1.2)

Here µ is the parameter, g ∈ C0(R), f satisfies local Carathéodory conditions on J ×
Rb × R0 (f ∈ Car(J × Rb × R0)), and f(t, x, y) may be singular at the values x = b and
y = 0 of the phase variable x and y, respectively.

Together with (1.2) we also discuss the boundary conditions

x′(0) = 0, x(T ) = c, 0 < c < b. (1.3)
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A function x ∈ C1(J) is said to be a solution of the BVP (1.1), (j), j = 1.2, 1.3, if
g(x′) ∈ AC(J) (absolutely continuous functions on J), x satisfies the boundary condi-
tions (j) and (1.1) holds a.e. on J .

The aim of the paper is to give conditions guaranteeing the existence of positive solu-
tions to BVPs (1.1), (j), j = 1.2, 1.3, for suitable positive values of the parameter µ

in (1.1).
The study of BVPs (1.1), (1.2) and (1.1), (1.3) was motivated by the paper [4] where

the results in [5] were extended and generalized. In [4] the authors discussed the existence
of a non-negative solution to the singular (at the time variable t) mixed BVP

1
p(t)

(p(t)x′(t))′ + µq(t)f1(t, x(t), p(t)x′(t)) = 0,

lim
t→0+

p(t)x′(t) = 0, x(1) = b,

⎫⎪⎬
⎪⎭ (1.4)

with f1 ∈ C0([0, 1] × R
2) satisfying f1(t, x, r0(t)) = 0 for t ∈ [0, 1] and x ∈ [0, β], where

r0 ∈ C0([0, 1]) is positive and non-decreasing and β > 0. Our Equation (1.1) is, on
the one hand, a special case of (1.4) with p = 1, q = 1, but, on the other hand, it
is a generalization of (1.4), since on the left-hand side of (1.1) we have (g(x′))′ and the
nonlinearity f(t, x, y) may be singular at the values x = b and y = 0 of the phase variables
x and y, respectively.

Note that positive solutions to BVP (1.1), (1.2) with g(u) ≡ u have been considered
in [2]. Here f may be singular at the value 0 in both its phase variables and f satisfies
sign conditions. Conditions guaranteeing the existence of two positive solutions for the
regular differential equation (|x′(t)|p−2x′(t))′ + h(t)f2(x′(t)) = 0, p > 1, satisfying (1.2)
are given in [3].

Throughout this paper the following assumptions are satisfied.

(H1) g ∈ C0(R) is increasing on [0,∞), g(0) = 0 and limu→∞ g(u) = ∞.

(H2) f ∈ Car(J × Rb × R0),

f(t, x, α(t)) = 0 for a.e. t ∈ J and each x ∈ [0, b),

where α ∈ C0(J) is positive and non-decreasing on J and also there are positive
numbers ε, ε0 and ν ∈ (0, T ] such that

ε � f(t, x, y) for a.e. t ∈ [0, ν] and each (x, y) ∈ [0, b) × (0, ε0].

(H3) For a.e. t ∈ J and each (x, y) ∈ [0, b) × (0, α(t)],

0 � f(t, x, y) � (q1(x) + q2(x))(ω1(y) + ω2(y)),

where q2 ∈ C0([0, b)), ω1 ∈ C0([0,∞)) are non-decreasing, q2 > 0, ω1 � 0, q1 ∈
C0([0, b]), ω2 ∈ C0((0,∞)) are non-increasing, q1 � 0, ω2 > 0, ω1 + ω2 is non-
increasing on (0, δ] with δ ∈ (0, T ], and∫ 1

0
ω2(g−1(s)) ds < ∞.
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Remark 1.1. Since ω2(g−1(t)) is non-increasing positive on (0,∞) by (H1) and (H3),
the condition

∫ 1
0 ω2(g−1(s)) ds < ∞ in (H3) implies

∫ c

0 ω2(g−1(s)) ds < ∞ for each
c ∈ (0,∞).

We denote by ‖x‖ = max{|x(t)| : t ∈ J} and ‖x‖L1 =
∫ T

0 |x(t)| dt the norm in the
Banach spaces C0(J) and L1(J), respectively.

