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Abstract

We give a qualitative description of the set OG(H) of overgroups in G of primitive subgroups H of finite
alternating and symmetric groups G, and particularly of the maximal overgroups. We then show that
certain weak restrictions on the lattice OG(H) impose strong restrictions on H and its overgroup lattice.
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Introduction

Assume that � is a finite set, S = Sym(�) is the symmetric group on �, G is S or
the alternating group A on �, and H is a subgroup of G acting primitively on �.
In this paper we study the set OG(H) of overgroups of H in G. In particular, we
describe (in some sense) the maximal overgroups of H . Then we use our description
to establish results about the lattice OG(H) when H is the intersection of a pair of
maximal subgroups of G.

In [P], Cheryl Praeger also discusses the overgroups of primitive subgroups of
alternating and symmetric groups, but her organization of information does not
immediately lend itself to the applications we have in mind. Thus we have produced
our own treatment, which we believe has some advantages over that in [P].

In [P], inclusions among primitive subgroups of S are described in terms of the
notion of a ‘blow-up’. In this paper, the maximal subgroups of S are described
(whenever possible) as stabilizers of suitable structures on �. Inclusions among
primitive subgroups are described in terms of the embedding of generalized Fitting
subgroups, and relations among the structures preserved by the subgroups, particularly
the product structures on �. In a sequel to this work, we introduce a partial order
on product structures; together with inclusions of generalized Fitting subgroups, this
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38 M. Aschbacher [2]

partial order gives a qualitative description of large portions of the poset of primitive
subgroups of S.

We now give some details of the work. See [A2] for the notation and terminology
involving finite groups used in the paper.

We begin with a brief discussion of the relevant structures on �. Informally, an
affine structure on � is an identification of � with the points of an affine space; see
Definition 1.2 for a precise definition. The notion of a diagonal structure is less natural;
see Definition 1.9 for a definition.

Informally, a regular (m, k)-product structure on � is an identification of � with
the set product of k copies of a set of order m, but often it is better to view the
product structure as a certain kind of chamber system on �. (As defined by Tits
in [T], a chamber system on � is a collection of equivalence relations on �.) The
referee has pointed out that the latter point of view is also adopted in [BPS1],
where product structures are called ‘Cartesian decompositions’, and that Baddeley
and co-workers [BP, BPS1, BPS2, BPS3] prove various results about Cartesian
decompositions, and about quasiprimitive and innately transitive subgroups of S
preserving Cartesian decompositions. (Quasiprimitive and innately transitive groups
are classes of permutation groups more general than the class of primitive groups.)
The referee also points out that it should be possible to give a shorter proof of our
propositions below, using [P] and these references. However, we feel that a description
(in terms of natural structures on �) of the poset of primitive subgroups of the
symmetric groups is sufficiently fundamental to warrant a self-contained treatment that
avoids an invocation of the notion of a blow-up and appeals to the broader literature
on innately transitive groups.

Next we recall some facts about primitive subgroups H of S. These facts are stated
in terms of the generalized Fitting subgroup F∗(H) of H , so we recall that F∗(H) is
a certain characteristic subgroup of H which controls the structure of H . The notion
of the generalized Fitting subgroup plays a crucial role in finite group theory; see [A2,
Section 31] for a discussion of this topic. Set D = F∗(H). The possibilities for the
pair H, D and their action on�were determined in [AS], and are listed in Lemma 2.2.
By now they are well known. In the language of Definition 2.3, there are five types of
primitive groups H : affine, doubled, semisimple, diagonal, and complemented groups.
When H is affine, D is the direct product of subgroups of order p for some prime p,
and is regular on �. In the remaining cases, D is the direct product of isomorphic
nonabelian simple groups, and the type of H is determined by the embedding of a
point stabilizer Dω, ω ∈�, in D.

There are some interesting special cases: the almost simple groups, the strongly
diagonal groups (see Definition 2.3), the product decomposable semisimple groups
(see Definition 5.10), and the octal semisimple groups (see Definition 4.2). An almost
simple group is product indecomposable if it preserves no nontrivial product structure.
The general semisimple group H is product decomposable if the obvious product
structure F(H) preserved by H , when ‘composed’ with the rank-two product structure
preserved by a component of H (using the composition defined in Definition 1.11),
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[3] Overgroups of primitive groups 39

produces a larger H -invariant product structure. An octal semisimple group H exists
only when � has order a power of 8, and D preserves an affine structure.

There are four kinds of primitive groups maximal in G, as listed in Lemma 2.5.

(1) The affine maximals, which are the stabilizers of affine structures on �.
(2) The semisimple maximals, which are the stabilizers of regular product structures

on �.
(3) The strongly diagonal maximals, which are the stabilizers of diagonal structures.
(4) The almost simple maximals.

See Section 1 for a discussion of the various structures.
The statements of our various propositions and theorems involve some specialized

notation. We begin our discussion of that notation with a few words which hopefully
will give the reader some flavor of the objects described by the notation. Then we
direct the reader to the places in the paper where precise definitions appear. First,

FFF(H) is the set of H -invariant product structures on�, while F(H) is a certain natural
member of FFF(H). It turns out that F(H) is the greatest member of FFF(H) in a certain
partial order, unless H is semisimple and decomposable, where F 2(H) is the greatest
member. One can parameterize FFF(H) in terms of a certain collection of subgroups
K of H via bijections K 7→ F(H, K ) or K 7→ F 2(H, K ), with H semisimple and
product decomposable in the latter case. When H is diagonal, 6(H) is a certain
partition of the components of H . Finally, when H is affine, D(H) is the set of
nontrivial H -invariant direct sum decompositions of D.

A precise definition of the notation F(D) and 6(H) appears in Example 1.6
and Lemma 2.2, respectively. The notation D(H), F(H), FFF(H), and F(H, K ) is
defined in Notation 2.6. Finally, the definition of F 2(H) and F 2(H, K ) appears in
Lemma 5.11(6).

We wish to investigate the set

OG(H)
′
= {M ∈OG(H) | F

∗(G)� M}

of ‘proper’ overgroups of H in G and, in particular, the set M(H) of maximal
members of OG(H)′. As discussed above, there are five types of primitive groups;
however, for the purposes of our propositions, it is convenient to regard the almost
simple primitive groups as forming a sixth type. Roughly speaking, if H is of type
TH and M ∈OG(H)′ is of type TM , then there are fairly strong restrictions on the pair
(TH , TM ), and often F∗(M) is forced to be F∗(H). Indeed, if M is not semisimple
then the embedding of H in M is essentially completely controlled by the pair TH ,
TM , and the embedding of F∗(H) in M , so the situation is quite satisfactory. On the
other hand, when M is semisimple, things are more complicated, but at least H ≤ M ,
so FFF(M)⊆FFF(H), and the maximal semisimple overgroups of H are in one-to-one
correspondence with FFF(H), which we describe in terms of parameterizations that
appear in the various propositions.

We organize this information into eleven propositions of two kinds. The first
kind of result fixes the type of a primitive subgroup M , and describes the possible
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primitive subgroups of M , according to type and other restrictions. The second kind
of result fixes the type of H , and describes the members of OG(H)′, again according
to type and other restrictions. There are so many inclusions of primitive groups in
semisimple groups, that it makes little sense to state a proposition in the case where M
is semisimple. We continue to write D for F∗(H).

PROPOSITION 1. Assume that M ∈OG(H)′ is almost simple. Then either

(1) H is almost simple; or
(2) |�| is a prime and H is affine.

Proposition 1 is proved as part of the proof of Lemma 4.4.

PROPOSITION 2. Assume that M ∈OG(H)′ and that H is almost simple. Then one
of the following statements holds:

(1) M is almost simple;
(2) |�| = 8, H ∼= L3(2) is octal, M is the stabilizer of one of the two H-invariant

affine structures on �, and the two structures are conjugate under NS(H);
(3) H is product decomposable, M is semisimple, and M is contained in the

stabilizer NG(F 2(H)) of F 2(H).

Proposition 2 is a corollary to Proposition 5. The statement in part (2) of the
proposition that H stabilizes two affine structures follows from Lemma 7.1(5).

PROPOSITION 3. Assume that M ∈OG(H)′ is affine and let X = F∗(M). Then either

(1) H is affine and F∗(M)= F∗(H); or
(2) �= 8r , H is octal semisimple with components {L1, . . . , Lr }, H X is affine with

D = {[X, L i ] | 1≤ i ≤ r} ∈D(H X), and F(H)= F(D).
Proposition 3 follows from Lemma 4.3.

PROPOSITION 4. Assume that M ∈OG(H)′ and that H is affine. Then one of the
following statements holds:

(1) M is affine and F∗(M)= F∗(H);
(2) M is semisimple, H is imprimitive on D, and there exists D ∈D(H) such that

F(D)= F(M);
(3) |�| is prime and M is almost simple.

Proposition 4 follows from Lemma 4.1. If |�| is prime and (1) fails, then M is
almost simple from Lemma 2.2.

The next three propositions are proved in Section 7.

PROPOSITION 5. Assume that H is semisimple and pick a component L of H. Let
M ∈OG(H)′.

(1) If H is product indecomposable and not octal then M is semisimple, L is
contained in a component of M, H is transitive on the components of M, and the
map K 7→ F(H, K ) is a bijection of O H (NH (L))′ =O H (NH (L))− {H} with

FFF(H).
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(2) Suppose that H is octal with k components. Then M is affine or semisimple.
Furthermore, the affine structures stabilized by H are conjugate under NS(H).
If M is semisimple then L is contained in a component of M, H is transitive on
the components of M, and the map K 7→ F(H, K ) is a bijection of O H (NH (L))′

with FFF(H).
(3) Assume that H is product decomposable. Then M is semisimple and the

map K 7→ F 2(H, K ) is a bijection of O H (NH (A1))
′ with FFF(H), where A1 ∈

OL(Lω) is described in Definition 5.10.

PROPOSITION 6. Assume that M ∈OG(H)′ is diagonal and let X = F∗(M) and k be
the number of components of M. Then one of the following statements holds:

(1) H is diagonal, F∗(M)= F∗(H), and 6(M)=6(H);
(2) H is doubled, F∗(M)= F∗(H), and k = 2|6(M)|;
(3) H is complemented with |6(M)| components, F∗(M)= DCG(D), and

k = 2|6(M)|.

PROPOSITION 7. Assume that H is diagonal and pick σ ∈6(H). Let M ∈OG(H)′.
Then either

(1) M is diagonal, F∗(M)= F∗(H), and 6(M)=6(H); or
(2) M is semisimple, each component of H is contained in a component of M, H is

transitive on the components of M, and the map K 7→ F(H, K ) is a bijection of
O H (NH (σ ))

′
=O H (NH (σ ))− {H} with FFF(H).

The proofs of Propositions 8 and 9 appear in Section 8.

PROPOSITION 8. Assume that M ∈OG(H)′ is doubled. Then one of the following
statements holds:

(1) H is doubled and F∗(M)= F∗(H);
(2) H is complemented and F∗(M)= DCG(D).

PROPOSITION 9. Assume that H is doubled and pick a component L of H. Let
M ∈OG(H)′. Then one of the following statements holds:

(1) M is doubled and F∗(M)= F∗(H);
(2) M is semisimple, L is contained in a component of M, H is transitive on the

components of M, and the map K 7→ F(H, K ) is a bijection of O H (NH (L))′

with FFF(H);
(3) M is diagonal, F∗(M)= F∗(H), and M has 2|6(M)| components.

PROPOSITION 10. Assume that M ∈OG(H)′ is complemented. Then H is
complemented and F∗(M)= F∗(H).

Proposition 10 follows from Lemma 4.5.

PROPOSITION 11. Assume that H is complemented and pick a component L of H.
Let M ∈OG(H)′. Then one of the following statements holds:
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(1) M is complemented and F∗(M)= F∗(H);
(2) M is semisimple, L is contained in a component of M, H is transitive on the

components of M, and the map K 7→ F(H, K ) is a bijection of O H (NH (L))′

with FFF(H);
(3) M is diagonal, F∗(M)= DCG(D), H has |6(M)| components, and M has

2|6(M)| components;
(4) M is doubled and F∗(M)= DCG(D).

The proof of Proposition 11 appears in Section 8.
We are interested in the maximal overgroups of H in G. Unless H ≤ A and G = S,

M(H) is the set of maximal overgroups of H in G. Moreover, the set M(H) can
be retrieved from our propositions. For example, if H is affine then by Proposition 4,
Lemma 2.5, and Remark 2.7, M(H)= {NG(D), NG(F(D)) |D ∈D(H)}. Similarly,
if H is semisimple and product indecomposable, but not octal or almost simple,
then by Proposition 5, M(H)= {NG(F) | F ∈FFF(H)}, and FFF(H) is parameterized
by O H (NH (L))′, for L a component of H .

Overgroup lattices The question of whether each nonempty finite lattice is
isomorphic to an interval in the lattice of subgroups of some finite group has been
of interest for at least 25 years since the appearance of [PP]. To illustrate how our
propositions can be used to investigate this question and the lattice of subgroups of
S, we also include two results which give information about OG(H) when H is the
intersection of some (or many) pair(s) of maximal subgroups of G.

First, we (essentially) determine the pairs M1, M2 of distinct maximal subgroups
of G such that M1 ∩ M2 is primitive on �.

THEOREM 12. Assume that M1 and M2 are distinct subgroups of G maximal subject
to F∗(G)� Mi , such that H = M1 ∩ M2 is primitive. Assume that |�| is not prime.
Then one of the following statements holds:

(1) M1, M2, and H are almost simple;
(2) Mi = NG(Fi ) for some regular product structures F1 and F2;
(3) interchanging M1 and M2 if necessary, M1 and H are affine with F∗(H)=

F∗(M1), M2 is semisimple, and there exists D = (D1, . . . , Dk) ∈D(H) such
that M2 = NG(F(D)) and H = NM1(D);

(4) H is octal semisimple and the wreath product of L3(2) by Sk , |�| = 8k , and M1
and M2 are the stabilizers of the two H-invariant affine structures on �.

The proof of Theorem 12 appears in Section 9.
Next we impose a much stronger constraint on the lattice OG(H).

THEOREM 13. Assume that H is a proper primitive subgroup of G and let M denote
the set of maximal overgroups of H in G. Assume that |�| is not prime and that,

for each M ∈M, there exists M ′ ∈M− {M} such that H = M ∩ M ′. (0.1)

Then one of the following statements holds:
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(1) M= {NG(F) | F ∈FFF(H)};
(2) all members of OG(H) are almost simple, product indecomposable, and not

octal;
(3) |�| is a prime power, H is affine, and M= {NG(D), NG(F(D)) |D ∈D(H)};
(4) |�| = 8, G = A, H ∼= L3(2) is octal, and M consists of the stabilizers of the two

H-invariant affine structures on �;
(5) |�| = 8, G = S, H ∼= L3(2) is octal, NG(H)∼= PGL2(7), M= {F∗(S),

NG(H)}, and OG(H)=M ∪ {H, K1, K2, G}, where K1 and K2 are the
stabilizers of the two H-invariant affine structures on �;

(6) G = S, NG(H) is the stabilizer in S of an affine structure, regular product
structure, or diagonal structure on �, H is the stabilizer in A of that structure,
M= {A, NS(H)}, and OG(H)= {H, A, NS(H), S}.

The proof of Theorem 13 appears in Section 9.
One can (with some difficulty) determine the groups H and the lattice OG(H)

appearing in case (2) of Theorem 13 from the lists of inclusions among almost simple
primitive groups appearing in [LPS1]. The analysis of case (1) of Theorem 13 would
seem to demand some machinery to analyze the relationship among regular product
structures on �. Such machinery and a treatment of cases (1), (2), and (3) appear in
a sequel to this work. In particular, Theorem 13 is extended there to give an explicit
description of those primitive subgroups H of S such that the lattice OG(H) satisfies
condition (0.1) of Theorem 13.

A finite lattice 3 has a greatest element ∞ and least element 0, and we can view
3′ =3− {0,∞} as a graph with adjacency relation the comparability relation. Define
3 to be disconnected if the graph 3′ is disconnected. We observe that if H is a
primitive subgroup of G such that the lattice OG(H) is disconnected, then OG(H)
satisfies hypothesis (0.1) of Theorem 13. In particular, Theorem 13 is part of a program
of J. Shareshian and the author (see [A3] and [A4]) to study interval lattices OU (V ) in
finite groups V over U ≤ V , and indeed to prove the following statement:

(D) There exists a class of disconnected finite lattices, such that no member of the
class is an interval in the lattice of subgroups of any finite group.

In the Aschbacher–Shareshian program, the class of lattices considered consists of
those disconnected lattices 3 with the property that, for each connected component
C of 3, C is the poset of nonempty proper subsets of a set of order m(C), for some
m(C) > 2.

