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Let A be a complex Banach algebra with unit 1 satisfying ||1||= 1. An element u in A
is said to be unitary if it is invertible and ||u|| = ||M~a|| = 1. An element h in A is said to be
hermitian if ||exp(ifh)|| = 1 for all real t; that is, exp(ith) is unitary for all real t. Suppose
that J is a closed two-sided ideal and TT: A —» A/J is the quotient mapping. It is easy to
see that if x in A is hermitian (resp. unitary), then so is TJ-(X) in A/J. We consider the
following general question which is the converse of the above statement: given a
hermitian (resp. unitary) element y in A/J, can we find a hermitian (resp. unitary) element
x in A such that TT(X) = y? (The author has learned that this question, in a more
restrictive form, was raised by F. F. Bonsall and that some special cases were investigated;
see [1], [2].) In the present note, we give a partial answer to this question under the
assumption that A is finite dimensional.

For notation and terminology, we follow the book by Bonsall and Duncan [3]. We
shall always assume that A is finite dimensional.

Note that there exists an idempotent e in A which is minimal with respect to the
property that ||e|| = 1 and 1 - e e J; that is, if / is an idempotent such that ef = fe = f, \\f\\ = 1
and 1-feJ, then e = /. Also note that eAe is a Banach algebra with e as its unit,
eAe + J = A and an element h in eAe is a hermitian element in the algebra eAe if and
only if ||exp(ifh)e|| = 1 for all real t.

THEOREM A. If h is a hermitian element in A/J, then there is a hermitian element h in
eAe such that ir(h) = h.

THEOREM B. If u is a unitary element in A/J, then there exists a unitary element u in
eAe such that TT(U) = u.

To prove these theorems, we need some technical lemmas. First we note that, since A.
is finite dimensional, for x e A, the spectrum Sp(x) is a finite set. For A e Sp(x), we shall
write e(A, x), or simply eK if this does not cause confusion, for the idempotent

2 TH Ja,

where Dx is a closed disc with A as its center and Dk (~l Sp(x) = {A}.

LEMMA 1. If xeA and A eSp(x)\Sp(7r(x)), then eAeJ.

Proof. Since A^Sp(7r(x)), we have

Therefore eA e J.

Glasgow Math. J. 21 (1980) 183-185.

https://doi.org/10.1017/S0017089500004341 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500004341


184 C. K. FONG

LEMMA 2. If xeA, | |x| |=l, AeSp(x) and |A| = 1, then exx = xeA = AeA and ||eA||=l.

Proof. Consider the left regular representation A:A—»BL(A) defined by A(a)z =
az. Let T = A(x). Then Sp(T) = Sp(x). Let PA be the spectral projection e(A, T). Then it is
easy to show that A(eA) = PA. Since ||T|| = 1 and |A| = 1, it follows from [4] that the range of
PA is the eigenspace {we A: Tw = Aw} and ||PA||< 1. Hence ||eA|| = 1. From TPk = APA and
the fact that A is one-one, we have xeA = AeA.

Proof of Theorem A. For each real number r, let

K, = {x 6 eAe : ||x|| = 1 and TT(X) = exp(ith)}.

Note that K, is non-empty for each real t. (In fact, let y € A be such that 7r(y) = exp(ifh).
Then

l = ||exp(ith)|| = inf{||y + z | | :zeJ}.

By a compactness argument, we see that there exists some zeJ such that ||y + z\\ = 1. Now
one can check that e{y + z)e e K,.) It is straightforward to verify that KSK, Q Ks+, and that
the graph of the set-valued mapping t —» K, given by

{(t, x ) e R x A : x e K , }

is closed.
Let xeK0. Then ir(x) = l. Consider the idempotent e, = e(l,x). By Lemma 2,

xel = e1. Hence ee, = exex = xe, = ex. In the same way, we obtain exe = ex. On the other
hand, by Lemma 1, \-exe5 and, by Lemma 2, | |ei| |=l. The minimality of e implies
e, = e. Thus, it follows that x = xe = xex = ex = e. In other words, Ko is the singleton {e}.
From the relation K,K_, s K 0 = {e} we can show that each K, is a singleton, say K, = {x,}.
From the fact that the graph of (—» K, is closed it follows that t—*x, is continuous. Thus
we obtain a one-parameter group {xj of unitary elements in eAe with Tr(x,) = exp(ifh).
Let h = lim[(x, -e)/it]. Then h is a hermitian element in eAe and Tr{h) = h.

(-.0

Proof of Theorem B. Let x be an element in A such that ||x|| = 1 and TT(X) = u. For
A eSp(x), we write eA for the idempotent e(A, x). Since u is unitary, Sp(u) is contained in
the unit circle. Hence, by Lemma 1, if AeSp(x) and |A|<1, then eAeJ. Let F =
Sp(x)n{A :|A| = 1} and cF= I eA. Then l-eFeJ and, by Lemma 2,

AeF

where z = x(l - eF) e J, has spectral radius less than 1. Choose an increasing sequence {nk}
of positive integers such that

(1) mk = nk+l - nk —» oo as k —* <*>, and

(2) for all A e F, A"k - » /xA for s o m e JAA as k —*•«.
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Then xm"+1= £ \"^'~^ex + zm* which tends to eF= £ eK as /c-^oo. Since ||xm"||<l for
AeF AeF

all k, we have ||eF||=l. Note that.x"k+' and x"1-1 tend to M = £Aex and u = XAeA

respectively. Hence we obtain ||u||<l, ||t5||<l. Obviously uv = vu = eF. Hence u is a
unitary element in eFAeF with 1 - eF e J and TT(U) = u. Here the conclusion is slightly
different from the statement of the theorem. This can be adjusted by choosing x at the
beginning that satisfies the additional condition x e eAe, from which we can deduce e = eF.
The proof is complete.

REMARKS. In Theorem A, the assumption that A is finite dimensional can be
replaced by a weaker one that J is finite dimensional with a modified proof.

2. From the proof of Theorem B it follows that if A is a finite dimensional algebra
and x is an element in A with its spectrum contained in the unit circle and ||x||= 1, then x
is unitary.
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