To prove existence results for BVPs (1.1), (1.2) and (1.1), (1.3) we use regulariza-
tion and sequential techniques. First, we define a family of auxiliary regular differential
equations depending on n ∈ N and using the topological transversality theorem (see, for
example, [1]) given in Lemma 2.1 we obtain a general existence principle (Lemma 2.2).
Using this principle we show that the sequence of auxiliary BVPs has a sequence {xn}
of positive solutions (Lemmas 2.3 and 2.4). Applying the Arzelà–Ascoli Theorem we can
select a convergent subsequence of {xn} and then the Lebesgue-dominated convergence
theorem shows that its limit is a solution of our BVP (Theorems 3.1 and 3.2). Example 3.3
demonstrates the application of our existence results.

2. Auxiliary BVPs

Let

N0 =
{

n : n ∈ N, n > max
{

2
b
,

1
α(0)

,
1
ε0

,
1
δ

}}
,

where the positive numbers b, ε0, δ and the function α are given by (H2) and (H3). For
n ∈ N0, define pn ∈ C0(R), f̃n ∈ Car(J × Rb × R) and fn ∈ Car(J × R

2) by

pn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x > b,

n(b − x) if b − (1/n) < x � b,

1 if (1/n) < x � b − (1/n),

nx if 0 < x � (1/n)

0 if x � 0,

f̃n(t, x, y) =

⎧⎪⎨
⎪⎩

f(t, x, α(t)) for (t, x, y) ∈ J × Rb × [α(t),∞),

f(t, x, y) for (t, x, y) ∈ J × Rb × [(1/n), α(t)),

f(t, x, (1/n)) for (t, x, y) ∈ J × Rb × (−∞, (1/n)),

fn(t, x, y) =

{
pn(x)f̃n(t, x, y) for (t, x, y) ∈ J × Rb × R,

0 for (t, y) ∈ J × R, x = b.

Then (H2) and (H3) give

0 � fn(t, x, y) � (q1(x) + q2(x))(ω1(y) + ω2(y)) (2.1)

for a.e. t ∈ J and each (x, y) ∈ [0, b) × (0, α(t)].
Finally, define g∗ ∈ C0(R) by

g∗(u) =

{
g(u) for u ∈ [0,∞),

−g(−u) for u ∈ (−∞, 0).
(2.2)
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Consider the family of regular differential equations

(g∗(x′(t)))′ = λµfn(t, x(t), x′(t)) (R)λ
n

depending on the parameters n ∈ N0 and λ ∈ [0, 1] together with the auxiliary boundary
conditions

x′(0) = 0, x(T ) = b − (1/n). (B)n

For the solvability of BVPs (R)1n, (B)n and (R)1n, (1.3) we use the existence principle,
whose proof is based on a well-known result in the literature (Lemma 2.1).

Lemma 2.1 (see [1]). Let Ω be a relatively open set of a convex set Φ in a Banach
space E and p ∈ Ω. If

(a) K : [0, 1] × Ω̄ → Φ is a compact operator,

(b) K(0, x) = p for x ∈ Ω̄, and

(c) K(λ, x) �= x for λ ∈ (0, 1) and x ∈ ∂Ω,

then K(1, ·) has a fixed point in Ω̄.

Lemma 2.2. Let F ∈ Car(J × R
2), g∗ be given by (2.2), d ∈ R and let there exist

positive constants P0, P1 independent of λ, P0 > |d|, such that

‖x‖ �= P0, ‖x′‖ �= P1

for any solution x to BVP

(g∗(x′(t)))′ = λF (t, x(t), x′(t)), (2.3)λ

x′(0) = 0, x(T ) = d (2.4)

with λ ∈ (0, 1). Then there exists a solution of BVP (2.3)1, (2.4).

Proof. Set
Ω = {x : x ∈ C1(J), ‖x‖ < P0, ‖x′‖ < P1}

and let K : [0, 1] × Ω̄ → C1(J),

K(λ, x)(t) = d −
∫ T

t

g−1
∗

(
λ

∫ s

0
F (v, x(v), x′(v)) dv

)
ds.

