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Analysis of turbulence in the orthonormal wavelet 
representation 

By CHARLES MENEVEAUt 
Center for Turbulence Research, Stanford University, Stanford, CA 94305-3030, USA 

(Received 9 November 1990 and in revised form 1 May 1991) 

A decomposition of turbulent velocity fields into modes that exhibit both localization 
in wavenumber and physical space is performed. We review some basic properties of 
such a decomposition, the wavelet transform. The wavelet-transformed Navier- 
Stokes equations are derived, and we define new quantities such as e(r ,x ) ,  t ( r , x )  
and n ( r , x )  which are the kinetic energy, the transfer of kinetic energy and the flux 
of kinetic energy through scale r a t  position x. The discrete version of e ( r , x )  is 
computed from laboratory one-dimensional velocity signals in a boundary layer and 
in a turbulent wake behind a circular cylinder. We also compute e ( T , x ) ,  t ( r , x )  and 
n(r,  x) from three-dimensional velocity fields obtained from direct numerical 
simulations. Our findings are that the localized kinetic energies become very 
intermittent in x a t  small scales and exhibit multifractal scaling. The transfer and 
flux of kinetic energy are found to fluctuate greatly in physical space for scales 
between the energy containing scale and the dissipative scale. These fluctuations 
have mean values that agree with their traditional counterparts in Fourier space, but 
have standard deviations that are much larger than their mean values. I n  space (at 
each scale r ) ,  we find exponential tails for the probability density functions of these 
quantities. We then study the nonlinear advection terms in more detail and define 
the transfer T(r  I r’,  x) between scale r and all scales smaller than r’, a t  location x. 
Then we define nSg(r, x), the flux of energy caused only by the scales smaller than r ,  
a t  x, and find negative values for 7rSg(r, x) at almost 50 YO of the physical space a t  
every scale (backscatter). We propose the inclusion of local backscatter in the 
phenomenological cascade models of intermittency, by allowing some energy to  flow 
from small to large scales in the context of a multiplicative process in the inertial 
range. 

1. Introduction 
One of the most instructive ways to look a t  the physics of turbulence is by 

transforming the NavierStokes equations for incompressible flow 

au, au, - i ap a Z u ,  au, - o, 
-+u v - ,  -- 
at Iaxj ax; ax, 

to Fourier space: 

t Present address : Department of Mechanical Engineering, Johns Hopkins University, 
Baltimore, MD 21218, USA. 
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470 C .  Meneveau 

Here ui and p are the fluctuating parts of the velocity and pressure, and we have 
omitted terms containing the mean velocity, body forces, etc. The velocity field u is 
represented as a linear combination of plane waves, each corresponding to a 
characteristic size ( - k;') in some direction i. However, information related to 
position in physical space is completely hidden, which is a disadvantage when dealing 
with spatial intermittency in the flow. On the other hand, without performing 
operations involving multiple points, the Navier-Stokes equations in physical space 
give no explicit information about different scales of motion, information that is 
often a useful ingredient for modelling and physical insight. This difficulty calls for 
a representation that decomposes the flow field into contributions of different scales 
as well as different locations. In  other words, we want to use basis functions that 
behave more like localized pulses than extended waves. Additional requirements 
such as self-similarity lead to rather special basis functions, called wavelets, which 
are generated by translations and dilations of a single function. 

The wavelet transform has generated much interest, and most of the relevant 
theory has been developed only quite recently. Continuous wavelet analysis was 
introduced by Grossmann & Morlet (1984), and has been applied to several fields (e.g. 
to sound analysis by Kronland-Martinet, Morlet & Grossmann 1987). A recent review 
of wavelets appears in Farge (1992). In the field of turbulence, the potential of 
wavelet analysis has been pointed out in the context of coherent structures by Farge 
& Rabreau (1988) and it has been used to study turbulent multifractal nature in 
Bacry et al. (1990). A detailed wavelet analysis of two-dimensional data from a 
turbulent jet can be found in Everson, Sirovich & Sreenivasan (1990). These studies 
use the continuous wavelet transform. Starting with the work of Meyer (1986) several 
orthonormal wavelet basis functions have been constructed (Daubechies 1988) which 
are convenient in practical applications (Mallat 1989) especially in higher dimensions, 
because no redundant information is generated. 