Define a lattice 3 to be an M-lattice if 3′ has no edges. There is also a program in
the literature to show that (D) is satisfied by some subclass of the class of M-lattices.
Perhaps the major result in that program is due to Baddeley and Lucchini [BL],
and reduces the problem for M-lattices to various problems involving almost simple
groups. One of those problems is to show that there exists an M-lattice which is not
of the form OU (V ) for any almost simple group U and subgroup V . The extension of
Theorem 13 mentioned above establishes this fact when U is alternating or symmetric,
and V is primitive.
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1. Some structures on a set

In this section we assume that� is a finite set and let S = Sym(�) be the symmetric
group on �. We recall some structures on � which will be important in this paper.

DEFINITION 1.1. Let a be a positive integer and write �a for the set product of a
copies of �. Given an a-ary relation R ⊆�a on �, define the stabilizer in S of R to
be the subgroup NS(R) of S consisting of those g ∈ S such that Rg = R. 2

DEFINITION 1.2. Assume that |�| = pe is a power of a prime p. An affine structure
on � is a quaternary relation R = R(�,+) on � of the form

R = {(a, b, c, b + c − a) | a, b, c ∈�},

defined by some e-dimensional vector space structure (�,+) on � over Fp. 2

The following results are well known.

LEMMA 1.3. Let V = (�,+) be an e-dimensional vector space structure on � over
Fp, R = R(V ) the corresponding affine structure on �, M = NS(R) the stabilizer of
R, and 0 ∈� the zero of V . Then:

(1) F∗(M)= D ∼= E pe is the group of translations τa : b 7→ a + b, a ∈�, on V ,
and D is regular on �;

(2) M0 ∼= GL(V ) and the map a 7→ τa is an equivalence of the representation of M0
on � with the representation of M0 on D via conjugation.

LEMMA 1.4. Assume that p is a prime and that E pe ∼= D is a subgroup of S regular
on �. Pick ω ∈� and define

R = R(D)= {(ωa, ωb, ωc, ωbca−1) | a, b, c ∈ D}.

Then R is an affine structure on � (independent of ω) with translation group D, and
NS(R)= NS(D).

DEFINITION 1.5. Let m, k be integers with m ≥ 5 and k > 1. We recall the notion
of a regular (m, k)-product structure on �. Informally, such a structure is a bijection
f :�→ 0 I , where I = {1, . . . , k} and 0 is an m-set. The function f may be thought
of as a family of functions ( fi :�→ 0 : i ∈ I ) via f (ω)= ( f1(ω), . . . , fk(ω)) for
ω ∈�.

Formally, a product structure is a family F = (�i : i ∈ I ) of partitions �i of � into
m blocks of size mk−1, such that F is injective: for each pair of distinct points ω,
ω′ of �, F(ω) 6= F(ω′), where F(ω) is the family (Bi : i ∈ I ) of blocks defined by
ω ∈ Bi ∈�i .

The family F = F( f ) defined by f has i th partition �i = { f −1
i (γ ) | γ ∈ 0}, the

fibers of fi . An indexing of F is an indexing �i = {�i,γ | γ ∈ 0} of the blocks of the
various partitions �i . The function f defines the indexing �i,γ = f −1

i (γ ), while an
indexing of F defines a function f via ω ∈�i, fi (ω). As F is injective, the function
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f defined by the indexing is injective, so as |�| = |0 I
|, f :�→ 0 I is a bijection. In

short, the formal definition is a ‘coordinate-free’ definition of product structure.
The stabilizer NS(F) in S of F is the subgroup consisting of those g ∈ S such that

F g = F . Write FFF =FFF(�) for the set of all regular product structures on �. 2

The referee has pointed out that the description above of a product structure as a
chamber system is also used in [BP], where product structures are called Cartesian
decompositions, and various properties of Cartesian decompositions are established.

EXAMPLE 1.6. Assume that |�| = mk and let ω ∈� and I = {1, . . . , k}. Assume
that D is a transitive subgroup of S which is the direct product of a set D = {Di | i ∈ I }
of subgroups such that

Dω =
∏
i∈I

Di,ω,

with |Di : Di,ω| = m for each i ∈ I . Define F = F(D)= (�i | i ∈ I ) to be the product
structure on � such that �i is the set of orbits of Di ′ on �, where Di ′ = 〈D j | j
∈ I − {i}〉. It is well known that F is a product structure, and that if G is a subgroup
of S permuting D via conjugation then G ≤ NS(F). 2

LEMMA 1.7. Assume the setup of Example 1.6, and assume for each i ∈ I that
Ei ≤ Di with Di = Di,ωEi . Set E = {Ei | i ∈ I }. Then F(D)= F(E).

PROOF. As Di = Di,ωEi for each i ∈ I , ωDi ′ = ωEi ′ and�i is the set of orbits of Ei ′

on �. 2

LEMMA 1.8. Let F = (�i : i ∈ I ) be a regular (m, k)-product structure on �, pick
ω ∈�, and set M = NS(F).
(1) F∗(M)= D = D1 × · · · × Dk , where, for i ∈ I , Di acts faithfully on �i as the

alternating group, and Di ′ acts transitively on each block in �i .
(2) F = F(D), where D = {Di | i ∈ I }.
(3) M is isomorphic to the wreath product of Sm by Sk . More precisely, D ≤ D̄ E M

with D̄ = D̄1 × · · · × D̄k , F∗(D̄i )= Di , D̄i acts trivially on � j for j 6= i ,
and faithfully on �i as the symmetric group, and there is a complement T
to D̄ in M contained in Mω which acts faithfully as the symmetric group on
D̄ = {D̄i | i ∈ I } via conjugation, with NT (D̄i ) centralizing D̄i .

PROOF. This is part of the folklore and the proof is straightforward. 2

DEFINITION 1.9. Assume that |�| = ck−1 for some integer k > 1 and some
nonabelian finite simple group L of order c, and let ω ∈�. Assume that
D = D1 × · · · × Dk is a transitive subgroup of S which is the direct product of
a set D = {Di | i ∈ I } of subgroups isomorphic to L , and such that Dω is a full
diagonal subgroup F of D with respect to the direct product decomposition. (see
[AS, Section 1] for a discussion of full diagonal subgroups.) Then D and F define a
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diagonal structure d= diag(D, F) on �, whose stabilizer NS(d) in S we decree to be
the subgroup D(NS(D) ∩ NS(F)). 2

The following lemma is part of the folklore and easy to prove.

LEMMA 1.10. Let d= diag(D, F) be a diagonal structure on �, ω ∈�, and set
M = NS(d).

(1) F∗(M)= D and M = DMω.
(2) Mω = K T where T = CM (F) acts faithfully as the symmetric group on D

via conjugation, K is the kernel of the action of Mω on D, F = F∗(K ), and
K ∼= Aut(F).

We next define a notion of composition of regular product structures.

DEFINITION 1.11. Let m, k, m̂, k̂ be integers with m, m̂ ≥ 5 and k, k̂ > 1. Let
I = {1, . . . , k}, Î = {1, . . . , k̂}, and let 0 be an m-set and 0̂ an m̂-set. Let F =
(�i : i ∈ I ) be a regular (m, k)-product structure on � and F̂ = (0 j : j ∈ Î ) be a
regular (m̂, k̂)-product structure on 0. Recall from Definition 1.5 that we can choose
bijections f :�→ 0 I and f̂ : 0→ 0̂ Î so that F = F( f ) and F̂ = F( f̂ ). That is,
f (ω)= ( f1(ω), . . . , fk(ω)) and �i = { f −1

i (γ ) | γ ∈ 0}, and similarly for f̂ . Define
m̃ = m̂, 0̃ = 0̂, and Ĩ = I × Î . Thus k̃ = | Ĩ | = kk̂. Define

f̃ :�→ 0̃ Ĩ

by f̃ (ω)= ( f̂ ( f1(ω), . . . , f̂ ( fk(ω)))), for ω ∈�. That is, f̃ = ( f̃i, j : (i, j) ∈ Ĩ ) has
coordinate functions f̃i, j = f̂ j ◦ fi for (i, j) ∈ Ĩ .

Visibly f̃ is an informal regular (m̃, k̃)-product structure on �, as defined in
Definition 1.5, giving rise to the formal product structure F̃ = F( f̃ )= {�i, j | (i, j) ∈
Ĩ }, where �i, j = { f −1

i, j (α) | α ∈ 0̃}. We call F̃ a composition of F̂ and F , and

sometimes write F̂ ◦ F for such a composition.
Alternatively, as in Definition 1.5, pick indexings �i = {�i,γ | γ ∈ 0} and 0 j =

{0 j,α | α ∈ 0̂}, and for (i, j) ∈ Ĩ define

�i, j = {�i, j,α | α ∈ 0̃} where �i, j,α =
⋃

γ∈0 j,α

�i,γ .

Then F̃ = (�i, j | (i, j) ∈ Ĩ ) is a regular (m̃, k̃)-product structure on � and a
composition of F̂ with F . 2

LEMMA 1.12. Let m, k, m̂, k̂ be integers with m, m̂ ≥ 5 and k, k̂ > 1. Let
I = {1, . . . , k}, Î = {1, . . . , k̂}, and F = (�i | i ∈ I ) be a regular (m, k)-product
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structure on �. Assume for each i ∈ I that F̂i = (1i, j | j ∈ Î ) is a regular
(m̂, k̂)-product structure on �i . Define Ĩ = I × Î , and F̃ = (�i, j | (i, j) ∈ Ĩ ), where

�i, j = {B̃ | B ∈1i, j } and B̃ =
⋃
A∈B

A. (1.1)

(1) Then F̃ is a composition F̂1 ◦ F of the regular product structures F̂1 and F .
(2) Assume that H ≤ NS(F) permutes {F̂i | i ∈ I }. Then H ≤ NS(F̃).

PROOF. Let F̂ = F̂1, 0 =�1, and 0 j =11, j for j ∈ Î . As all regular (m̂, k̂)-product
structures are isomorphic, for each i ∈ I there exists an isomorphism ϕi : F̂ → F̂i with
0 jϕi =1i, j for j ∈ Î . Take ϕ1 = 1.

For γ ∈ 0 and i ∈ I , set �1,γ = γ and �i,γ = γ ϕi . Thus �i = {�i,γ | γ ∈ 0} is an
indexing of F . Let 0̂ be an m̂-set and 0 j = {0 j,α | α ∈ 0̂}, j ∈ Î , be an indexing of F̂ .
For (i, j) ∈ Ĩ and α ∈ 0̂, set 1i, j,α = 0 j,αϕi . Then

1i, j = 0 jϕi = {0 j,αϕi | α ∈ 0̂} = {1i, j,α | α ∈ 0̂}, (1.2)

and we can form

1̃i, j,α =
⋃

A∈1i, j,α

A

as in (1.1). Set �i, j,α = 1̃i, j,α . For A ∈1i, j,α , A = γ ϕi for some γ ∈ 0 j,α , so
A = γ ϕi =�i,γ . Thus

�i, j,α = 1̃i, j,α =
⋃

A∈1i, j,α

A =
⋃

γ∈0 j,α

�i,γ , (1.3)

and by (1.1), (1.2), and (1.3),

�i, j = {1̃i, j,α | α ∈ 0̂} = {�i, j,α | α ∈ 0̂}. (1.4)

Hence (1) follows from (1.3), (1.4), and Definition 1.11.
Assume the hypothesis of (2). As H ≤ NS(F), for h ∈ H and i ∈ I , we can define

ih ∈ I by �i h =�ih , to obtain a representation of H on I . As H permutes the F̂i , for
(i, j) ∈ Ĩ , 1i, j h =1ih, j ′ for some j ′ ∈ Î . Thus for B ∈1i, j , Bh ∈1ih, j ′ , so

B̃h =

(⋃
A∈B

A

)
h =

⋃
A∈B

Ah = C̃,

where C = Bh ∈1ih, j ′ . Thus

�i, j h = {B̃h | B ∈1i, j } = {C̃ | C ∈1ih, j ′} =�ih, j ′,

so indeed H ≤ NS(F̃). 2
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LEMMA 1.13. Assume I, m, k, D, D satisfy the hypothesis of Example 1.6 and set
F = F(D). Let m̂, k̂ be integers with m̂ ≥ 5 and k̂ > 1, and set Î = {1, . . . , k̂}.
Assume for each i ∈ I that F̂i = (6i, j : j ∈ Î ) is a regular (m̂, k̂)-product structure
on 6i = ωDi . Define Ĩ = I × Î , and F̃ = (�i, j : (i, j) ∈ Ĩ ), where

�i, j = {Ũ |U ∈6i, j } and Ũ = {ug | u ∈U, g ∈ Di ′}.

(1) Then F̃ is a composition F̂1 ◦ F of the regular product structures F̂1 and F .
(2) Assume that D E H ≤ S, D1 acts on F̂1, and Hω permutes the F̂i . Then

H ≤ NS(F̃).

PROOF. For i ∈ I and σ ∈6i , set σ̄ = σDi ′ ⊆�. Then for U ⊆6i , set Ū = {ū | u ∈
U }, and for (i, j) ∈ Ĩ , set 1i, j = {Ū |U ∈6i, j }. Now σ = ωx for some x ∈ Di , so
σ̄ = ωx Di ′ = ωDi ′x , and hence the map ψi :6i →�i defined by ψi : σ 7→ σ̄ is a
bijection. In particular as F̂i is a regular (m̂, k̂)-product structure on 6i , Ei = (1i, j :

j ∈ Î ) is a regular (m̂, k̂)-product structure on �i . Furthermore, for U ∈6i, j ,

Ũ = {ug | u ∈U, g ∈ Di ′} =
⋃
u∈U

ū =
⋃
A∈Ū

A,

so Ũ is the set B̃ of (1.1) in Lemma 1.12, for B = Ū ∈1i, j . Therefore �i, j = {Ũ |
U ∈6i, j } is the set {B̃ | B ∈1i, j } of (1.1), so (1) follows from Lemma 1.12(1).

Now assume the hypothesis of (2). As D is transitive on �, H = DHω. As Di acts
on F̂i and ψi is Di -equivariant, Di acts on Ei . Furthermore, Di ′ is trivial on �i , so D
acts on Ei .

Next, as in the proof of Lemma 1.12, there is a representation of H on I such that
Dh

i = Dih . For h ∈ Hω and u ∈6i , u = ωx for some x ∈ Di , so uh = ωxh = ωhxh
=

ωxh
∈6ih . By hypothesis, Hω permutes the F̂i , so 6i, j h =6ih, j ′ for some j ′ ∈ Î .

Then for U ∈6i, j ,

Ūh = {u Di ′h | u ∈U } = {uh D(ih)′ | u ∈U } = {vD(ih)′ | v ∈Uh} =Uh,

so 1i, j h =1ih, j ′ . That is, Hω permutes the Ei . Then as H = DHω, H permutes the
Ei , so (2) follows from Lemma 1.12(2). 2

2. Primitive groups

In this section we make the following assumption.

HYPOTHESIS 2.1. � is a finite set, S = Sym(�) is the symmetric group on�, ω ∈�,
G is S or the alternating group A on �, H is a subgroup of G primitive on �, and
D = F∗(H).
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LEMMA 2.2. H = DHω and one of the following statements holds.

(1) |�| = pe is a power of the prime p, D ∼= E pe is regular on �, and Hω is a
complement to D in H which is irreducible on D regarded as an Fp Hω-module.

(2) D = D1 × D2, D1 and D2 are isomorphic normal subgroups of H, Di is
the direct product of k isomorphic nonabelian simple components L of H,
permutated transitively by H, Di is regular on�, Dω is a full diagonal subgroup
of D, and Hω = NH (Dω). Furthermore, |�| = |L|k .

(3) D is the direct product of the set L of components of H, H is transitive on L,
and choosing L ∈ L, one of the following statements holds:

(i) Dω is the direct product of the groups Fω, F ∈ L, Lω 6= 1, and AutHω(L)
is maximal in AutH (L). Furthermore, |�| = |L : Lω||L|.

(ii) There exists a maximal H-invariant partition6 =6(H) of L such that Dω
is the direct product of full diagonal subgroups Fσ of Dσ = 〈σ 〉, σ ∈6.
Furthermore, |�| = |L||L|−|6|.

(iii) Inn(L)≤ AutHω(L) and Hω is a complement to D in H. Furthermore,
|�| = |L||L|.

PROOF. This is a consequence of [AS, Theorem 1]. 2

DEFINITION 2.3. In case (1) of Lemma 2.2, we say that H is affine. In case (2), we
say that H is doubled. In case (3i) we say that H is semisimple, in case (3ii) we say
that H is diagonal, and in case (3iii) we say that H is complemented. We say that H
is strongly diagonal if H is diagonal and 6(H)= {L}. 2

In Praeger’s theory [P] of overgroups in S of primitive subgroups of S, a somewhat
different partition of primitive groups appears. In Praeger’s terminology, affine groups
are of type H A, doubled groups are of type HC , semisimple but not almost simple
groups are of type P A, diagonal groups are of type C D, complemented groups are of
type T W , and strongly diagonal groups are of type SD.

LEMMA 2.4. Let M ∈OG(H).

(1) M is primitive on �.
(2) If X E M and 1 6= D ∩ X then either D ≤ X or H is doubled and Di = X ∩ D

for i = 1 or 2.