Then x is a fixed point of the operator K(λ, ·) if and only if x is a solution of BVP
(2.3)λ, (2.4). To prove the solvability of BVP (2.3)1, (2.4) we use Lemma 2.1 (with
E = Φ = C1(J) and p = d).

First we see that K(0, x) = d for x ∈ Ω̄. If K(λ0, x0) = x0 for some (λ0, x0) ∈ (0, 1) ×
∂Ω, then x0 is a solution of BVP (2.3)λ0 , (2.4) and ‖x0‖ �= P0, ‖x′

0‖ �= P1 by our assump-
tion, that is x0 �∈ ∂Ω, contrary to x0 ∈ ∂Ω.
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It remains to show that K is a compact operator. For this let {(λn, xn)} ⊂ [0, 1] × Ω̄

be a convergent sequence, limn→∞ λn = λ0, limn→∞ xn = x0. Then there is a positive
constant L such that ‖xn‖ � L, ‖x′

n‖ � L for n ∈ N, and since F ∈ Car(J × R
2),

|F (t, xn(t), x′
n(t))| � γ(t) for a.e. t ∈ J and each n ∈ N, (2.5)

where γ ∈ L1(J). Hence

lim
n→∞

λn

∫ t

0
F (s, xn(s), x′

n(s)) ds = λ0

∫ t

0
F (s, x(s), x′(s)) ds

uniformly on J by the Lebesgue-dominated convergence theorem, and so the sequence

{g∗((K(λn, xn))′(t))} =
{

λn

∫ t

0
F (s, xn(s), x′

n(s)) ds

}

is uniformly convergent on J to λ0
∫ t

0 F (s, x0(s), x′
0(s)) ds. Now from the equalities (for

n ∈ N and t ∈ J)

|(K(λn, xn))′(t) − (K(λ0, x0))′(t)| = |g−1
∗ [g∗((K(λn, xn))′(t))] − g−1

∗ [g∗((K(λ0, x0))′(t))]|

and g∗ being continuous increasing on R, we deduce that

lim
n→∞

(K(λn, xn))′(t) = (K(λ0, x0))′(t) uniformly on J.

Thus limn→∞ K(λn, xn) = K(λ0, x0) in C1(J) since K(λn, xn)(T ) = K(λ0, x0)(T ) = d for
n ∈ N. We have proved that K is a continuous operator. To prove the relative compactness
of K([0, 1] × Ω̄) in C1(J), let {(λm, xm)} ⊂ [0, 1] × Ω̄. Then (2.5) (with m instead of n)
is satisfied with a γ ∈ L1(J) and we can verify that

|g∗((K(λm, xm))′(t))| � ‖γ‖L1 , |K(λm, xm)(t)| � |d| + Tg−1
∗ (‖γ‖L1)

and

|g∗((K(λm, xm))′(t2)) − g∗((K(λm, xm))′(t1))| �
∣∣∣∣
∫ t2

t1

γ(t) dt

∣∣∣∣ (2.6)

for t, t1, t2 ∈ J and m ∈ N. Therefore, {K(λm, xm)} is bounded in C1(J) and from
(2.6) and g∗ being increasing on R it follows that {(K(λm, xm))′(t)} is equicontinuous
on J . Consequently, there is a subsequence of {K(λm, xm)} converging in C1(J) by the
Arzelà–Ascoli Theorem. This completes the proof. �

Let

Q(u) =
∫ u

0
(q1(s) + q2(s)) ds, u ∈ [0, b),

and

H(u) =
∫ g(u)

0

g−1(s)
ω1(g−1(s)) + ω2(g−1(s))

ds, u ∈ [0,∞).

https://doi.org/10.1017/S0013091503000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000105


6 R. P. Agarwal, D. O’Regan and S. Staněk

Then, by (H3), Q ∈ C0([0, b)) and H ∈ C0([0,∞)) are increasing. In addition, if

∫ b

0
q2(t) dt < ∞, (2.7)

then Q ∈ C0([0, b]).

Lemma 2.3. Let (2.7) be satisfied and let there exist µ0 > 0 such that

∫ b

0

1
H−1(µ0Q(s))

ds < ∞. (2.8)

Then the function

r(µ) =
∫ b

0

1
H−1(µQ(s))

ds (2.9)

is continuous and decreasing on (0, µ0].

Proof. We first see that (2.8) shows that the interval [0, µ0Q(b)) belongs to the domain
of H−1. By (H3), there are positive constants k1, k2, k1 < k2, and b0 ∈ (0, b) such that
k1 � q1(u) + q2(u) � k2 for u ∈ [0, b0], and so

k1u � Q(u) � k2u for u ∈ [0, b0]. (2.10)

Then H−1(µ0Q(u)) � H−1(µ0k2u) for u ∈ [0, b1], where 0 < b1 < min{b0, Q(b)/k2} and
(see (2.8))

∫ b1

0

1
H−1(µ0k2s)

ds �
∫ b1

0

1
H−1(µ0Q(s))

ds <

∫ b

0

1
H−1(µ0Q(s))

ds < ∞,

which shows that ∫ µ0k2b1

0

1
H−1(s)

ds < ∞. (2.11)

Let µ ∈ (0, µ0). Now from the inequalities (see (2.10))

H−1(µQ(u)) � H−1(µk1u) for u ∈ [0, b0],

H−1(µQ(u)) � H−1(µQ(b0)) for u ∈ [b0, b],

we have ∫ b

0

1
H−1(µQ(s))

ds �
∫ b0

0

1
H−1(µk1s)

ds +
b − b0

H−1(µQ(b0))
,

and then using (2.11) we deduce that the function r given by (2.9) is defined on (0, µ0].
Since the function v(u, µ) = H−1(µQ(u)) is continuous on [0, b] × [0, µ0] and v(u, ·) is
increasing on [0, µ0] for each u ∈ (0, b], it follows that r is continuous and decreasing
on (0, µ0]. �
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Lemma 2.4. Let (2.7) be satisfied and let µ∗ be a positive number such that

∫ b

0

1
H−1(µ∗Q(s))

ds = T. (2.12)

Then for each µ ∈ (0, µ∗) there exists nµ ∈ N such that BVP (R)1n, (B)n with n ∈ Nµ =
{n : n ∈ N0, n � nµ} has a solution xn and

1
nµ

� xn(t) � b − 1
n

, 0 � x′
n(t) � α(t) for t ∈ J. (2.13)

Proof. Fix µ ∈ (0, µ∗). By Lemma 2.3, there exist nµ ∈ N such that

∫ b−1/nµ

1/nµ

1
H−1(µQ(s))

ds � T. (2.14)

Fix n ∈ Nµ. Consider the family of BVPs (R)λ
n, (B)n for 0 < λ < 1. First, we show that

any solution x to (R)λ
n, (B)n satisfies

x(t) � 0 for t ∈ J. (2.15)

To see this suppose that min{x(t) : t ∈ J} = x(t0) < 0. Then t0 ∈ [0, T ), x(t1) = 0 for a
t1 ∈ (t0, T ) and x < 0 on [t0, t1) since x(T ) = b − 1/n > 0 and also x′(t0) = 0, which is
clear for t0 ∈ (0, T ) and it follows from (B)n for t0 = 0. Moreover,

(g∗(x′(t)))′ = λµfn(t, x(t), x′(t)) = 0 for a.e. t ∈ [t0, t1],

and so x(t) = x(t0) < 0 for t ∈ [t0, t1), which yields x(t1) = x(t0) < 0, contrary to
x(t1) = 0. Now, from (g∗(x′(t)))′ = λµfn(t, x(t), x′(t)) � 0 for a.e. t ∈ J we have x′ � 0
on J , and consequently (2.15) is true and x(t) � x(T ) = b − (1/n) for t ∈ J . Next we
will show that

(0 �)x′(t) � α(t) for t ∈ J. (2.16)