PROOF. Part (1) is trivial. Part (2) follows from the fact that either D is a minimal
normal subgroup of H , or H is doubled and D1 and D2 are the minimal normal
subgroups of H . 2

LEMMA 2.5. Let M be a maximal subgroup of G primitive on � and X = F∗(M).
Then one of the following statements holds:
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(1) M is affine. That is, |�| = pe is a power of the prime p, M is the stabilizer of an
affine structure on �, X ∼= E pe is regular on �, and NS(X)ω is a complement to
X in NS(X) which acts faithfully as GL(D) on D regarded as an e-dimensional
Fp-space.

(2) M is the stabilizer of a regular (m, k)-product structure on �, for some m ≥ 5
and k ≥ 2, M is semisimple, X is the direct product of k copies of Am , |�| = mk ,
and NS(X) is the wreath product of Sm by Sk .

(3) M is the stabilizer of a diagonal structure on �, X is the direct product of k
copies of some nonabelian simple group Y , M is diagonal, |�| = |Y |k−1, and
NS(X)/X ∼= Sk × Out(Y ).

(4) M is almost simple and NS(X) is the stabilizer in Aut(X) of the equivalence
class of the representation of X on �.

PROOF. This follows from the O’Nan–Scott theorem, which is in turn a fairly easy
consequence of Lemma 2.2; see the Appendix to [AS]. The stabilizers of the structures
in (1)–(3) are almost always maximal. See Remark 2.7 for more discussion. 2

NOTATION 2.6. Write FFF(H) for the set of H -invariant regular product structures
on �.

If H is affine, write D(H) for the set of systems D = {D1, . . . , Dk} of
imprimitivity for H on D. That is, k > 1, D = D1 × · · · × Dk , and H permutes D
transitively via conjugation. Observe that for D ∈D(H), F(D) is an H -invariant
regular (d, k)-product structure on � by Example 1.6, where d = |Di |.

In the remaining cases of Lemma 2.2, a minimal normal subgroup E of H is
the direct product of its set L of components permutated transitively by H via
conjugation. Let P(H) be the set of H -invariant partitions 1 of L such that |1|> 1,
and such that 6(H) is a refinement of 1 if H is diagonal. Let 1 ∈ P(H) and, for
δ ∈1, set Eδ = 〈δ〉, k = |1|, and m = |Eδ : Eδ,ω|. Define D(1)= {Eδ | δ ∈1} and
set F(H, 1)= F(D(1)) the H -invariant (m, k)-product structure on � supplied by
Example 1.6.

Observe that we have a bijection K 7→ γ H
K of O H (NH (U ))′ =O H (NH (U ))− {H}

with P(H), where U is some fixed member of L and γK =U K if H is doubled,
semisimple, or complemented, while U = Eσ for some fixed σ ∈6(H) and γK = L K

for L ∈ σ if H is diagonal. We also write F(H, K ) for F(H, γ H
K ).

Write F(H) for F(H, NH (U )) if H is doubled, semisimple, or complemented, and
|L|> 1. Set F(H)= F(H, NH (σ )) if H is diagonal but not strongly diagonal. 2

REMARK 2.7. Liebeck et al. [LPS1] determine when the subgroups listed in
Lemma 2.5 are maximal in G. In particular, they supply an explicit list of those
primitive almost simple groups which are not maximal.

One can also use our propositions to see that the stabilizers H listed in the first
three parts of Lemma 2.5 are almost always maximal. (It should be pointed out,
however, that such a treatment of the maximality of the stabilizers still depends in
part on [LPS1], since the proofs of some of these propositions sometimes make
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appeals to [LPS1].) Observe that if G = S and H < L = F∗(S), then H is not
maximal. As it is not difficult to determine when H ≤ L , we ignore this subtlety
in the following discussion. We also assume that |�| is not prime.

If H is almost simple, product indecomposable, and not octal, then by Lemma 8.5,
M(H) consists of almost simple groups which are product indecomposable and not
octal. On the other hand, by Proposition 1, if H is not almost simple then no member
of M(H) is almost simple, so, in particular, maximal semisimple overgroups of H are
stabilizers of product structures.

If H is affine then from Lemma 1.3, H is imprimitive on D, so D(H)=∅.
Therefore H is maximal by Proposition 4.

If H is the stabilizer of a regular product structure, then the components Di of H
are alternating groups and, in particular, are product indecomposable and not octal.
Furthermore, H is primitive on its components, so O H (NH (Di ))=∅. Therefore, H
is maximal by Proposition 5.

Finally, if H is the stabilizer of a diagonal structure, then 6(H)= {L}, where L is
the set of components of H . Therefore H is maximal by Proposition 7.

3. Preliminary lemmas

LEMMA 3.1. Assume that p is a prime, G is a nonabelian finite simple group, and
H < G with |G : H | = pa . Then one of the following statements holds:

(a) G ∼= Apa and H ∼= Apa−1;
(b) G ∼= Ln(q) for some prime power q and some prime n, H is the stabilizer of

a point or a hyperplane of the projective geometry for G, and pa
= (qn

− 1)/
(q − 1);

(c) G ∼= L2(11), H ∼= A5, and pa
= 11;

(d) (G, H, pa) is (M23, M22, 23) or (M11, M10, 11);
(e) G ∼= PSp4(3)∼=U4(2), H is a maximal 2-parabolic of G which is an extension

of E16 by A5, and pa
= 33.

PROOF. This is [Gu, Theorem 1]. 2

LEMMA 3.2. Assume that p is a prime, G is a nonabelian finite simple group, and
H < G with |G : H | = pa . Let Q be the set of abelian complements to H in G.

(1) Q=∅ if and only if either

(i) q is a Mersenne prime, p = 2, and G ∼= L2(q); or
(ii) case (e) of Lemma 3.1 holds.

(2) If some member of Q is noncyclic then case (a) of Lemma 3.1 holds.

PROOF. Represent G by right multiplication on�= G/H . In case (a) of Lemma 3.1,
there is a subgroup Q ∼= E pa regular on�, so Q ∈Q and the lemma holds in this case.

Suppose that case (b) of Lemma 3.1 holds. As n is prime, Zsigmondy’s theorem (see
[Gu, 3.2]) says that either conclusion (1i) holds, or there is a prime divisor r of qn

− 1
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which does not divide qk
− 1 for any k < n. In the first case the Sylow 2-subgroups

of G are the complements to H in G, and are nonabelian dihedral groups, so we may
assume the second case holds. Then as pa

= (qn
− 1)/(q − 1), it follows that p = r .

Let V be the natural module for Ĝ = GLn(q) and P a subgroup of Ĝ of order p. As p
does not divide qk

− 1 for k < n, P is irreducible on V and CĜ(P) is the multiplicative
group of Fqn acting by right multiplication on V regarded as the additive group of Fqn .
In particular, CĜ(P) is cyclic, so G has a cyclic Sylow p-subgroup Q whose preimage

Q̂ in Ĝ is irreducible on V , and hence regular on the points and hyperplanes of V . Thus
Q is regular on � so the lemma holds in this case.

In cases (c) and (d), a Sylow p-subgroup of G is of order p, and Q= Sylp(G), so
the lemma holds.

Finally, in case (e), G acts transitively on the set A of abelian subgroups of G of
order 33, and for A ∈A, A ∼= E33 contains a member of each of the three conjugacy
classes of subgroups of G of order 3. Thus as 3 ∈ π(H), A is not regular on �, so
again the lemma holds. 2

LEMMA 3.3. Assume that p is a prime, let n be a positive integer and e = logp((n!)p)

the log of the p-part of n!.

(1) If n is a power of p then e = (n − 1)/(p − 1).
(2) e ≤ (n − 1)/(p − 1), with n a power of p in the case of equality.

PROOF. Part (1) is [A1, Lemma 7.1]. Let n =
∑

i ai pi be the p-ary expansion of n.
By [A1, Lemma 7.2],

e =
∑

i

ai logp(((p
i )!)p).

Thus if n is not a power of p then by induction on n,

e ≤
∑

i

ai (p
i
− 1)/(p − 1)= (n − r)/(p − 1),

where r =
∑

i ai > 1. Hence we may assume n is a power of p, where (1) completes
the proof. 2

LEMMA 3.4. Assume that G is an almost simple group and set L = F∗(G). Assume
that M is a maximal subgroup of G not contained in L and A < L such that
L ∩ M < A and

L = AA′ where A′ =
⋂

D∈AM−{A}

D. (3.1)

Then v = |M : NM (A)| = 2 and, taking B ∈ AM
− {A} and setting U = A ∩ B, we

obtain U = L ∩ M, M = NG(U ), and one of the following statements holds:
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(1) L ∼= A6, G ∼= Aut(L), PGL2(9), or M10, A ∼= A5, U ∼= D10, and M ∼= Z2 × F20,
D20, or F20, respectively, where F20 is the Frobenius group of order 20;

(2) L ∼= M12, G ∼= Aut(M12), A ∼= M11, U ∼= L2(11), and M ∼= PGL2(11);
(3) L ∼= Sp4(q) for some q > 2 even, G is a subgroup of Aut(L) acting nontrivially

on the Dynkin diagram of L, A ∼= O−4 (q), and U = NA(T ) is an extension of
T ∼= Zq2+1 by Z4.

PROOF. This lemma is essentially contained in [LPS1, proof of 4.3]. Furthermore,
the referee observes that [BPS1, Lemma 5.2] can be used to give a short proof of the
lemma.

Let ML = M ∩ L . As M is maximal in G and not contained in L , G = M L ,
M = NG(ML), and I∗L(M)= {ML}, where I∗L(M) denotes the maximal members
of the set of M-invariant proper subgroups of L . Then as ML < A < L , we have
v = |M : NM (A)|> 1. Let m ∈ M − NM (A) and set B = Am and U = A ∩ B. Thus
ML ≤U , and by hypothesis (3.1), L = AB. Therefore |U | = |A||B|/|L| = |A|2/|L|.

Let A1 ∈ML(A), and set B1 = Am
1 and U1 = A1 ∩ B1. Set X = Aut(L) and

Y = L NX (A1).
As L = AB with A ≤ A1 and B ≤ B1, also L = AB1 = B A1. Hence A1 = A1 ∩

AB1 = A(A1 ∩ B1)= AU1, and similarly B1 = BU1. Similarly, B1 = B1 ∩ AB =
B(B1 ∩ A)= B(U1 ∩ A). Then also U1 =U1 ∩ B1 =U1 ∩ B(U1 ∩ A)=UAUB ,
where UA =U1 ∩ A and UB =U1 ∩ B.

Let α = |A1 : A|. Then as Am
1 = B1 and Am

= B, also α = |B1 : B|. As A1 = AU1,
then |U1 :UA| = α, and similarly |U1 :UB | = α.

Next L = A1 B1 is a maximal factorization, and hence is described in the main
theorem of [LPS2]. Inspecting the tables of examples in that theorem for pairs
(A1, B1) with B1 ∼= A1, we conclude that one of the following statements holds:

(i) L ∼= A6 and A1 ∼= A5;
(ii) L ∼= M12 and A1 ∼= M11;
(iii) L ∼= Sp4(q) with q > 2 even, and A1 ∼= O−4 (q);
(iv) L ∼= P�+8 (q) and A1 ∼=�7(q).

Example (iii) appears in [LPS2, Table 1], using the fact that Sp2(q2).2∼= O−4 (q).
In example (iv),�7(q)= Sp6(q)when q is even. Using the formula |L| = |A1|

2/|U1|,
we calculate |U1| and then from the subgroup structure of A1 we conclude that
U1 ∼= D10, L2(11), an extension of Zq2+1 by Z4, G2(q), in cases (i)–(iv), respectively.

Suppose that A 6= A1. Then α = |A1 : A|> 1 and we showed above that
U1 =UAUB , with

|U1 :UC | = α for C ∈ {A, B}. (3.2)

In the first two cases this is impossible, as U1 does not have a proper subgroup UA
such that π(UA)= π(U1). In the third case all Sylow subgroups of U1 are cyclic, so
as U1 =UAUB , for each p ∈ π(U1), UA or UB contains a Sylow p-subgroup of U1,
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and then UA =UB =U1 by (3.2), contradicting α > 1. Finally, (3.2) is impossible in
case (iv) from the factorizations of G2(q) listed in [LPS2, Theorem B].

Therefore A and B are maximal in L and described in one of the four cases
above. We next argue as in [LPS1, proof of 4.3] that case (iv) does not satisfy our
hypothesis. Assume that (iv) holds. We saw that U =U1 ∼= G2(q) and A ∼=�7(q).
Suppose first that v > 2. Then A′ ≤ B ∩ D where D is a third member of AM . By
symmetry, B ∩ D ∼= G2(q). But as B ∩ D ∼= G2(q), |L| does not divide |A||B ∩ D| as
(q2
+ 1, q6

− 1)= (q − 1, 2). Thus |L| does not divide |A||A′|, and this contradicts
the hypothesis in (3.1) that L = AA′.

Therefore v = 2, so U is M-invariant, so that U = ML as {ML} = I∗L(M).
Therefore M = NG(U ) and |G : L NG(A)| ≤ |G : L NM (A)| ≤ |M : NM (A)| = 2. But
then from [K], NG(U ) acts on an�7(q)-subgroup of L , contradicting {ML} = I∗L(M).

Therefore one of cases (i)–(iii) holds. In each of these cases, |X : Y | = 2, so as
Am
= B /∈ AL for m ∈ M − NM (L), it follows that v = 2. Then as above, U = ML ,

so M = NG(U ). We proved that A = A1, so A is described in (i)–(iii), and U =U1
was described shortly thereafter. Finally, we can determine G, and hence also
M = NG(U ), by inspecting Aut(L), to complete the proof of the lemma. 2

LEMMA 3.5. Assume that G is a finite simple group. Then there exists p ∈ π(G) such
that G has cyclic Sylow p-subgroups.

PROOF. This seems to be part of the folklore, but as I do not know of a reference, here
is a sketch of a proof.

It suffices to exhibit a prime which divides |G| to the first power, and it is often
possible to establish this stronger statement. If G is of prime order this is trivial, so we
may assume that G is nonabelian. If G is sporadic, such a prime exists by inspection
of the orders of the sporadic groups (see [GLS3]).

Suppose that G ∼= An . By Bertrand’s postulate (see [NZ, Theorem 8.6]) there is a
prime p such that n/2< p ≤ n. Then p divides |G| to the first power, so the lemma
holds in this case too.

Thus we may assume that G is of Lie type. Let G0 be the universal group of Lie
type of type G. From [GLS3, 4.10.1],

|G0| = q N
∏

i

8i (q)
ni (3.3)

for suitable integers N , ni and prime power q , where 8m(x) is the mth cyclotomic
polynomial. Let p be a prime relatively prime to q , and m0 the order of q in the
multiplicative group of Fp. By [GLS3, 4.10.3.a], m p(G0)= nm0 . Thus it remains to
pick p with nm0 = 1.

Next by Zsigmondy’s theorem (see [Gu, 3.2]), given i , there is a prime p with
m0 = i , unless (q, i)= (2, 6) or q is a Mersenne prime and i = 2. Thus it suffices to
exhibit an i with ni = 1 and (q, i) not one of the exceptional Zsigmondy pairs. If G
is of type 3 D4(q), then the factorization (3.3) appears after [GLS3, 4.10.1], and by
inspection i = 12 works. In the remaining case we examine the standard factorization
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|G0| = q N
∏

j

(qd j − ε j )

appearing for example in [GLS3, Table 2.2] or [A2, Table 16.1], where the d j are
suitable positive integers and ε j ∈ {1,−1}. Now 8u j d j (q) divides qd j − ε j , for
u j = 1, 2 when ε j = 1,−1, respectively, and we choose i = u j d j with d j maximal.
This choice works unless (q, i) is an exceptional Zsigmondy pair. From the
factorization, ni = 1, and i = 2 if and only if G = L2(q), while (q, i)= (2, 6) if and
only if G is Lε6(2), Sp6(2), or G2(2). We choose p = q , 31, 11, 7, 7 when G is L2(q),
L6(2), U6(2), Sp6(2), G2(2), respectively. 2

Recall (see [A2]) that for G a finite group and p a prime, m p(G) is the p-rank of G.

LEMMA 3.6. Assume that � is a finite set, G ≤ Sym(�), and H is a subgroup of G
regular on �. Let p be a prime, P ∈ Sylp(H), and P ≤ Q ∈ Sylp(G).

(1) There exists ω ∈� such that Qω ∈ Sylp(Gω), and for each such ω, P is a
complement to Qω in Q.

(2) If Q is abelian then Q = P × Qω and m p(G)= m p(H)+ m p(Gω).

PROOF. The first remark in (1) follows from Sylow’s theorem. Next |G| = |�||Gω|,
so

|Q| = |G|p = |�|p|Gω|p = |P||Qω|, (3.4)

as H is regular on �, P ∈ Sylp(H), and Qω ∈ Sylp(Gω). As P is semiregular on
�, P ∩ Qω = 1, and (1) follows from this observation together with (3.4). Then (1)
implies (2). 2

LEMMA 3.7. Assume that G is almost simple and set L = F∗(G). Assume that
1 6= H < L and |G : L| is prime. Let M be the set of maximal overgroups of H in
G and assume that,

for each M ∈M, there exists M ′ ∈M− {M} with H = M ∩ M ′. (3.5)

Then:

(1) L and NG(H) are in M;
(2) H = NL(H);
(3) |NG(H) : H | = |G : L|;
(4) for each M ∈M− {NG(H)}, H = M ∩ NG(H).

PROOF. As |G : L| is prime and H ≤ L , L ∈M. Thus by (3.5), there exists
K ∈M− {L}with H = L ∩ K . As L E G, H E K , so K = NG(H) by maximality
of K . Thus (1) holds, and H = L ∩ K = NL(H), establishing (2). As |G : L| is
prime and K ∈M− {L}, |G : L| = |K : K ∩ L| = |K : H |, so (3) holds. Finally,
if M ∈M− {K } then M ∩ K = NM (H)= H or K as H ≤ M ∩ K and |K : H | is
prime. But as M and K are distinct maximal subgroups of G, K � M , so M ∩ K = H ,
establishing (4). 2
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LEMMA 3.8. Assume that G is almost simple and set L = F∗(G). Assume that |G : L|
is prime and H is a maximal subgroup of L such that NG(H)� L. Let M be the set
of maximal overgroups of H in G.

(1) M= {L , NG(H)}.
(2) OG(H)= {H, L , NG(H), G}.

PROOF. As |G : L| is prime and H ≤ L , L ∈M. As |G : L| is prime and
K = NG(H)� L , G = L K and |K : K ∩ L| = |G : L|. Let J ∈OG(H)− {G, L}.
Then as H is maximal in L , H = J ∩ L E J , so J ≤ K . In particular, H = K ∩ L ,
so |K : H | is prime, and hence J = H or K . The lemma follows. 2

4. Overgroups of primitive groups

In this section we assume Hypothesis 2.1. Recall the definition of the various
types of primitive groups from Definition 2.3. Recall also that for M a suitable
primitive subgroup of S, F(M) is the M-invariant product structure on � defined
in Notation 2.6. Similarly, for H affine, D(H) is the set of H -invariant direct sum
decompositions of F∗(H) defined in Notation 2.6. Given a suitable collection L of
subgroups of S, the product structure F(L) is defined in Example 1.6.

LEMMA 4.1. Assume that H is affine and M ∈OG(H). Then H preserves the affine
structure R = R(D) defined in Lemma 1.4, D ≤ F∗(M), and one of the following
statements holds:

(1) M is affine with F∗(M)= D, so M ≤ NG(R).
(2) H is imprimitive on D and there exists D = {D1, . . . , Dk} ∈D(H) such that M

is semisimple and F(M)= F(D). Moreover, d = |D1| ≥ 5, and Di = D ∩ X i
is a complement to X i,ω in X i , where {X1, . . . , Xk} are the components of M.
Furthermore, if M = NG(F(M)) then NM (D) is the stabilizer in NG(D) of D.

(3) |�| = p is prime.

PROOF. By Lemma 1.4, H preserves R.
Let X = F∗(M). By Lemma 2.4, M is primitive on �, so X is transitive on �.

In particular, p ∈ π(X), so 1 6= CX (D). But as D is regular on �, D = CS(D),
so 1 6= D ∩ X , and hence D ≤ X by Lemma 2.4(2). As D is regular on �, D is a
complement to Xω in X .

Next M is described in Lemma 2.2, so as |�| = pe is a power of a prime, we
conclude (using Lemma 1.4 in case (3i) of Lemma 2.2) that one of the following
statements holds:

(i) M is affine;
(ii) M is semisimple and stabilizes the (d, k)-product structure F = F(M)= F(L),

where L= (X i : 1≤ i ≤ k) is the set of components of M , d = p f for some
divisor f of e, and k = e/ f > 1;

(iii) M is almost simple.
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In case (i), |X | = |�| = |D|, so X = D and hence (1) holds. Thus we may assume that
case (ii) or (iii) holds. Furthermore, we may assume (3) does not hold, so e > 1.

Suppose that case (iii) holds. Recall that D is an abelian complement to Xω in
X . Thus as e > 1, Lemma 3.2 says that case (a) of Lemma 3.1 holds. This is a
contradiction as F∗(S)� M .

Thus we may assume that case (ii) holds. Let Di be the projection of D on X i . Then
Di ≤ CS(D)= D, so D =

∏
i Di and D = {D1, . . . , Dk} ∈D(H). As X = XωD and

X i,ω is the projection of Xω on X i , it follows that X i = X iωDi . Then as D is regular
on �, Di is a complement to X i,ω in X i . Hence, F(D)= F(M) by Lemma 1.7.
Therefore, (2) holds in this case, and the proof of the lemma is complete. 2

DEFINITION 4.2. Define a semisimple group H to be octal if for each component L
of H , and for each ω ∈�, L ∼= AutH (L)∼= L3(2) and |ωL| = 8.

LEMMA 4.3. Let M ∈OG(H). Then either

(1) D ≤ F∗(M); or
(2) H is semisimple and octal with r components {Ei | 1≤ i ≤ r}, Ei ∼= L3(2),

|�| = 8r , and M is affine with

X = F∗(M)=
r∏

i=1

X i ,

where X i = [X, Ei ] ∼= E8. In particular, H X is affine, D = {X1, . . . , Xr }

∈D(H X), and F(H)= F(D).

PROOF. Assume that M is a counterexample, and let X be a minimal normal subgroup
of M . By Lemma 4.1, H is not affine. By Lemma 2.4(2), either D ∩ X = 1 or H is
doubled and we may assume that D1 ∩ X = 1. Set E = D1 if H is doubled and E = D
otherwise. Thus E ∩ X = E ∩ F∗(M)= 1.

Suppose first that M is affine. Then n = |�| = |X | = pe, so from Lemma 2.2, H
is semisimple, and hence D is the direct product of r simple groups Ei permuted
transitively by H and |Ei : Ei,ω| = p f , with r f = e. By Lemma 3.2, one of the
following statements holds:

(i) for each i there exists an abelian complement Qi to Ei,ω in Ei ;
(ii) p = 2 and Ei ∼= L2(q), where q = 2 f

− 1 is a Mersenne prime;
(iii) p = 3, f = 3, and Ei ∼= P Sp4(3).

Assume first that (i) holds, and let Q = Q1 · · · Qr . Then Q is abelian and regular
on �, so CS(Q)= Q. This is a contradiction as CX (Q) 6= 1= D ∩ X .

Next assume that (ii) or (iii) holds. As D is transitive on �, D is not contained in
the complement Mω to X in M , so H1(H, X) 6= 0. On the other hand, H ∼= K =
H X ∩ Mω, and H X is primitive on � by Lemma 2.4, so K is irreducible on X .
Therefore H is irreducible on X , so by [AS, Theorem 3],
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X =
r⊕

i=1

X i ,

where X i = [X, Ei ]. Let d = dim([X, Ei ]). Then rd = e = r f , so d = f . But
|P Sp4(3)| does not divide |L3(3)|, so (iii) does not hold. Furthermore, in (ii), if
f > 3 and P ∈ Sylq(Ei ) then NGL f (2)(P) is P extended by a group of order f ,
whereas |NEi (P)| = q(q − 1)/2, which is a contradiction. Thus, in case (ii), f = 3
and Ei ∼= L3(2), so that (2) holds.

Thus we may assume that M is not affine. If M is almost simple then (1) holds by
the Schreier property (see [GLS3, 7.1.1]). Therefore, as M appears in case (2) or (3) of
Lemma 2.2, X is the direct product of k simple components X i , permuted transitively
by M , and one of the following statements holds:

(a) M is semisimple and n = mk , where |X i : X i,ω| = m;
(b) M is doubled or complemented, and n = yk , where |X i | = y;
(c) M is diagonal and n = yk−s , where |X i | = y and s = |6(M)|.

Next F∗(M)≤U E M with U/F∗(M) solvable and M/U ≤ Sk . Therefore, as E
is the direct product of simple components and E ∩ F∗(M)= 1, we conclude that
E ∩U = 1, so E is isomorphic to a subgroup of Sk . However, E is transitive on �,
so |E | is divisible by n = mk , yk , or yk−s , in (a), (b), or (c), respectively. Pick p to
be a prime divisor of m or y in the respective case. We may pick p to be odd, except
possibly in case (a). Thus a = logp(|E |p)≥ k in (a) and (b), while a ≥ k − s in (c).
In particular, a ≥ k if p = 2. But by Lemma 3.3, l = logp((k!)p)≤ (k − 1)/(p − 1),
while if p > 2 then (k − 1)/(p − 1)≤ (k − 1)/2< k − s. Thus in any event, l < a,
in contradiction to E being isomorphic to a subgroup of Sk . 2

LEMMA 4.4. Let M ∈OG(H) be almost simple. Then one of the following statements
holds:

(1) M = S or F∗(S);
(2) H is almost simple;
(3) H is affine and � is prime.

PROOF. Assume that the lemma is false and pick a pair P = (M, H) which is a
counterexample to the lemma, and with |M : H | minimal subject to this constraint.
By Lemma 4.1, H is not affine, and as P is a counterexample, H is not almost simple.
Therefore H is doubled, complemented, or semisimple. Let X = F∗(M). As H X
satisfies the hypothesis of the lemma, M = H X by minimality of P . By Lemma 4.3,
D ≤ X .

Let K = Mω and J = K ∩ X . As D is transitive on �, M = K D. Then as D ≤ X ,
also X = J D. By Lemma 2.4, M is primitive on �, so K is maximal in M .

Suppose that H is not maximal in M , and let I ∈O M (H) with H maximal in I . By
Lemma 2.4, I is primitive on �. By minimality of P , I is not almost simple. If |�|
is a prime, then H is affine or almost simple by Lemma 2.2, contrary to an earlier
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observation. Thus M = S or F∗(S) by minimality of P , contrary to the choice of P as
a counterexample.

Therefore H and K are maximal in M , so M = K H is a maximal factorization of
M with the following properties:

(a) X = (X ∩ K )(X ∩ H) is also a factorization;
(b) H is primitive on � so K ∩ H = Hω is maximal in H ;
(c) D = F∗(H) is the direct product of r ′ > 1 isomorphic nonabelian simple groups.

To complete the proof of the lemma, we inspect the list of maximal factorizations of
the almost simple groups in [LPS2], and verify that no pair on the lists satisfies (a)–(c).

We begin with the case where X is a classical group. Thus we appeal to [LPS2,
Theorem A], and inspect [LPS2, Tables 1–4]. We first search for pairs satisfying
(c). In Table 1, the only examples occur with X = Sp2m(q), q even. The last four
rows of that subtable contain a (∗), so they do not satisfy (a). The remaining pairs
(A, B) satisfying (c) are (Sp2(q2).2, O+4 (q)) and (O−2m(q), Spm(q) wr Z2) with m
even. Both pairs fail to satisfy (b): see the discussion in [LPS2, 3.2.1.d p. 48, and
3.2.4.b p. 50, respectively].

In Table 2, the only pair satisfying (c) is (Sz(q), O+4 (q)) in P Sp4(q). However,
here A ∩ B is a dihedral group of order 2(q − 1), which is not maximal in H , so (b)
fails.

There are no examples of pairs in Table 3 satisfying (c). In Table 4 there are
two examples: (�7(2), (L2(4)× L2(4)).22) in �+8 (2), and an example for �+8 (4)
which fails (a) as a (∗) appears in the corresponding row. Consider the first example.
Here (see the discussion in [LPS2, 3.6.1.c]) X is �+8 (2), and if we write V for the
orthogonal space defining X , then, up to conjugation in Aut(X), A is the stabilizer
of a nonsingular vector v ∈ V , and B is the stabilizer of an extension field structure
over F4, and isomorphic to O+4 (4) extended by a field automorphism. Now A ∩ B =
CB(v)∼= Z2 × O3(4) is not maximal in B, giving a contradiction. This completes the
analysis in the case when X is a classical group.

When X is an exceptional group of Lie type, we see from [LPS2, Theorem B and
Table 5] that there are no examples of pairs satisfying (c). Similarly, from [LPS2,
Theorem C and Table 6], when X is sporadic there are no examples satisfying (c).

Finally, assume that X is an alternating group An with n = 7 or n > 8. We appeal
to [LPS2, Theorem D]. We first consider the generic examples in that theorem, where
A is the stabilizer of a k-subset 0 in the n-set 6 permuted by M , with 1≤ k ≤ 5, and
B is k-homogeneous on 6. As P does not satisfy conclusion (1) of our lemma, k > 1.
As B is k-homogenous, either B is 2-transitive or k = 2 and B is of odd order. In either
case B does not satisfy (c), so A satisfies (c). Thus k = 5 and n = 10. But as B < M
is 5-homogeneous, n = 12 or 24 and B is M12 or M24, giving a contradiction.

This leaves the exceptional cases in Theorem D, and as n is not 6 or 8, we
have n = 10. The only example satisfying (c) has A equal to L2(8) or 2G2(3), and
D ∼= A5 × A5. From the discussion on [LPS2, p. 124], A ∩ B ∼= A4, so A ∩ B is not
maximal in B, and hence (b) is not satisfied. Thus the proof is complete at last. 2
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LEMMA 4.5. If M ∈OG(H) is complemented then H is complemented and F∗(M)
= F∗(H).

PROOF. By Lemma 4.3, D ≤ F∗(M)= X . As M is complemented, X is regular on
�, so as D is transitive on �, D is also regular on �. In particular, |D| = |�| = |X |,
so D = X . As M is complemented, |�| is not a prime power. But from Lemma 2.2, as
D is regular on �, either H is affine and |�| is a prime power, or H is complemented.
Therefore H is complemented. 2

LEMMA 4.6. Assume that H is complemented and let D2 = CG(D).

(1) The map ϕ : g 7→ ωg is an equivalence of the representation ρ of D by right
multiplication on D with the representation of D on �.

(2) Define λ : D→ Sym(D) by xλ : g 7→ x−1g, and let ψ = λϕ∗, where ϕ∗ :

Sym(D)→ S is defined by ϕ∗ : β 7→ ϕ−1βϕ. Then ψ : D→ S is a permutation
representation with Dψ = D2.

(3) Let X = DD2 and F = {g · gψ | g ∈ D}. Then F = Xω is an Hω-invariant full
diagonal subgroup of X.

(4) HCG(D)= X H ∈OG(H) is doubled.

PROOF. Part (1) is a restatement of the fact in Lemma 2.2 that D is regular on �.
Visibly λ and ψ are permutation representations with Dψ a subgroup of D2 regular

on �. As D is transitive on �, D2 is semiregular on �, so as Dψ is a transitive
subgroup of D2, (2) holds.

For g ∈ D, let gα = g · gψ . Observe that 1(gρ · gλ)= g−1g = 1, so gρ · gλ fixes
1, and hence gα = gρϕ∗ · gλϕ∗ ∈ Xω. As D is transitive on�, |Xω| = |X |/|�| = |F |,
so F = Xω. As Hω acts on D, it also acts on X = DCG(D), and then on Xω = F ,
completing the proof of (3).

As H acts on CG(D), HCG(D)= H X is a subgroup of G, so X H ∈OG(H). Then
X H is primitive on � by Lemma 2.4, and from (3), H X is doubled. 2

In the next lemma, diag(B, F) is defined in Definition 1.9, while P(H) and
F(H.1) are defined in Notation 2.6.

LEMMA 4.7. Assume that H is doubled with minimal normal subgroups D1 and D2,
and let L be the set of components of D1. Let k = |L| and m = |L| for L ∈ L.

(1) If k > 1, then for each 1 ∈ P(H), F(H, 1) is a regular (mk/d , d)-product
structure preserved by H, where d = |1|. In particular, F(H) is an (m, k)-
structure.

(2) If k = 1, set B = {D1, D2} and F = Dω. Then d(H)= diag(B, F) is an H-
invariant diagonal structure on �.

PROOF. Part (1) follows from Notation 2.6. On the other hand, if k = 1 then (2)
follows from the definition of a diagonal structure in Definition 1.9. 2
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LEMMA 4.8. Assume that M ∈OG(H).

(1) If M is doubled or diagonal then H is not semisimple.
(2) If M is doubled then H is not diagonal.
(3) If M and H are doubled then F∗(H)= F∗(M).

PROOF. Assume the hypothesis of one of (1)–(3), and let X = F∗(M). By
Lemma 4.3, D ≤ X , so Dω ≤ Xω.

First assume the hypothesis of (3). Then |X | = |�|2 = |D|, so D = X and hence
(3) holds.

Now assume that M, H is a counterexample to (1) or (2). If H is semisimple let
L be the set of components of H , while if H is diagonal let L= {Dσ | σ ∈6(H)}
(in the notation of Lemma 2.2). If M is doubled let J be one of the minimal normal
subgroups of M , while if M is diagonal, then for γ ∈6(M), let Jγ be the product of
|γ | − 1 of the components of Xγ , and set J = 〈Jγ : γ ∈6(M)〉.