If not, x′(t1) > α(t1) for some t1 ∈ (0, T ) and then from x′(0) = 0 and α(0) > 0 we
deduce that x′(t∗) = α(t∗) and x′ > α on (t∗, t1] with a t∗ ∈ (0, t1). Therefore,

(g∗(x′(t)))′ = λµfn(t, x(t), α(t)) = 0 for a.e. t ∈ [t∗, t1],

hence g∗(x′(t)) = g(α(t∗)) for t ∈ [t∗, t1], and so α(t∗) = x′(t∗) = x′(t1) > α(t1), which
contradicts α being non-decreasing on J by (H2). Now (B)n, (2.15), (2.16) together with
Lemma 2.2 (with F (t, x, y) = µfn(t, x, y), P0 = b and P1 = ‖α‖ + 1) imply that (R)1n,
(B)n has a solution xn. In addition (argue as above)

0 � xn(t) � b − (1/n), 0 � x′
n(t) � α(t) for t ∈ J.

To prove (2.13) it remains to verify that xn � 1/nµ on J . By (2.1),

(g∗(x′
n(t)))′ = (g(x′

n(t)))′ � µ[q1(xn(t)) + q2(xn(t))][ω(x′
n(t)) + ω2(x′

n(t))]
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for a.e. t ∈ J . Then, integrating the inequality

(g(x′
n(t)))′x′

n(t)
ω1(x′

n(t)) + ω2(x′
n(t))

� µ[q1(xn(t)) + q2(xn(t))]x′
n(t)

from 0 to t ∈ (0, T ], we get

∫ g(x′
n(t))

0

g−1(s)
ω1(g−1(s)) + ω2(g−1(s))

ds � µ

∫ xn(t)

xn(0)
(q1(s) + q2(s)) ds

� µ

∫ xn(t)

0
(q1(s) + q2(s)) ds (2.17)

for t ∈ J . Hence H(x′
n(t)) � µQ(xn(t)) for t ∈ J and integrating from t̄ = min{t : t ∈

J, xn(t) > 0} to T the inequality

x′
n(t)

H−1(µQ(xn(t)))
� 1 for t ∈ (t̄, T ], (2.18)

we have ∫ b−1/n

xn(t̄)

1
H−1(µQ(s))

ds � T.

Since 1/n � 1/nµ, (2.14) shows that xn(t̄) � 1/nµ, so t̄ = 0 and xn(0) � 1/nµ. We have
proved the validity of (2.13). �

Lemma 2.5. Let 0 < c < b and let µ0 be a positive number such that∫ c

0

1
H−1(µ0Q(s))

ds = T. (2.19)

Then for each µ ∈ (0, µ0) there exists nµ ∈ N such that BVP (R)1n, (1.3) with n ∈ Nµ =
{n : n ∈ N0, n � nµ} has a solution xn and

1
nµ

� xn(t) � c � b − 1
n

, 0 � x′
n(t) � α(t) for t ∈ J. (2.20)

Proof. Arguing as in the proof of Lemma 2.3 we can prove that the function

r∗(µ) =
∫ c

0
[1/H−1(µQ(s))] ds

is continuous decreasing on (0, µ0]. Fix µ ∈ (0, µ0). Then there exists nµ ∈ N, nµ �
1/(b − c) such that ∫ c

1/nµ

1
H−1(µQ(s))

ds � T. (2.21)

Let n ∈ Nµ. Consider the family of BVPs (R)λ
n, (1.3) for 0 < λ < 1. An analysis similar

to that in the proof of Lemma 2.4 shows that any solution x to (R)λ
n, (1.3) satisfies the

inequality
0 � x(t) � c, 0 � x′(t) � α(t), t ∈ J,
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and so Lemma 2.2 (with P0 = c + 1 and P1 = ‖α‖ + 1) guarantees that there exists a
solution xn of BVP (R)1n, (1.3) for n ∈ Nµ. Then

0 � xn(t) � c � b − (1/n), 0 � x′
n(t) � α(t), t ∈ J,

and integrating (2.18) from t̄ = min{t : t ∈ J, xn(t) > 0} to T , we get∫ c

xn(t̄)

1
H−1(µQ(s))

ds � T.