In either case, J is regular on � and we can write X = J × J ′, where J ′ is the
product of the components of M not contained in J . Let π : X→ J be the projection
map with respect to this direct sum decomposition. Let α = π|Xω : Xω→ J , and
observe that α is an injection as J ′ is semiregular on �. Thus, α : Lω→ J is injective
for each L ∈ L. Therefore as L is a minimal normal subgroup of NH (L) ∩ NH (J ),
and as Lω 6= 1, it follows that π : L→ J is injective. Then as each nontrivial normal
subgroup of D intersects some L ∈ L nontrivial, it follows that π : D→ J is an
injection. But now |�|< |D| ≤ |J | = |�|, giving a contradiction. 2

5. Semisimple overgroups of primitive groups

In this section we make the following assumption.

HYPOTHESIS 5.1. Hypothesis 2.1 is satisfied and H is not affine. Furthermore,
M ∈OG(H) and M is semisimple but not almost simple.

The referee pointed out that [BPS2] contains results similar to those in this section,
and indicates that [BPS2] can be used to prove many of the lemmas in the section.

NOTATION 5.2. Let X = F∗(M), I = {1, . . . , k}, and Ī = {1, . . . , r}. Pick ω ∈�.
Let X = {X i | i ∈ I } be the set of components of M . For γ ⊆ I , set γ ′ = I − γ ,

Xγ = 〈X i : i ∈ γ 〉, 0γ = ωXγ , and πγ : X→ Xγ the projection map with respect to
the direct sum decomposition X = Xγ × Xγ ′ .

As M is semisimple but not almost simple, k > 1 and M preserves the (m, k)-
product structure F = F(M)= (�i : i ∈ I ) defined in Notation 2.6, with X i transitive
on �i and X i ′ the kernel of the action of X on �i . This allows us to identify � with∏

i∈I 0i , as in the discussion in Definition 1.5.
Let E be a minimal normal subgroup of H and E = {Ei | i ∈ Ī } the set of

components of E . By Lemma 4.3, E ≤ X . For i ∈ Ī let

βi = { j ∈ I | Eiπ j 6= 1},
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and for i ∈ I let

Si = { j ∈ Ī | E jπi 6= 1}.

Represent H on I and Ī so that the maps i 7→ X i and j 7→ E j are equivalences of
permutation representations. As H is transitive on E and acts on X , H is transitive on
Ī and

b = b(M, H)= |βi |

is independent of i ∈ Ī . For γ ⊆ I define

Qγ = {e ∈ E | eπγ ∈ Xγ,ω}. 2

See Notation 2.6 for the definition of F(H, K ) for suitable K ≤ H .

LEMMA 5.3. (1) For each γ ⊆ I , E = Qγ Qγ ′ .
(2) For each proper nonempty subset γ of I , Eω < Qγ < E, and Eπγ is transitive

on 0γ .
(3) If i, j ∈ I are distinct, then E = Qi Q j and Q j /∈ QE

i .
(4) H is transitive on X and I .

PROOF. Let γ ⊆ I and x ∈ Xγ . As E is transitive on �, x = ev for some e ∈ E and
v ∈ Xω. As M is semisimple, Xω = Xγ,ω × Xγ ′,ω, so vπα ∈ Xα,ω for α ∈ {γ, γ ′}.
Thus Eω ≤ Qγ and

eπγ ′ = (xv
−1)πγ ′ = (v

−1)πγ ′ ∈ Xγ ′,ω,

so e ∈ Qγ ′ . By symmetry, for x ′ ∈ Xγ ′ , x ′ = e′v′ with e′ ∈ Qγ and v′ ∈ Xω. Next
for each g ∈ E , g = xx ′ with x ∈ Xγ and x ′ ∈ Xγ ′ , so g = eve′v′ with e ∈ Qγ ′ and
ve′v′ ∈ Qγ . This establishes (1).

As X = XωE , Xγ = Xπγ = Xωπγ Eπγ = Xγ,ωEπγ , so Eπγ is transitive on 0γ ,
and hence if γ 6=∅ then Eπγ � Xγ,ω, so that Qγ 6= E . Similarly, by (1), Eπγ ′ ≤
Qγπγ ′Xγ ′,ω and if γ ′ 6=∅ then Xγ ′,ω 6= Xγ ′ = Eπγ ′Xγ ′,ω, so Qγ 6= Eω. Therefore
(2) holds.

Let γ be an orbit of H on I . Then Hω acts on Qγ , and if γ 6= I then by (2),
Hω < HωQγ < H , in contradiction to H being primitive on �. Thus (4) holds.

Finally, suppose that i, j ∈ I are distinct. Then j ∈ i ′, so Qi ′ ≤ Q j , and hence
E = Qi Q j by (1). Therefore Q j is transitive on E/Qi , and by (2), |E/Qi |> 1, so
that Q j fixes no point of E/Qi . Hence Q j /∈ QE

i , establishing (3). 2

LEMMA 5.4. (1) s = |Si | is independent of i ∈ I .
(2) ks = rb.
(3) b = 1 if and only if each component of E is contained in a component of X.
(4) |�| = mk .

PROOF. Part (1) follows from Lemma 5.3(4). Then (2) follows from counting the
order of {(i, j) ∈ I × Ī | E jπi 6= 1} in two ways. Part (3) is trivial, and (4) follows
from Lemma 2.2. 2
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LEMMA 5.5. Assume that b = 1. Then the following statements hold.

(1) r = ks.
(2) For i ∈ I , Si = { j ∈ Ī | E j ≤ X i }.
(3) S = {Si | i ∈ I } is an H-invariant partition of Ī into k blocks of size s.
(4) For i ∈ I , let E(i)= 〈E j | j ∈ Si 〉 and Hi be the stabilizer in H of i . Then

E(i)= Eπi is transitive on 0i , Hi is transitive on Si , and Hi is primitive on 0i .
(5) Either H is semisimple and s = 1, or X i ∼= Am is the alternating group on 0i .
(6) F = F(H, H1).
(7) If H is doubled or semisimple, then AutH (X1) is doubled or semisimple on 01,

respectively.
(8) If H is diagonal then 6(H) corresponds to an H-invariant partition 6 of Ī

under the equivalence of Notation 5.2, the partition 6 is a refinement of S , and
AutH (X1) is diagonal on 01.

(9) If H is complemented then AutH (X1) is complemented or doubled on 01.

PROOF. Part (1) follows from Lemma 5.4(2), while (2) follows from Lemma 5.4(3).
Then (2) implies (3).

Let i ∈ I . By (2), E(i)= Eπi , so E(i) is transitive on 0i by Lemma 5.3(2). By (3)
and Lemma 5.3(4), Hi is transitive on Si and for j ∈ Si , NH (E j )≤ Hi .

If H is semisimple then by Lemma 2.2, Eω is the direct product of the groups
E j,ω, j ∈ Ī , and AutHω(E j ) is maximal in AutH (E j ). Thus as NH (E j )≤ Hi , as Hi
is transitive on Si , and as E(i) is transitive on 0i , Hi is primitive and semisimple on
0i . Therefore in this case, (4) and (7) hold, while (5) follows from Lemma 4.4 and (6)
follows from Notation 2.6.

If H is doubled then by Lemma 2.2, D = E × Ẽ with Dω a full diagonal subgroup
of D. As E(i) is transitive on 0i and semiregular on �, E(i) is regular on 0i .
From part (1) of the next lemma (whose proof does not depend upon this lemma),
b(M, Ẽ)= 1, so by symmetry between E and Ẽ , Ẽπi = Ẽ ∩ X i = Ẽ(i) is regular on
0i , and it the direct product of s̃ components. By (1), s̃ = s. Thus Yω is a full diagonal
subgroup of Y = E(i)Ẽ(i). Hence Y is primitive on 0i , and as AutH (X i ) has two
distinct minimal normal subgroups, the group is doubled. Thus (4) and (7) hold in this
case, and, as above, (5) and (6) follow from Lemma 4.4 and Notation 2.6.

Assume that H is diagonal. Then the first statement in (8) follows from Lemma 2.2,
which also says that for σ ∈6, the global stabilizer H(σ ) in H of σ is primitive on σ .
Let 1 ∈ Si ∩ σ . As H(σ ) is primitive on σ , either σ ⊆ Si or {1} = Si ∩ σ . In the first
case (8) holds, and (5) and (6) follow from Lemma 4.4 and Notation 2.6. Suppose that
the second case holds. Then E(i) is regular on 0i , so m = |0i | = |E(i)| = es , where
e = |E1|. Thus appealing to Lemmas 2.2, 5.4(4), and (1),

er−|6|
= |�| = mk

= eks
= er ,

giving a contradiction.
Finally, assume that H is complemented. Then E is regular on �, so E(i) is

regular on 0i . If Hi,ω acts on some nontrivial proper subgroup F of E(i), then
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Hω < 〈F Hω〉Hω < H , contradicting the maximality of Hω in H . Therefore no such F
exists, so Hi,ω is maximal in Hi , and hence Hi is primitive on 0i . As E(i) is regular
on 0i , AutH (X i ) is complemented or doubled. Thus (4) and (9) hold in this case, and
(5) and (6) follow as usual. 2

LEMMA 5.6. Assume that H is doubled or diagonal.

(1) b = 1.
(2) X = F∗(M ′) where M ′ = NG(X)= NG(F), and F = F(H, H1), where

H1 = NH (X1).

PROOF. First assume that b > 1 and let Y = X1′ and 0 = 01′ . Then E ∩ X1 = 1 by
Lemma 5.4(3), so π = π1′ : E→ Y is an injection. Let F = Eπ and for i ∈ Ī , let
Fi = Eiπ . By Lemma 5.3(2) and the injectivity of π , Eωπ < Q1′π = P = Fω < F ,
so there exists a ∈ P − Eωπ . Let a = a1 · · · au with ai ∈ F#

i , and A = F1 · · · Fu .
Suppose first that H is doubled. Then D = E × Ẽ and Dω is a full diagonal

subgroup of D. Then B = Dπ = F Ẽπ and R = Dωπ ≤ Bω, so R acts on
P = Bω ∩ F . Furthermore, AutR(A)= A, so as ai ∈ F#

i and Fi is simple, A =
[a, R] ≤ P . Then as A E F and F is transitive on 0 by Lemma 5.3(2), it follows
that A fixes 0 pointwise, in contradiction to Y being faithful on 0.

Hence H is diagonal. Then Fi is contained in a block αi of the partition of E
in Lemma 2.2(3ii), and there is a full diagonal subgroup Ui of Fαi = 〈K : K ∈ αi 〉

contained in Fω. Then as above, A = [a,U1 · · ·Uu] ≤ P , and we obtain the same
contradiction. This completes the proof of (1).

By (1) and Lemma 5.5(5), X1 acts as the alternating group on 01. Thus M ′ =
NG(X)= NG(F) by Lemma 1.8. Then (2) follows from Lemma 5.5(6). 2

LEMMA 5.7. Let γ ⊆ I and µ⊆ Ī . For η ⊆ Ī , let Eη = 〈Ei : i ∈ η〉 and η′ = Ī − η.
Let σ : E→ Eµ be the projection map with respect to the direct sum decomposition
E = Eµ × Eµ′ .

(1) If Qγ σ = Eµ then Eµ′πγ is transitive on 0γ and Eµπγ is semiregular on 0γ .
(2) Assume that H is semisimple or complemented, µ= {i} for some i ∈ Ī , and

γ is NHω(Ei )-invariant. Then for each α ∈ {γ, γ ′}, Qασ ∈ {Ei,ω, Ei }, and
Qασ = Ei for some α ∈ {γ, γ ′}.

PROOF. Let W = Eµ and P = Qγ σ . Suppose that P =W . Then for each w ∈W ,
there exists u ∈ Qγ such that w = uσ , or equivalently there exists v ∈ Eµ′ such that
u = wv. Thus

ω(wπγ )= ω(uπγ v
−1πγ )= ω(v

−1πγ ) ∈ ωEµ′πγ .

ThereforeωEπγ = ωEµ′πγ , so by Lemma 5.3(2), V = Eµ′πγ is transitive on 0 = 0γ .
Then as Wπγ centralizes V , it follows that Wπγ is semiregular on 0, so (1) holds.

Now assume the hypothesis of (2). Suppose first that

Wω < P < W. (5.1)
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As γ is NHω(W )-invariant, so are Qγ and P . However, if H is semisimple then
AutHω(W ) is maximal in AutH (W ), contrary to (5.1). Similarly, if H is complemented
then Inn(W )≤ AutHω(W ), again contrary to (5.1). Thus (5.1) fails, which establishes
the first statement in (2). Furthermore, Wω ≤ Qγ ∩ Qγ ′ , so Wω =Wωσ ≤ P ∩ R,
where R = Qγ ′σ . Thus if the second statement fails, then P = R =Wω by the first
statement, whereas W = P R by Lemma 5.3(1). This contradiction completes the
proof of (2). 2

LEMMA 5.8. Assume that H is semisimple, let L = E1, β = β1, take 1 ∈ β, let A
be the stabilizer in L of ω ∈ 01 under the representation π1 : L→ X1 ≤ Sym(01),
let σ : E→ L be the projection map with respect to the direct sum decomposition
E = L × E1′ , and set c = |L : Lω| and d = |L : A|.

(1) |�| = cr .
(2) NH (L) is transitive on β.
(3) b ≤ 2.
(4) Assume that b = 2. Then c = d2, A = Q1σ , |NHω(L) : NHω(A)| = 2, and one of

the following statements holds:

(i) L ∼= A6, A ∼= A5, Lω ∼= D10, and d = 6;
(ii) L ∼= M12, A ∼= M11, Lω ∼= L2(11), and d = 12;
(iii) L ∼= Sp4(q) for some q > 2 even, A ∼= O−4 (q), Lω is an extension of Zq2+1

by Z4, and d = q2(q2
− 1)/2.

PROOF. Part (1) follows from Lemma 2.2(3i). Assume that (2) fails and let γ be an
orbit of K = NH (L) on β. As ∅ 6= γ ⊂ β, πα is an injection on L for α ∈ {γ, γ ′}, so
1 6= Lωπα ≤ Qα . In particular, Lπα is not semiregular on 0α , so as α is K -invariant,
Lemma 5.7 supplies a contradiction, completing the proof of (2).

Suppose that b > 1. By Lemma 5.3(1), L = P P ′, where P = Q1σ and P ′ = Q1′σ .
By (2), K is transitive on β, and as E is transitive on �, K = E Kω, so J = Kω
is transitive on β. Therefore P J

= {Qiσ | i ∈ β}. Also for j ∈ I − β, L ≤ Q j , so
Q jσ = L . Thus as

Q1′ =
⋂
i∈1′

Qi ,

it follows that

P ′ ≤
⋂

16=i∈β

Qiσ. (5.2)

As in the previous paragraph, Lπα is not semiregular on 0α for ∅ 6= α ⊂ β, so by
Lemma 5.7(1), P < L . Then as L = P P ′, (5.2) says that Qiσ 6= P for 1 6= i ∈ β, so
as P J

= {Qiσ | i ∈ β}, it follows that

The map i 7→ Qiσ is a bijection of β with P J . (5.3)
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Furthermore, if Lω = P then as Lω E J , P J
= {P}, contradicting (5.3) and b > 1.

Thus Lω < P . On the other hand, by Lemma 2.2(3i), AutJ (L)= AutHω(L) is
maximal in AutH (L)= AutK (L). Thus (AutK (L), AutJ (L), L , P, b) satisfies the
hypothesis in Lemma 3.4 on (G, M, L , A, v), so (4) follows from that lemma, once
we show that P is the group A defined in this lemma. But Q1 is the stabilizer in E
of ω ∈ 01 under the representation π1 : E→ Sym(01), so A = L ∩ Q1 and Lω ≤ Q1.
As Q1 acts on L as its projection P , 〈L P

ω 〉 = 〈L
Q1
ω 〉 ≤ L ∩ Q1 = A ≤ P . Finally, from

the list of groups in Lemma 3.4, P = 〈L P
ω 〉, so P = A, completing the proof. 2

LEMMA 5.9. Assume that H is semisimple and b = 2. Define d as in Lemma 5.8.

(1) m = ds and |�| = d2r
= dks .

(2) NH (X1) is transitive on S1.
(3) NH (X1) is primitive on 01 with AutH (X1) semisimple and F∗(AutH (X1))=

AutE (X1) is the direct product of the s copies AutEi (X1), i ∈ S1, of E1.
(4) Either

(i) X1 is the alternating group Am on 01; or
(ii) s = 1, m = d, and B = {βi | i ∈ Ī } is a system of imprimitivity for H on I .

In addition, either:

(a) X1 ∼= E1; or
(b) E1 ∼= Sp4(q), d = q2(q2

− 1)/2, q = qe
0 for some integer e > 1,

X1 ∼= Sp4e(q0), and X1,ω ∼= O−4e(q0).

PROOF. Adopt the notation from Lemma 5.8; in particular, c = d2. For i ∈ Ī , let
Fi = Eiπ1 and set F = 〈Fi : i ∈ S1〉. Then Eπ1 = F , so F is transitive on 0 = 01 by
Lemma 5.3(2).