Now (2.21) shows that xn(t̄) � 1/nµ, so t̄ = 0 and xn(0) � 1/nµ, which completes the
proof of (2.20). �

3. Existence results and an example

Theorem 3.1. Let assumptions (H1)–(H3), (2.7) be satisfied and let (2.12) be true
with a positive number µ∗. Then BVP (1.1), (1.2) has a solution x for each µ ∈ (0, µ∗)
and

0 < x(t) � b, 0 � x′(t) � α(t) for t ∈ J. (3.1)

Proof. Fix µ ∈ (0, µ∗). By Lemma 2.4, there exists nµ ∈ N such that BVP (R)1n, (B)n

has a solution xn satisfying (2.13) for each n ∈ Nµ with Nµ given in Lemma 2.4. Then
(see (2.1) and (2.13))

(g(x′
n(t)))′ � µ[q1(xn(t)) + q2(xn(t))][ω1(x′

n(t)) + ω2(x′
n(t))] (3.2)

for a.e t ∈ J and each n ∈ Nµ. Arguing as in the proof of Lemma 2.4 we can see that
(see (2.17))

H(x′
n(t)) � µ[Q(xn(t)) − Q(xn(0))] for t ∈ J, n ∈ Nµ. (3.3)

Now let ε, ε0 and ν be given by (H2). If there exists a subsequence {xkn} of {xn}n∈Nµ

such that x′
kn

(τn) = ε0 with limn→∞ τn = 0, then letting n → ∞ in (see (3.3))

H(x′
kn

(τn)) � µ[Q(xkn(τn)) − Q(xkn(0))],

we get H(ε0) � 0 since 0 � xkn(τn) − xkn(0) � ‖α‖τn, contrary to H(ε0) > 0. Conse-
quently, there is a ν0 ∈ (0, ν] such that x′

n(t) � ε0 for t ∈ [0, ν0] and n ∈ Nµ, and then
(H2) and (2.13) imply that fn(t, xn(t), x′

n(t)) � ε for a.e. t ∈ [0, ν0] and each n ∈ Nµ.
Hence g(x′

n(t)) � εt for t ∈ [0, ν0] and since x′
n is non-decreasing on J , we have

x′
n(t) � χ(t) for t ∈ J and n ∈ Nµ, (3.4)

with

χ(t) =

{
g−1(εt) for t ∈ [0, ν0],

g−1(εν0) for t ∈ (ν0, T ].

Then
ω2(x′

n(t)) � ω2(χ(t)) for t ∈ (0, T ], n ∈ Nµ. (3.5)
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Using the assumption (see (H3) and Remark 1.1)
∫ 1
0 ω2(g−1(s)) ds < ∞ we see that

ω2(χ(t)) ∈ L1(J). In addition, from (B)n and (3.4) we have

xn(t) = xn(b) −
∫ b

t

x′
n(s) ds < b −

∫ b

t

χ(s) ds,

and so
xn(t) < η(t) for t ∈ J, n ∈ Nµ,

where

η(t) =

{
b − g−1(εν0)(b − ν0) for t ∈ [0, ν0],

b − g−1(εν0)(b − t) for t ∈ (ν0, T ].

Hence
q2(xn(t)) � q2(η(t)) for t ∈ J, n ∈ Nµ (3.6)

and q2(η(t)) ∈ L1(J), which follows from assumption (2.7) and the inequalities

∫ b

0
q2(η(t)) dt = ν0q2(b − g−1(εν0)(b − ν0)) +

∫ b

ν0

q2(b − g−1(εν0)(b − t)) dt

= ν0q2(b − g−1(εν0)(b − ν0)) +
1

g−1(εν0)

∫ b

b−g−1(εν0)(b−ν0)
q2(t) dt

� ν0q2(b − g−1(εν0)(b − ν0)) +
1

g−1(εν0)

∫ b

0
q2(t) dt.