Next NH (E1) is transitive on β by Lemma 5.8(2), so NH (X1) is transitive on S1,
establishing (2). From Lemma 5.8(4) and the proof of Lemma 3.4, Fi,ω is maximal in
Fi . Thus as the projection of Fω on Fi acts on Fi,ω, it follows that

(5) Fω is the product of the groups Fi,ω, i ∈ S1, and Fi,ω is maximal in Fi .

By definition, |Fi : Fi,ω| = d . Thus as F is transitive on 0, it follows from (5) that
m = |F : Fω| = ds , so (1) follows from Lemmas 5.8(1) and 5.4(2). Also (3) follows
from (2) and (5), and the transitivity of F on 0. Then by Lemma 4.4, either (4i)
holds or s = 1, and we may assume the latter. Then m = d by (1), and visibly B is
a system of imprimitivity for H on I . Without loss, 1 ∈ S1. Then from the main
theorem of [LPS1], either NSym(0)(F1) is the unique maximal overgroup of F1 in
Sym(0), so that (4i) or (4iia) holds, or (4iib) holds. This completes the proof of (4)
and the lemma. 2

DEFINITION 5.10. Define a semisimple group H to be product decomposable if for
L a component of H , c = |L : Lω|, and c = d2, one of the following statements holds:
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(i) L ∼= A6, Lω ∼= D10, and d = 6;
(ii) L ∼= M12, Lω ∼= L2(11), and d = 12;
(iii) L ∼= Sp4(q) for some q > 2 even, Lω is an extension of Zq2+1 by Z4 with

A ∈OL(Lω) isomorphic to O−4 (q), and d = q2(q2
− 1)/2.

Define a semisimple group H to be product indecomposable if H is not product
decomposable.

Observe that OL(Lω) contains two members Ai , i = 1, 2, of index d in L , as
described in Lemma 5.8(4). Furthermore, as H is semisimple, AutHω(L) is maximal
in AutH (L) by Lemma 2.2, so NHω(L) is transitive on {A1, A2}, and hence |NHω(L) :
NHω(A1)| = 2. 2

Observe from Lemma 5.8 that if H is almost simple then H is product
decomposable precisely when H preserves a nontrivial product structure on �.
We will see in the next lemma that the general semisimple group H is product
decomposable if F(H) can be composed with the rank-two product structure
preserved by a component of H (using the composition defined in Definition 1.11)
to produce a larger H -invariant product structure F 2(H).

LEMMA 5.11. Assume that H is semisimple and product decomposable. Let Î =
{1, 2} and Ĩ = Î × Ī . Set 6i = ωEi .

(1) H preserves the regular (c, r)-product structure F̄ = F(H) on �.
(2) For i ∈ Ī , Ei NHω(Ei ) preserves a unique product structure F̂i on 6i . Indeed,

F̂i = (6i,1, 6i,2) is the (d, 2)-structure defined by 6i, j =6i, j (ω)Ai,3− j and
6i, j (ω)= ωAi, j , where {Ai,1, Ai,2} are the maximal overgroups of Ei,ω of index
d in Ei described in Lemma 5.8(4).

(3) H preserves the (d, 2k)-product structure F̃ = (�i, j : (i, j) ∈ Ĩ ) on �, defined
by �i, j = {6i, j (ω)Di ′g | g ∈ Ai,3− j }. Furthermore, F̃ = F̂1 ◦ F̄ .

(4) Let M̃ = NG(F̃), X̃ = F∗(M̃), and for (i, j) ∈ Ĩ let X i, j be the component
of M̃ fixing all blocks in �u,v for all (u, v) ∈ Ĩ − {(i, j)}, Yi = NHω(Ai,1) ∩

NHω(Ai,2), and Ki = Yi E. Then Ei ≤ X i,1 × X i,2 and Ki = NH (X i, j ).
(5) Suppose that b = 2, for i ∈ Ī let βi = {i1, i2}, and for (i, j) ∈ Ĩ let Pi, j be the

projection of E on X i, j and Ei, j = Eiπi j . Then we can choose notation so that
Pi, j = Ei, j .

(6) Identify the H-sets Ĩ and {X i, j | (i, j) ∈ Ĩ } as in Notation 5.2. For γ ⊆ Ĩ , set
Eγ = 〈Pi, j : (i, j) ∈ γ 〉 and γ ′ = Ĩ − γ . For K ∈O H (K1), let γK = (1, 1)K .
Then PK = γ

H
K is a partition of Ĩ . Set EK = {Eγ | γ ∈ PK } and F 2(H, K )=

F(EK ). Then F 2(H, K ) is an (mK , rK )-product structure on �, where rK =

|H : K | and mK = d |K :K1|, and the map φ : K 7→ F 2(H, K ) is a bijection of
O H (K1)

′
=O H (K1)− {H} with FFF(H). Further, F 2(H)= F 2(H, K1)= F̃

and b(NG(F 2(H, K )), H)= 1 if and only if NH (E1)≤ K .
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PROOF. Part (1) is a consequence of Notation 2.6.
From Definition 5.10, NHω(Ei ) acts transitively on {Ai,1, Ai,2} via conjugation.

Thus NHω(Ei )= Yi 〈ti 〉, where ti fixes ω and interchanges Ai,1 and Ai,2. Thus
ωAi, j ti = ωAti

i, j = ωAi,3− j , so ti interchanges 6i,1 and 6i,2. As Ei = Ai,1 Ai,2, Ei

permutes the blocks in 6i, j for j ∈ Î . As Yi fixes ω and acts on Ai, j , Yi fixes the
blocks. Thus Ji = Ei Yi permutes the blocks, so as ti interchanges 61,1 and 6i,2,
Ĵi = Ei NHω(Ei )= Ji 〈ti 〉 preserves F̂i . Moreover, this argument shows that Ji is
the subgroup of index 2 in Ĵi which permutes 6i, j for j ∈ Î . As the factorization
Ei = Ai,1 Ai,2 is determined up to conjugation in Ei and the ordering of the factors,
the product structure F̂i is unique, completing the proof of (2). Notice also that
NH (Ei )= E NHω(Ei )= E Ĵi , so |NH (Ei ) : Ki | = |E Ĵi : EYi | = | Ĵi : Ji | = 2.

From the previous paragraph, the hypothesis of Lemma 1.13 is satisfied, so by that
lemma F̃ is the composition of the structures F̄ and F̂1, and (3) holds.

From the description of F̃ in (3), Ei acts on each block of �u,v for (u, v) ∈
Ĩ − {(i, j)}, so Ei ≤ X i,1 × X i,2. Thus as H permutes E and the components X i, j ,
NH (X i, j )≤ NH (Ei ). Then Ki = E Ji = NH (X i, j ), as Ji is the stabilizer in NHω(Ei )

of 6i, j , establishing (4).

Assume the hypothesis of (5) and let πi, j : X̃→ X i, j be the projection map. As
Ei ≤ X i,1 × X i,2, Pi, j = Eπi, j = Eiπi, j ∼= Ei . Then Pi, j is characterized by the
property that it is trivial on all blocks of F̃ except for those in �i, j , and is isomorphic
to Ei . As Ei, j centralizes Ei ′ and Ei, j,ω 6= 1 acts on 6u,v(ω) for each (u, v) ∈ Ĩ with
u 6= i , Ei, j = [Ei, j , Ei, j,ω] fixes all fibers not in 6i,l for some l ∈ Î . Furthermore,
from Example 1.6, the orbits of Ei,1 and Ei,2 on 6i form a product structure on 6i , so
from (2) this structure is F̂ . Thus we may choose notation such that Ei, j ∼= Ei is trivial
on all blocks of F̃ except those in6i, j , so that Ei, j = Pi, j , completing the proof of (5).

Let K ∈O H (K1). By (4), K1 = NH (X1, j ), so K1 is the stabilizer of (1, j) ∈ Ĩ in
H . Thus as K1 ≤ K , PK is a partition of Ĩ . Hence by Example 1.6, F 2(H, K ) is an
H -invariant (mK , rK )-product structure on �. Visibly the map φ is injective. Thus it
remains to show that φ is surjective. Hence we may assume that M is the stabilizer
in G of F , and it suffices to show that F = F 2(H, K ), where K = NH (X1). Pick
notation so that E1 projects nontrivially on X1.

First, b = 1 if and only if E1 ≤ X1 if and only if NH (E1)≤ K by Lemma 5.8(2). In
that event, since K1 ≤ NH (E1), then K1 ≤ K , so indeed K ∈O H (K1). Furthermore,
we saw earlier that |NH (E1) : K1| = 2, so γK = {(i, j) | Ei ≤ X1}, and hence
EγK = 〈Ei : Ei ≤ X1〉. Thus ωX1 = ωEγK , so indeed F 2(H, K )= F by Lemma 1.7.
Thus we may assume that b = 2.

By (5), E1,1 = E1 ∩ X1,1 and K1 = NH (X1,1), so E1,1 is K1-invariant. Thus
K1 ≤ K , so again K ∈O H (K1). By Lemma 5.9(2), K is transitive on S1, so
γK = {(i, j (i)) | i ∈ S1} for some function j : S1→ Î such that 01 = ωF , where
F = 〈Ei, j (i) : i ∈ S1〉. Then 01 = ωF = ωEγK as Ei, j (i) = Pi, j by (5). Thus

F = F 2(H, K ), completing the proof. 2
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LEMMA 5.12. Assume that H is semisimple and product indecomposable. Then:

(1) b = b(M, H)= 1 for each M ∈OG(H) which is semisimple;
(2) the map K 7→ F(H, K ) is a bijection of O H (NH (E1))

′ with FFF(H).

PROOF. As H is indecomposable, (1) follows from parts (3) and (4) of Lemma 5.8. As
defined in Notation 2.6, F(H, K ) is an H -invariant product structure. If F ′ is an H -
invariant product structure, then H ≤ M ′ = NG(F ′), and M ′ is semisimple. Then by
(1) and Lemma 5.5(6), F ′ = F(H, K ), where K = NH (X ′1) and X ′1 is the component
of F∗(M ′) containing E1. By Lemma 5.3(4), K 6= H , so the map φ of (2) is surjective.
Visibly φ is injective, completing the proof. 2

LEMMA 5.13. Assume that H is complemented and maximal in M. Then b = 1.

PROOF. Let ρ : M→ Sym(M/H) be the representation of M on M/H via right
multiplication. Suppose that K = ker(ρ) 6= 1. Then as X is the unique minimal normal
subgroup of M , X ≤ K ≤ H ≤ NM (E). By Lemma 4.3, E ≤ X , so E E X . Then as
CH (E)= 1, E = X , contradicting Eω = 1 6= Xω.

Therefore ρ is faithful. As H is maximal in M , M is primitive on M/H . Thus,
applying Lemma 2.2 to ρ and recalling that X = E(M) is the unique minimal normal
subgroup of M , we conclude that M is semisimple, complemented, or diagonal on
M/H . As 1 6= E ≤ H ∩ M , M is not complemented. Suppose that M is semisimple
on M/H . Then H ∩ X is the direct product of the groups H ∩ X i , i ∈ I . Let j ∈ Si .
Then 1 6= [H ∩ X i , E j ], so E j ≤ [H ∩ X i , E j ] ≤ X i , so b = 1 and the lemma holds.
Thus we may assume that M is diagonal on M/H . Hence there is an H -invariant
partition 1 of I with H ∩ X the product of full diagonal subgroups Fδ of Xδ , δ ∈1.
Therefore E = {Fδ | δ ∈1}, E1 ∼= X1, s = 1, and b = |δ| for δ ∈1. By Lemma 3.5 we
may pick p ∈ π(X1) with m p(X1)= 1. Then by Lemma 3.6,

k = m p(X)= m p(E)+ m p(Xω)= r + km p(X1,ω),

contradicting k = rb and b > 1. 2

6. Diagonal overgroups of primitive groups

In this section we make the following assumption.

HYPOTHESIS 6.1. Hypothesis 2.1 is satisfied and H is not affine. Furthermore,
M ∈OG(H) and M is diagonal.

NOTATION 6.2. Let X = F∗(M), I = {1, . . . , k}, and Ī = {1, . . . , r}.
Let X = {X i | i ∈ I } be the set of components of M . For γ ⊆ I , set γ ′ = I − γ ,

Xγ = 〈X i : i ∈ γ 〉, 0γ = ωXγ , and πγ : X→ Xγ the projection map with respect to
the direct sum decomposition X = Xγ × Xγ ′ . Set c = |X i |.

Let E be a minimal normal subgroup of H and E = {Ei | i ∈ Ī } the set of
components of E . Represent M on I and H on Ī so that the maps i 7→ X i and
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j 7→ E j are equivalences of permutation representations. As H is transitive on E ,
H is transitive on Ī .

As M is diagonal, there exists a maximal M-invariant partition6 =6(M) of I such
that Xω is the direct product of full diagonal subgroups Fσ , σ ∈6, of Xσ . Recall that
M is strongly diagonal if 6 = {I }. In that event write d(M) for the diagonal structure
diag(X , Xω) defined by M as in Definition 1.9. Let kM = |6| and mM = c|σ |−1

for σ ∈6. 2

LEMMA 6.3. Assume that M is not strongly diagonal and let D = {Xσ | σ ∈6}.
(1) F(M)= F(D) is an M-invariant regular (mM , kM )-product structure on �.
(2) Let M ′ = NG(F(M)) and let Yσ be the component of M ′ acting faithfully on

the σ -factor 0σ of the product structure. Then AutM (Yσ ) is strongly diagonal
on 0σ .

PROOF. Part (1) follows from Example 1.6. By construction AutX (Yσ )= Xσ is the
direct product of |σ |> 1 copies of X1 with Xσ,ω = Fσ a full diagonal subgroup, and
NH (σ ) is primitive on σ , so (2) holds. 2

LEMMA 6.4. Assume that M is strongly diagonal.

(1) Xω ∼= X1 is an Mω-invariant full diagonal subgroup of X.
(2) |�| = ck−1.

PROOF. This follows from Lemma 2.2. 2

LEMMA 6.5. Assume that H is doubled. Then k = 2r , r = kM , |σ | = 2 for σ ∈6,
X = D, and:

(1) if M is strongly diagonal then r = 1 and d(M)= d(H) as defined in
Lemma 4.7(2);

(2) if M is not strongly diagonal then F(M)= F(H) as defined in Notation 2.6.

PROOF. First assume that M is strongly diagonal. As H is doubled, |Dω| = |E | =
|�|. Thus |Dω| = ck−1 by Lemma 6.4(2). But by Lemma 4.3, Dω ≤ Xω and by
Lemma 6.4(1), Xω ∼= X1 is simple of order c. Therefore k = 2 and Dω = Xω is simple.
Therefore E is simple, so r = 1 and X = D. Now Lemma 4.7(2) completes the proof
in this case.

So assume that M is not strongly diagonal, form the product structure F = F(M) of
Lemma 6.3, and adopt the notation of Lemma 6.3(2). By Lemma 6.3, H ≤ M ≤ M ′, so
by Lemma 5.6(1), b′ = b(M ′, H)= 1. Then by Lemma 5.5(7), AutH (Yσ ) is doubled
on 0σ with D ∩ Yσ the direct product (E ∩ Yσ )× (Ẽ ∩ Yσ ), where Ẽ is the second
minimal normal subgroup of H . Now by Lemma 5.6(2), F = F(H, Hσ ), where Hσ
is the stabilizer in H of σ . Moreover, D ∩ Yσ ≤ X ∩ Yσ = Xσ , AutM (Yσ ) is strongly
diagonal on 0σ by Lemma 6.3(2), and we saw that AutH (Yσ ) is doubled on 0σ , so by
(1), |σ | = 2 and Xσ = D ∩ Xσ . Thus k = |σ |kM = 2r and X = D, and Lemma 4.7(1)
completes the proof. 2
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LEMMA 6.6. If H is diagonal then D = X and 6(M)=6(H).

PROOF. Assume that H is diagonal, let 1=6(H) be of order kH , and set e = |E1|.
Then by Lemma 2.2(3ii),

er−kH = |�| = ck−kM , (6.1)

so e and c have the same set 5 of prime divisors. By Lemma 3.5, there exists p ∈5
such that X1 has cyclic Sylow p-subgroups. Thus m p(X)= k.

Suppose that M is strongly diagonal. Then Xω ∼= X1, so m p(X1)= 1. But Eω is
the direct product of kH copies of E1, and Eω ≤ Xω, so

1= m p(Xω)≥ m p(Eω)= kH m p(E1).

It follows that kH = 1 and m p(E1)= 1. Thus H is strongly diagonal.
Next the product J of r − 1 components of E is a regular normal subgroup of E ,

so by Lemma 3.6(2),

k = m p(X)= m p(J )+ m p(Xω)= (r − 1)m p(E1)+ 1= r.

Thus k = r , so it follows from (6.1) that c = e. Then |X | = ck
= er
= |E |, so

X = E = D and as both H and M are strongly diagonal, also 6(H)=6. Thus the
lemma holds in this case.

So assume kM > 1, form the product structure F = F(M) of Lemma 6.3, and
adopt the notation of Lemma 6.3(2). Let IH = Ī , IM = I , and for U ∈ {H, M} and
σ ∈6, define SU,σ = { j ∈ IU | F∗(U ) j ≤ Xσ } and the partition SU = {SU,σ | σ ∈6}

of IU as in Notation 5.2 and Lemma 5.5(3). By construction in Lemma 6.3,
SM,σ = {σ }, so S M =6. From Lemma 5.6(1), b′ = b(M ′, H)= 1, and then from
Lemma 5.5(8), AutH (Yσ ) is diagonal on 0σ , with 1=6(H) a refinement of S H . As
usual, AutH (Yσ )≤ AutM (Yσ ), which is strongly diagonal on 0σ by Lemma 6.3(2).
Thus from the case treated above, Xσ = D ∩ Yσ and AutH (Yσ ) is strongly diagonal.
Therefore X = D and NH (Yσ ) is primitive on σ , so6 =1 as1 is a refinement of S H .
Thus the lemma holds in this case too. 2

In the next lemma, for K ∈ {H, M}, P(K ) is the set of partitions of the components
of a minimal normal subgroup of K defined in Notation 2.6.

LEMMA 6.7. Assume that H is complemented. Then k = 2r , r = kM , E E X =
ECG(E), and P(H)= P(M).

PROOF. Assume otherwise. For i ∈ Ī let

βi = { j ∈ I | Eiπ j 6= 1},

and for i ∈ I let Si = { j ∈ Ī | E jπi 6= 1}. As H is transitive on Ī , b = |βi | is
independent of i ∈ Ī . For α ⊆ Ī , let Eα = 〈Ei : i ∈ α〉.
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Let e = |Ei |. Then

(1) er
= |�| = ck−kM ,

so the set5 of primes dividing e and c are the same. By Lemma 3.5, there exists p ∈5
with m p(X1)= 1. Thus as πi : ESi → X i is an injection for each i ∈ I , it follows that

(2) for all i ∈ I , |Si | ≤ 1,

and

(3) for all j ∈ Ī , m p(E j )= 1.

It follows from (2) that

(4) B = {β j | j ∈ Ī } is a partition of I ′ = {i ∈ I | |Si | = 1}, so |I ′| = rb; and
(5) r = k − kM .

Namely by (3), m p(E)= r , while by Lemma 3.6(2),

k = m p(X)= m p(E)+ m p(Xω)= r + kM ,

establishing (5). Then by (1) and (5), c = e, so as πi : E1→ X i is injective for i ∈ β1,

(6) E1 ∼= X1 and c = e.

Let u = |σ | for σ ∈6; thus k = kM u. We next show that

(7) either b = 1, or b = u = 2, k = 2r , r = kM , and I = I ′.

Namely by (4) and (5), rb ≤ k = r + kM , so kM ≥ r(b − 1). Furthermore, k = kM u,
so r = kM (u − 1) by (5). Thus kM ≥ kM (u − 1)(b − 1), so as u > 1, it follows that
either b = 1 or b = u = 2 and all inequalities are equalities. That is, (7) holds.

(8) Either

(i) H is transitive on I , or
(ii) u = b = 2, k = 2r , r = kM , I = I ′, H has orbits γ and γ ′ on I of length r ,

and E is a full diagonal subgroup of Xγ × Xγ ′ .

For assume that γ 6= I is an orbit of H on I . Then Xγ and Xγ ′ are normal in H X , so
H X has at least two minimal normal subgroups. But H X is primitive by Lemma 2.4,
so from Lemma 2.2, H X is doubled and Xα is regular on � for α ∈ {γ, γ ′}. It
follows from (1) that kM = |γ | and k = 2kM , so u = 2. Next as E is a minimal
normal subgroup of H , either E ∩ Xγ = 1 or E ≤ Xγ . But as |E | = |Xγ | by (1),
in the latter case E = Xγ . Then P(M)= P(H), the product structure in Notation 2.6,
and X = ECG(X) by Lemma 4.6, contrary to the choice of M as a counterexample.
Hence b 6= 1, so (ii) holds by (7).

(9) u = b = 2, k = 2r , r = kM , and I = I ′.
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If not, then b = 1 and H is transitive on I by (7) and (8). As b = 1, we may take
E1 ≤ X1, so E1 = X1 by (6). Then as H is transitive on I , E = X and r = k, contrary
to (1).

(10) M = H X and H is transitive on I .

For H ≤ H X = M̃ , and by Lemma 2.4, M̃ is primitive on�. As M is diagonal, Xω
is the product of full diagonal subgroups of the groups Xσ , σ ∈6. If H is transitive
on I then X is the unique minimal normal subgroup of M̃ , so M̃ is diagonal, and hence
as b 6= 1, M = M̃ by induction on |M |. On the other hand, if M is not transitive on I
then M̃ has at least two minimal normal subgroups, so M̃ is doubled. Then applying
Lemma 8.1 (whose proof does not depend upon this lemma) to M̃ , we conclude that
D E X , again contradicting b 6= 1.

For i ∈ I , let σi be the block in6 containing i . Define a graph G on6 by σ adjacent
to µ if σ ∩ βi 6=∅ 6= µ ∩ βi for some i ∈ Ī . Let 1 be a connected component of G,
J = {i ∈ I | σi ∈1} and J̄ = {i ∈ Ī | βi ⊆ J }. For i ∈ Ī , let Ki = O2(Hi ).

(11) |J | = 2| J̄ |, Ki = K is independent of i ∈ J̄ , and K fixes J and J̄ pointwise.

Observe that1 is a partition of J . Hence if i ∈ Ī with βi ∩ J 6=∅, then βi ∩ σ 6=∅
for some σ ∈1. Then as 1 is a connected component of G, for each µ ∈6 with
βi ∩ µ 6=∅, µ ∈1. Thus βi ⊆ J , so i ∈ J̄ . Hence by (4) and (9), {βi | i ∈ J̄ } is a
partition of J . Next I = I ′ by (9), so the map i 7→ βi is a bijection of Ī with B. Thus
as b = 2, |J | = 2| J̄ |. Let i ∈ J̄ and j ∈ βi . As b = 2, Ki fixes βi pointwise, and then
as u = 2, Ki fixes σ j pointwise for j ∈ βi . Then as 1 is connected, Ki fixes J and J̄
pointwise. Hence for j ∈ J̄ , Ki ≤ O2(H j )= K j , so as H is transitive on Ī , Ki = K j .
This completes the proof of (11).

(12) J 6= I .

Suppose that J̄ = Ī . Then by (11), K fixes Ī pointwise, so K∞ ≤ H∞
Ī
= D.

Now Y = NHω(E1)
∞
≤ H∞1 = K∞ ≤ D. Thus Y = 1 as D is regular on �, which

is a contradiction as AutY (E1)= Inn(E1) by Lemma 2.2. Therefore J̄ 6= Ī , so as
|I | = 2| Ī | by (9) and |J | = 2| J̄ | by (11), also J 6= I .

We now obtain a contradiction, establishing the lemma. Namely H permutes
the connected components of G, so as M = H X by (10), M is transitive on those
components, and hence 0 = J M is a partition of I . Then as J 6= I by (12), 0 ∈ P(M).
Therefore, from Notation 2.6 and Lemma 5.5(8), NM (J ) acts primitively as a diagonal
group M ′ on �′ = ωM ′. Similarly, by Lemma 5.5(9), NH (J ) acts primitively as a
complemented or doubled group H ′ on �′. In the first case, proceeding by induction
on |�|, b = 1, contrary to (9). Therefore NH (J ) is doubled on �′. Then from
Lemma 6.5, X = ECX (E), contradicting b 6= 1. 2

7. The proofs of Propositions 5, 6, and 7

In this section we assume Hypothesis 2.1. Refer to Example 1.6 and Notation 2.6
for the definitions of F(L), F(H), and F(H, K ).
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LEMMA 7.1. Assume that H is octal semisimple with components L= {L1, . . . , Lk}.

(1) If k > 1 then NS(D)≤ NS(F(L)) and F(L)= F(H).
(2) NS(D)= DU T , where U = 〈u1, . . . , uk〉 ∼= E2k , ui induces an outer

automorphism on L i and centralizes L j for j 6= i , T acts faithfully as Sym(L)
on L, and on U as the F2T -permutation module, and NS(D)ω = DωU T .

(3) Let H be the set of primitive semisimple subgroups H̃ of S such that D = F∗(H̃).
Then U acts regularly on the set A of affine structures invariant under some
member of H.

(4) For R ∈A, NS(R) ∩ NS(D)= DTR for some complement TR to DU in NS(D)
fixing ω.

(5) Let A(H) be the set of H-invariant affine structures on �. If A(H) 6=∅, then
|A(H)| = |CU D/D(H)| and NS(H) is transitive on A(H).

PROOF. First (see [AS, 1.1]), A = Aut(D)= DU T , where U T and its action on D are
described in (2). The representation of A on �′ = A/DωU T via right multiplication
embeds A in Sym(�′) in such a way that DωU T is the stabilizer of ω′ = DωU T ∈�′,
and so that A preserves the product structure F(L) on�′ when k > 1. Then identifying
� with �′, we conclude that (2) holds, and NS(D)= A with A ≤ NS(F(L)) when
k > 1. By definition of F(H) in Notation 2.6, F = F(L)= F(H) when k > 1,
completing the proof of (1).

When k > 1, let M = NS(F) and Y = F∗(M). Then using Lemma 1.8, Y =
Y1 × · · · × Yk , with Yi acting faithfully as the alternating group on the i th set �i of
partitions in F , and with Yi trivial on � j for j 6= i . When k = 1, let Y = Y1 = F∗(S),
M = S, and �=�1. Observe that U T is a complement to Y in M with 〈ui 〉Yi ∼= S8
and [ui , Y j ] = 1 for i 6= j .

In Yi there exists X i ∼= E8 regular on �i with L i acting as GL(X i ) on X i .
Then X = X1 × · · · Xk ∼= E23k is regular on �, so D stabilizes the affine structure
R = R(X) of Lemma 1.4. That is, R ∈A. Let M̃ = NS(R), so that M̃ = M̃ωX with
M̃ω acting faithfully as GL(X) on X by Lemma 1.3.

Observe that NM̃ (D)= DT̃ , where T̃ acts faithfully as Sym(L) on L and fixes ω.
Thus (4) holds.

The representation of D on X is determined up to quasiequivalence, so if g ∈ S
with Dg

≤ M̃ , then there exists c ∈ M̃ with Lgc
i X = L i X for each i . As H1(L i , X)∼=

Z2, there are two conjugacy classes L X i
i and K X i

i of complements to X i in X i L i .
Furthermore, we may choose Ki ≤ M̃ω. Therefore, as L i has no fixed points on �,
Lgc

i ∈ L X i
i , so Dg

∈ DM̃ . Thus M̃ is transitive on DS
∩ M̃ , so NS(D) is transitive on

A. Then as DT̃ = NM̃ (D), (3) follows.

Let B = NS(D) and B̄ = B/D. By (3), Ū is regular on A. Assume that A(H) 6=∅;
then conjugating in U , we may assume that H ≤ M̃ . Then as Ū is regular on A,
it follows that CŪ (H̄) is regular on A(H), so as CŪ (H̄)= NU D(H), NU D(H) is
transitive on A(H), establishing (5). 2
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We next prove Proposition 5. Assume the hypothesis of Proposition 5. By
Lemma 4.5, M is not complemented, while by Lemma 4.8, M is not doubled or
diagonal. Therefore M is affine or semisimple. Set X = F∗(M).

Suppose that M is affine. Then by Lemma 4.3, H is octal semisimple. By
Lemma 7.1(5), NS(H) is transitive on A(H). Thus conclusion (2) of Proposition 5
holds in this case, so we may assume that M is semisimple, and adopt Notation 5.2.

If H is product decomposable, then conclusion (3) of Proposition 5 holds by
Lemma 5.11(6). Hence we may assume that H is product indecomposable. Then
by Lemma 5.12(1), b = b(M, H)= 1, so each component of H is contained in a
component of M . By Lemma 5.3(4), H is transitive on the components of M . Finally,
by Lemma 5.12(2), the map K 7→ F(H, K ) is a bijection of O H (NH (L))′ with FFF(H).
This completes the proof of Proposition 5.

We now prove Proposition 6. Assume the hypothesis of that proposition. By
Proposition 4, H is not affine. Thus Hypothesis 6.1 is satisfied, so we can adopt
Notation 6.2. By Lemma 4.8, H is not semisimple. If H is doubled then conclusion
(2) of Proposition 6 holds by Lemma 6.5, so we may assume that H is not doubled.
Similarly, if H is diagonal then conclusion (1) of Proposition 6 holds by Lemma 6.6,
so we may assume that H is complemented. Then Lemma 6.7 says that conclusion (3)
of Proposition 6 holds, completing the proof of the proposition.

Finally, we prove Proposition 7, so we assume the hypothesis of Proposition 7.
By Proposition 3, M is not affine. By Lemma 4.5, M is not complemented, and by
Lemma 4.8, M is not doubled. If M is diagonal then conclusion (1) of Proposition 7
holds by Proposition 6. Thus we may assume that M is semisimple, and adopt Notation
5.2. By Lemma 5.6, b = b(M, H)= 1, so each component of H is contained in
a component of M . By Lemma 5.3(4), H is transitive on the components of M .
Finally, by Lemma 5.5(8) and Lemma 5.6(2), the map K 7→ F(H, K ) is a bijection of
O H (NH (σ ))

′ with FFF(H). This completes the proof of Proposition 7.

8. The proofs of Propositions 8, 9, and 11

In this section we assume that Hypothesis 2.1 is satisfied.

LEMMA 8.1. Assume that M ∈OG(H), H is complemented, and M is doubled. Then
F∗(M)= DCG(D).

PROOF. Let X = F∗(M). Replacing M by H X , we may assume that M = H X , so
that also M = HωX . As M is doubled, M has two minimal normal subgroups X1 and
X2, X = X1 × X2, and Xω is a full diagonal subgroup of X with respect to this direct
sum decomposition. Let I = {1, . . . , k} and L= {L i | i ∈ I } the set of components of
X1. Let πi : X→ X i be the projection map, σi = πi |Xω→ X i the restriction of πi to
Xω, and α = σ−1

1 σ2 : X1→ X2. Then α is an Hω-equivariant isomorphism.
By Lemma 4.3, D ≤ X , and as H is complemented, D is regular on � and

the unique minimal normal subgroup of H . Thus if D ∩ X i 6= 1 for some i , then
D ≤ X i , and then as |D| = |�| = |X i |, we have D = X i . Then the lemma follows
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from Lemma 4.6 in this case, so we may assume that D ∩ X i = 1 for i = 1, 2. Then
as |D| = |X i |, D is also a full diagonal subgroup of X , so writing ρi : D→ X i for
the projection of D on X i , as above, we obtain an Hω-equivariant isomorphism
β = ρ−1

1 ρ2 : X1→ X2. Let Di = L iρ
−1
1 . As ρ1 : D→ X1 is an isomorphism, D =

{Di | i ∈ I } is the set of components of H .
We now argue as in the last few paragraphs of the proof of Lemma 6.7 to obtain a

contradiction. As in Sections 5 and 6, we represent M on I so that the map i 7→ L i is an
equivalence of that representation with the representation of M on L via conjugation.
As ρi is an H -equivariant isomorphism and Hω is transitive on D, Hω is also transitive
on L, and hence also on I .

Let γ = αβ−1
: X1→ X1. Then γ ∈ Aut(X1) is an Hω-equivariant automorphism

of X1, which induces τ ∈ Sym(I ) commuting with the action of Hω on I . As
Hω is transitive on I , the set 6 of orbits of T = 〈τ 〉 on I is an Hω-invariant
regular partition of I . Let J be an orbit of T on I , X J = 〈L j L jα : j ∈ J 〉,
DJ = 〈D j : j ∈ J 〉, HJ = NHω(J )X J , and �J = ωX J . For j ∈ J , D j ≤ L j L jβ and
L jβ = L jγ

−1α = L jτ−1α ≤ X J , so DJ ≤ X J . Arguing as in the proof of Lemma 6.7,
DJ is a minimal normal subgroup of HJ regular on �J , so HJ acts primitively on
�J as a complemented or doubled group. Then MJ = X J HJ acts primitively on
�J as a doubled group with minimal normal subgroups X J,i = X i ∩ X J , i = 1, 2.
If HJ is doubled, then by Lemma 4.8(3), DJ = X J,i for i = 1 or 2, contradicting
D ∩ X i = 1. Thus HJ is complemented, so proceeding by induction on |�|, we may
assume that �J =�. Thus T is transitive on I , so as τ ∈ CSym(I )(Hω), Hω acts as
T on I . Therefore AutH∞ω (D) is contained in the kernel of the action of Aut(D)
on D, so H∞ω ≤ Dω = 1. Thus Hω is solvable, whereas H is complemented, so
Inn(D1)≤ AutHω(D1), giving a contradiction. 2

We now give proofs of Propositions 8, 9, and 11.
Assume the hypothesis of Proposition 8. By Propositions 4, 5, and 7, H is not

affine, semisimple, or diagonal, so H is doubled or complemented. In the first case
conclusion (1) of Proposition 8 holds by Lemma 4.8(3), while in the second case
conclusion (2) of Proposition 8 holds by Lemma 8.1. This establishes Proposition 8.