Now, from (2.13), (3.2), (3.5) and (3.6) we have

(0 �) (g(x′
n(t)))′ � µ[q1(0) + q2(η(t))][ω1(α(t)) + ω2(χ(t))]

for a.e. t ∈ J and each n ∈ Nµ. Hence

0 � g(x′
n(t2)) − g(x′

n(t1)) � µ

∫ t2

t1

[q1(0) + q2(η(t))][ω1(α(t)) + ω2(χ(t))] dt

for 0 � t1 � t2 � T and n ∈ Nµ, and since [q1(0)+q2(η(t))][ω1(α(t))+ω2(χ(t))] ∈ L1(J),
{g(x′

n(t))}n∈Nµ is equicontinuous on J and then {x′
n(t)}n∈Nµ is equicontinuous on J too

since g is continuous increasing on [0,∞) by (H1). Applying the Arzelà–Ascoli Theorem,
going if necessary to a subsequence, we can assume that {x′

n}n∈Nµ is convergent in
C1(J) and let limn→∞ xn = x. Then x ∈ C1(J), 1/nµ � x(t) � η(t), χ(t) � x′(t) � α(t)
for t ∈ J , x′(0) = 0 and x(T ) = b. As

lim
n→∞

fn(t, xn(t), x′
n(t)) = f(t, x(t), x′(t)) for a.e. t ∈ J

and

0 � fn(t, xn(t), x′
n(t)) � µ[q1(0) + q2(η(t))][ω1(α(t)) + ω2(χ(t))] (∈ L1(J))
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for a.e. t ∈ J and each n ∈ Nµ, taking the limit as n → ∞ in

g(x′
n(t)) = µ

∫ t

0
fn(s, xn(s), x′

n(s)) ds, t ∈ J, n ∈ Nµ,

we get

g(x′(t)) = µ

∫ t

0
f(s, x(s), x′(s)) ds, t ∈ J

by the Lebesgue-dominated convergence theorem. Therefore, g(x′) ∈ AC(J) and x is a
solution of BVP (1.1), (1.2). �

Theorem 3.2. Let assumptions (H1)–(H3) be satisfied, 0 < c < b and let (2.19)
be true with a positive number µ0. Then BVP (1.1), (1.3) has a solution x for each
µ ∈ (0, µ0) and

0 < x(t) � c, 0 � x′(t) � α(t) for t ∈ J. (3.7)

Proof. Fix µ ∈ (0, µ0). By Lemma 2.5, there exists nµ ∈ N such that BVP (R)1n, (1.3)
has a solution xn satisfying (2.20) for each n ∈ Nµ with Nµ given in Lemma 2.5. Then
(see (2.1) and (2.20))

(g(x′
n(t)))′ � µ[q1(0) + q2(c)][ω1(α(t)) + ω2(x′

n(t))]

for a.e. t ∈ J and each n ∈ Nµ. We can now proceed analogously to the proof of Theo-
rem 3.1 to show that

(g(x′
n(t)))′ � µ[q1(0) + q2(c)][ω1(α(t)) + ω2(χ(t))] (∈ L1(J))

for a.e. t ∈ J and each n ∈ Nµ, and (the details are left to the reader) we can also show
that there is a convergent in (C1(J)) subsequence of {xn}n∈Nµ and its limit is a solution
of BVP (1.1), (1.3). �

It is easy to construct examples so that Theorems 3.1 and 3.2 can be applied in practice.
To illustrate this we consider the following two examples.

Example 3.3. Let b, r, γ and η be positive constants, γ �= 1, η < r. Consider the
differential equation

(|x′(t)|r)′ = µ
sgn(b − x(t))
|x(t) − b|γ

(
sgn x′(t)
|x′(t)|η − 1

)
, (3.8)

which is the special case of (1.1) with

g(u) = |u|r, f(t, x, y) =
sgn(b − x)
|x − b|γ

(
sgn y

|y|η − 1
)

.

Then g satisfies assumption (H1). Assumption (H2) is satisfied with α(t) = 1, ν = T

and for instance ε = 1/bγ , ε0 = 1/ η
√

2 and assumption (H3) is satisfied with q1(u) = 0,
q2(u) = 1/(b − u)γ , ω1(u) = 0 and ω2(u) = 1/uη. Since η < r, we see that∫ 1

0
ω2(g−1(s)) ds =

∫ 1

0
(1/uη/r) du < ∞.
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Then

Q(u) =
∫ u

0
(q1(s) + q2(s)) ds

=
∫ u

0

1
(b − s)γ

ds

=
b1−γ − (b − u)1−γ

1 − γ

and

H(u) =
∫ g(u)

0

g−1(s)
ω1(g−1(s)) + ω2(g−1(s))

ds

=
∫ ur

0
s(η+1)/r ds

=
r

η + r + 1
uη+r+1.

Hence

H−1(u) = η+r+1

√
η + r + 1

r
u

and

H−1(µQ(u)) = K η+r+1
√

b1−γ − (b − u)1−γ ,

where

K = η+r+1

√
µ

η + r + 1
r(1 − γ)

.

By a routine calculation, one can show that (for 0 < c � b)∫ c

0

1
H−1(µQ(s))

ds =
1
K

∫ c

0

1
η+r+1

√
b1−γ − (b − s)1−γ

ds

=
η+r+1

√
bη+r+γ

K

∫ c/b

0

1
η+r+1

√
1 − (1 − s)1−γ

ds

=
η+r+1

√
bη+r+γ

(1 − γ)K

∫ 1−(1−(c/b))1−γ

0

1−γ
√

(1 − s)γ

η+r+1
√

s
ds.

Now ∫ b

0

1
H−1(µQ(s))

ds = η+r+1

√
rbη+r+γ

µ(η + r + 1)(1 − γ)η+r
B

(
η + r

η + r + 1
,

1
1 − γ

)
,

where B(·, ·) is the beta function, and so Theorem 3.1 guarantees that the BVP (3.8),
(1.2) has a solution x satisfying (3.1) if 0 < γ < 1, r > η and µ ∈ (0, µ∗) with

µ∗ =
rbη+r+γ

(η + r + 1)(1 − γ)η+r

(
1
T

B
(

η + r

η + r + 1
,

1
1 − γ

))η+r+1

.

https://doi.org/10.1017/S0013091503000105 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000105


Positive solutions for boundary-value problems 13

Applying Theorem 3.2, BVP (3.8), (1.3) has a solution x satisfying (3.7) if γ ∈ (0,∞),
r > η and µ ∈ (0, µ0) with

µ0 =
rbη+r+γ

(η + r + 1)(1 − γ)η+r

(
1
T

∫ 1−(1−(c/b))1−γ

0

1−γ
√

(1 − s)γ

η+r+1
√

s
ds

)η+r+1

.

Example 3.4. Consider the BVP

x′′(t) = µ(1 − |x(t)|γ)
(

1
|x′(t)|η − 1

)
, (3.9)

x′(0) = 0, x(1) = 1
2 , (3.10)

where γ ∈ (0,∞) and η ∈ (0, 1). Assumptions (H1)–(H3) are satisfied with T = 1,
b = 1/2, g(u) = u, α(t) = 1, ε = 1 − 1/2γ , ε0 = 1/ η

√
2, ν = 1, q1(x) = 0, q2(x) = 1,

ω1(y) = 0 and ω2(y) = 1/yη. Hence

Q(u) =
∫ u

0
ds = u, H(u) =

∫ u

0
sη+1 du =

uη+2

η + 2

and
H−1(µQ(u)) = η+2

√
(η + 2)µu.

Since ∫ 1/2

0

1
H−1(µQ(s))

ds =
∫ 1/2

0

1
η+2

√
(η + 2)µu

=
1

η + 1
η+2

√
1
µ

(
1 +

η

2

)η+1

,

Equation (2.12) (with b = 1/2 and T = 1) has the unique solution

µ∗ =
(η/2 + 1)η+1

(η + 1)η+2 .

Now Theorem 3.1 guarantees that BVP (3.9), (3.10) with µ ∈ (0, µ∗) has a solution x

satisfying the inequalities 0 < x(t) � 1/2 and 0 � x′(t) � 1 for t ∈ [0, 1].
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