Assume the hypothesis of Proposition 9. By Proposition 3, M is not affine, and by
Lemma 4.5, M is not complemented. If M is diagonal or doubled, then the proposition
follows from Propositions 6 or 8, respectively. Therefore we may assume that M is
semisimple, and adopt Notation 5.2. By Lemma 5.6(1), each component L of H
is contained in a component of M , while by Lemma 5.3(4), H is transitive on the
components of M . Then conclusion (2) of Proposition 9 holds by Lemma 5.6(2). This
completes the proof of Proposition 9.

Assume the hypothesis of Proposition 11. Thus H is complemented and
M ∈OG(H). By Proposition 3, M is not affine. If M is diagonal, doubled,
or complemented, then conclusion (3), (4), or (1) of Proposition 11 holds by
Proposition 6, 8, or 10, respectively. Thus we may assume that M is semisimple, and
adopt the notation of Section 5. It remains to show that the map φ : K 7→ F(H, K )
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(see Notation 2.6) is a bijection of O H (NH (L))′ with FFF(H), where L is some choice
of component of H , that L is contained in a component of M , and that H is transitive
on the components of M . By Lemma 5.3(4), H is transitive on the components of M .
Recall from Lemma 5.4(3) that L is contained in a component of M if and only if the
parameter b = b(M, H) of Notation 5.2 is 1. From Notation 2.6, F(H, K ) ∈FFF(H)
and φ is injective, so to show that φ is a bijection we must show that φ is surjective.
That is, we must show that M = F(H, K ) for some K ∈O H (NH (L))′. But if
b = 1 then F(M)= F(H, H1) by Lemma 5.5(6), where X1 is the component of X
containing L and H1 = NH (X1). Thus it remains to show that b = 1.

If H is maximal in M then b = 1 by Lemma 5.13. Thus we may assume that
H ≤ M ′ < M with H maximal in M ′. Let X ′ = F∗(M ′). By induction on n =
|M : H |, the pair (M ′, H) satisfies one of the conclusions of Proposition 11, so, in
particular, L is contained in a component L ′ of X ′. Thus if L ′ is contained in a
component of M , then b = 1 and the proof is complete. If M ′ is complemented,
then as |M : M ′|< |M : H |, L ′ is contained in a component of M by induction on
n. If M ′ is diagonal or doubled, then b(M, M ′)= 1 by Lemma 5.6(1), so L ′ is
contained in a component of M . Thus we may assume that M ′ is semisimple, and
that b(M, M ′) 6= 1. Therefore by parts (3) and (4) of Lemma 5.8, M ′ is octal. But as
L ≤ L ′, b(M ′, H)= 1, so applying Lemma 5.5(5) to the pair (M ′, H), we conclude
that L ′ is the alternating group on ωL ′, in contradiction to M ′ being octal. Thus the
proof of Proposition 11 is at last complete.

See Notation 2.6 and Example 1.6 for the definition of D(H) and F(D) appearing
in the next theorem.

THEOREM 8.2. Assume that M1 and M2 are distinct subgroups of G maximal subject
to F∗(G)� Mi , such that H = M1 ∩ M2 is primitive, and M1 is not semisimple.

(1) |�| = p f k for some prime p and integers f, k such that p f
≥ 5 and k ≥ 1.

(2) M1 is affine.
(3) One of the following statements holds:

(i) |�| = p, H is affine with F∗(H)= F∗(M1), M2 is almost simple, and
H = NM2(D);

(ii) k > 1, H is affine with F∗(H)= F∗(M1), M2 is semisimple, and
there exists D = (D1, . . . , Dk) ∈D(H) such that M2 = NG(F(D)) and
H = NM1(D);

(iii) H is octal semisimple with k components, p f
= 8, H is the wreath product

of L3(2) by Sk , and M1 and M2 are the stabilizers of the two H-invariant
affine structures on �.

PROOF. Let Y = F∗(M1). As M1 is not semisimple, M1 is affine or strongly diagonal
by Lemma 2.5. Assume the latter and let k be the number of components of M1.
As H is primitive and |6(M1)| = 1, Proposition 6 implies that one of the following
statements holds:
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(i) H is strongly diagonal and Y = D;
(ii) H is doubled, k = 2, and Y = D;
(iii) H is complemented, k = 2, and D is a component of Y .

Conclusion (iii) is impossible since if H is complemented then H is not almost
simple. Thus (i) or (ii) holds, and in particular Y = D. In case (i), as M2 ∈M(H)
and |6(H)| = 1, Proposition 7 says that M2 is strongly diagonal with F∗(M2)= D.
But then M1 = NG(D)= M2, contradicting M1 6= M2. Therefore case (ii) holds.
Hence Proposition 9 says that M2 is doubled or diagonal, and D = F∗(M2), or M2
is semisimple. But in the first two cases, again M1 = NG(D)= M2, for the same
contradiction. Thus M2 is semisimple, so by Proposition 9, a component D1 of H is
contained in a component of M2, and H is transitive on the components of M2. Then
as D1 E H , M2 is almost simple, contrary to Proposition 1.

Therefore M1 is affine, so conclusions (1) and (2) of Theorem 8.2 hold, except
possibly pk < 5. As H is primitive, Lemma 4.3 says that either

(a) D ≤ Y ; or
(b) H is octal semisimple, D = L1 × · · · × Lk , L i ∼= L3(2), p f

= 8, HY is affine,
D = {Y1, . . . , Yk} ∈D(HY ), and F(H)= F(D), where Yi = [Y, L i ] ∼= E8.

Suppose that case (a) holds. Then D is solvable, so H is affine and D = Y . By
Proposition 4, one of the following statements holds:

(I) M2 is affine and D = F∗(M2);
(II) H is imprimitive on Y , and there exists D = {D1, . . . , Dk} ∈D(H) with M2 =

NG(F(D));
(III) |�| is prime and M2 is almost simple.

In case (I) we have our usual contradiction, while in cases (II) and (III) conclusions
(3ii) and (3i) of Theorem 8.2 hold, respectively.

Finally, assume that case (b) holds. As M1 6= M2, Proposition 5 says that either

(A) M2 is affine and the stabilizer of an affine structure on � preserved by H ; or
(B) M2 is the stabilizer of F(H, K ) for some K ∈O H (NH (L1))

′.

Suppose that case (A) holds. By Lemma 7.1(4), NM1(D)= DT1, where T1 acts
faithfully as Sym(L) on L= {L1, . . . , Lk}. Thus H = DTH , where TH ≤ T1 is
transitive on L. By Lemma 7.1(2), U is the permutation module for T1 and TH , so
by Lemma 7.1(5), |A(H)| = |CU D/D(H)| = 2. Thus M2 = Mu

1 , where u ∈ NU (H)
Similarly |CU D/D(DT1)| = 2, so as TH ≤ T1, CU D/D(H)= CU D/D(DT1), and hence
DT1 ≤ M1 ∩ M2 = H , so TH = T1 ∼= Sk . But now conclusion (3iii) of Proposition 12
holds.

So assume that case (B) holds, let Y1,K = 〈Y K
1 〉, and DK = Y H

1,K . Then DK ∈

D(HY ) and, by Notation 2.6, ωDγ h
K
= ωY h

1,K , so by Lemma 1.7, F(DK )= F(H, K ).
Thus HY ≤ M1 ∩ M2 = H , giving a contradiction. This completes the proof of
the theorem. 2

See Lemma 5.11(6) for the definition of F 2(H) appearing in the next lemma.
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LEMMA 8.3. Assume that H is almost simple and product decomposable.

(1) If M ∈OG(H)′ with M almost simple, then F∗(M)= F∗(H).
(2) NG(F 2(H)) is the unique maximal member of OG(H)′.

PROOF. Let d2
= |D : Dω| = |�|, and Ai ∈O D(Dω), i = 1, 2, with |Ai : Dω| =

|D : Ai | = d as in Definition 5.10. Set 3= Aut(D) and 6 = N3(Dω). From
Lemma 3.4,3= Inn(D)6, |6 : N6(A1)| = 2 with6 = HωN6(A1), and Ah

1 = A2 for
h ∈ Hω − N6(A1). It follows that NS(D)∼=3 and from Lemma 5.11(6), NS(D)≤
NS(F 2(H)). Thus if (1) holds then each almost simple member of OG(H)′ is
contained in M̃ = NG(F 2(H)). On the other hand, by Proposition 2, each member
of OG(H)′ which is not almost simple is contained in M̃ . Thus (1) implies (2), so
it remains to prove (1). Therefore we may assume that M ∈OG(H)′ with M almost
simple and F∗(M) 6= D, and it remains to derive a contradiction. Choose H, M so
that H is maximal subject to these constraints, and M is minimal subject to this further
constraint. From the maximality of H , H = NM (D).

Let H ≤ M ′ ≤ M with H maximal in M ′. By Proposition 2, M ′ is semisimple, and
hence, as M ′ ≤ M , M ′ is almost simple by Lemma 4.4. Therefore as H = NM (D),
M = M ′ by minimality of M . That is, H is maximal in M .

By Lemma 2.4, M is primitive on �, so we have shown that:

(a) H is a maximal subgroup of the primitive almost simple subgroup M of S on �;
(b) H is almost simple, primitive, and product indecomposable on � of order d2.

To complete the proof we inspect the list of possible inclusions in part (B) of the
main theorem of [LPS1] for pairs (H, M) satisfying (a) and (b). In particular, by (b)
and Definition 5.10, F∗(H)∼= A6, M12, or Sp4(q), q > 2 even, and n = |�| = d2,
where d = 6, 12, or q2(q2

− 1)/2, respectively. As there are no such pairs, we obtain
a contradiction, which completes the proof. 2

THEOREM 8.4. Assume that M1 and M2 are distinct subgroups of G maximal subject
to F∗(G)� Mi , such that H = M1 ∩ M2 is primitive, M1 is almost simple, and M2 is
semisimple. Then the following statements hold:

(1) M2 is also almost simple.
(2) Either H is almost simple, or |�| is prime and H is affine.

PROOF. If |�| is prime, then as M2 is semisimple, we conclude from Lemma 2.2 that
(1) holds, and then (2) follows from Lemma 4.4.

Thus we may assume that |�| is not prime. Therefore H is almost simple by
Lemma 4.4, so (2) holds. Next by Proposition 2, either (1) holds or |�| = 8 and
H ∼= L3(2) is octal. But now M(H) consists of the stabilizers of the two affine
structures on � if G = F∗(S), or that pair of subgroups together with NS(H)∼=
PGL2(7) if G = S. But in either case the hypothesis of the theorem is not satisfied.
Thus the proof of Theorem 8.4 is complete. 2

LEMMA 8.5. Assume that H is almost simple, product indecomposable, and not octal.
Then each member of OS(H) is almost simple, product indecomposable, and not octal.
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PROOF. Let M ∈OS(H)′. By Proposition 2, M is almost simple, so it remains to
show that M is product indecomposable and not octal. Proceeding by induction on
|M : H |, we may assume that M is octal or product decomposable, and that H is
maximal in M . If M is octal then |�| = 8 and M ∼= L3(2), so all proper subgroups of
M are solvable, contradicting H < M . Therefore M is product decomposable. Hence
by Definition 5.10, |�| = d2, where d is 6, 12, or q2(q2

− 1)/2, and M appears in
case (i), (ii), or (iii) of Definition 5.10, respectively. As M is product decomposable
but H is not, F∗(M) 6= D. Thus the pair D, F∗(M) appears in one of [LPS1, Tables
III–VI]. Inspecting these tables for examples with |�| = d2 and F∗(M) listed in
Definition 5.10, we obtain a contradiction. 2

9. The proofs of Theorems 12 and 13

In this section we assume Hypothesis 2.1.
We begin with a proof of Theorem 12, so assume the hypothesis of that theorem.

Suppose first that M1 is not semisimple. Then by Theorem 8.2, M1 is affine and
conclusion (ii) or (iii) of Theorem 8.2(3) holds. But now conclusion (3) or (4) of
Theorem 12 holds. Therefore we may assume that M1 and M2 are semisimple.

Suppose next that M1 is almost simple. Then by Theorem 8.4, M2 and H are
almost simple, so conclusion (1) of Theorem 12 holds. Hence we may assume that
neither M1 nor M2 is almost simple. Then by maximality of Mi and Lemma 2.5,
Mi = NG(F(Mi )), so conclusion (2) of Theorem 12 holds, completing the proof of
Theorem 12.

The remainder of the section is devoted to a proof of Theorem 13. In particular, we
assume the hypothesis and notation of Theorem 13. For example, M denotes the set
of maximal overgroups of H in G. In addition, assume that H is a counterexample
to Theorem 13. Set L = F∗(G), so that L is the alternating group on �. We begin a
short series of reductions.

LEMMA 9.1. Suppose that G = S and H ≤ L.

(1) L and NG(H) are in M.
(2) For each M ∈M− {NG(H)}, M ∩ NG(H)= H.
(3) H and NG(H) are almost simple.

PROOF. Parts (1) and (2) follow from Lemma 3.7. If NG(H) is the stabilizer in S of
an affine structure, regular product structure, or diagonal structure, then by (1) and (2),
H is the stabilizer in L of that structure, and hence is maximal in L by Remark 2.7.
But then by Lemma 3.8, case (6) of Theorem 13 holds, contrary to the choice of H as
a counterexample. Hence NG(H) is almost simple by Lemma 2.5, so H is also almost
simple, establishing (3). 2

LEMMA 9.2.

(1) H is not almost simple.
(2) If G = S then H � L.
(3) M=M(H).
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PROOF. Suppose first that H is almost simple. As H is a counterexample to
Theorem 13, case (2) of that theorem does not hold, so either H is octal or
product decomposable, or some member of OG(H) is not almost simple, product
indecomposable, and not octal. The latter contradicts Lemma 8.5, so the former holds.
Hence by Proposition 2, one of the following statements holds:

(i) H ∼= L3(2) is octal, and either

(a) G = L , M= {M1, M2} with M1 and M2 affine, and OG(H)=
{H, M1, M2, G}; or

(b) G = S, M= {L , NS(H)}, and OG(S)= {H, M1, M2, L , NG(H), G}.

(ii) H is product decomposable.

Conclusion (i) contradicts the choice of H as a counterexample. If conclusion (ii)
holds, then by Lemma 8.3, M(H)= {NG(F 2(H))}. Therefore by hypothesis (0.1)
of Theorem 13, M 6=M(H), so G = S and H ≤ L . Therefore H = NL(F 2(H)) by
Lemma 9.1, which is not the case. Hence (1) is established.

Observe that (1) and Lemma 9.1(3) imply (2), while (2) implies (3). 2

LEMMA 9.3. No member of M is almost simple.

PROOF. Assume that M ∈M is almost simple. Then by Lemma 9.2(3) and
Theorem 12, H is almost simple, contrary to Lemma 9.2(1). 2

LEMMA 9.4. There exists M ∈M such that M is not semisimple.

PROOF. Assume otherwise and let M ∈M. By Lemma 9.3, M is not almost simple,
so by Lemma 2.5 and maximality of M , M = NG(F(M)). As H ≤ M , F(M) ∈

FFF(H), so conclusion (1) of Theorem 13 holds, contrary to the choice of H as a
counterexample. 2

Let 1 be the set of pairs (M1, M2) of distinct Mi ∈M, i = 1, 2, such that
H = M1 ∩ M2 and M1 is not semisimple. By Lemma 9.4 and hypothesis (0.1) of
Theorem 13, 1 6=∅.

LEMMA 9.5. Let (M1, M2) ∈1. Then either

(1) H is affine, M1 = NG(D), and M2 = NG(D) for some D ∈D(H); or
(2) H ∼= L3(2) wr Sk is octal semisimple, and M1 and M2 are the stabilizers of the

two H-invariant affine structures on �.

PROOF. As (M1, M2) ∈1, H, M1, M2 satisfy one of the conclusions of Theorem 12.
Then as M1 is not semisimple, the lemma follows by inspection of the possibilities
listed in Theorem 12. 2

Suppose that (M1, M2) ∈1 satisfies Lemma 9.5(2). Then Mi is perfect, so Mi ≤ L .
Thus G = L by maximality of Mi . By Proposition 5, and as H is primitive on
the set of components of H , M(H)= {M1, M2, M3}, where M3 = NG(F(H)). By
hypothesis (0.1) in Theorem 13, Mi ∩ M3 = H for i = 1 or 2, contrary to Theorem 12.
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We have shown that for each (M1, M2) ∈1, (M1, M2) satisfies Lemma 9.5(1).
In particular, H is affine and M1 = NG(D), so all members of M− {NG(D)} are
semisimple. Then it follows from Proposition 4 that case (3) of Theorem 13 holds,
contrary to the choice of H as a counterexample to Theorem 13. This contradiction
completes the proof of Theorem 13.
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