The traditional discrete Fourier transform maps a three-dimensional function 
sampled on e.g. N 3  points onto +JV3 complex Fourier coefficients (conserving the 
amount of information N 3 ) .  From this, useful and compact statistical information 
can be extracted as power-spectra of the field, either the radial spectrum, or separate 
spectra in the different Cartesian directions. The usefulness of this approach stems 
from a variety of reasons including : (a)  the existence of the fast Fourier transform, 
which allows efficient calculation of the transform (this also has permitted the 
manufacture of appropriate hardware such as digital spectral analysers) ; ( b )  the 
straightforward interpretation of the power-spectral density as related to the 
squared amplitude of waves in which the field is being decomposed ; ( c )  the fact that 
the discrete Fourier transform is used not only as a tool of analysis, but also to  solve 
partial differential equations (e.g. with the pseudospectral method (Orszag & 
Patterson 1972) for the Navier-Stokes equations). Other basis functions such as 
Chebychev polynomials are often employed to  deal with particular boundary 
conditions; for the purpose of the present discussion, however, we consider them to 
be of the same family as the Fourier modes owing to their global nature. 

Orthonormal wavelet functions have the property that they also conserve 
information, that is, a discretely sampled field on N 3  points will yield only N 3  
coefficients. However, these will be organized in a fashion that allows distinction 
between scale and location. This property is best illustrated in one dimension : here 
we have a total of N gridpoints, and thus N coefficients : of them give information 
at ladifferent locations about the smallest scale, iNon the spatial distribution a t  the 
next larger scale, etc. The last coefficient is related to  the global mean of the field. 
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Analysis of turbulence in the orthonormal wavelet representation 47 1 

This dyadic arrangement not only makes sense physically (the larger scales are 
sampled more coarsely than the smaller ones), but it also allows for the 
implementation of a fast algorithm, analogous to the fast Fourier transform. 

The objective of the present work is to propose an analysis of turbulence using the 
orthonormal wavelet decomposition rather than the Fourier transform. In order for 
the analysis to be practical, we have to achieve significant reductions in the amount 
of data. In the case of the three-dimensional Fourier transform, where we start with 
N 3  values, the spectra essentially reduce t o  a single-valued function consisting of 
O ( N )  points. This is easy to visualize and to interpret physically. Here we obtain 
more than the spectrum, using the additional spatial information that is now 
available. In this work the focus will be purely statistical, but the idea is to postpone 
spatial averaging as long as possible. In comparison with the discrete Fourier 
analysis the orthonormal wavelet approach has the following properties : (a) there is 
an efficient fast wavelet algorithm allowing the computation of all the coefficients 
with at most O(N1ogN) operations (for some wavelets, the operation count can be as 
low as O ( N )  !) ; (b )  the interpretation of the square of the coefficients as the energy of 
localized pulses is straightforward and very intuitive ; ( c )  statistical properties (or 
more detailed spatial characterizations) of these coefficients, in addition to the 
power-spectrum, can be obtained and are easy to visualize and interpret. So far then, 
there is no practical difference between Fourier and wavelet analysis, but the latter 
allows more meaningful analysis of spatial properties a t  every scale, which is of great 
importance in the case of turbulence. The other important point raised in connection 
with the usefulness of the discrete Fourier transform, namely that it can play a key 
role in actually solving the equations, cannot be made so far with the wavelet basis 
functions (there are several preliminary efforts in that direction, e.g. to use wavelets 
to solve Burgers equation (see e.g. Farge 1992), but it is a little early to be sure of 
their practicality in this context). Therefore, for the time being, we concentrate only 
on properties (a) ,  (b)  and ( c )  listed above, which are worth exploring in the hope of 
characterizing turbulent flow fields in a systematic fashion. 

The idea of studying turbulence using a space and scale dependence is not new : it 
was the motivation for band-pass filtering turbulent signals, an approach that was 
employed to study intermittency (see e.g. Kennedy & Corrsin 1961). Such studies 
were decisive in showing that turbulent activity becomes more and more intermittent 
at smaller and smaller scales, as quantified by appropriate statistical measures, such 
as flatness factors. However, such methods of analysis are rather arbitrary in terms 
of the shape of filters, their bandwidth, etc. Here we attempt to circumvent this 
arbitrariness by invoking the more rigorous foundations of orthonormal wavelet 
analysis, which has the prospect of becoming a more standardized tool. 

The relative simplicity of the analysis of turbulence with wavelets stems from the 
fact that they are generated from a single function, known a priori, and this therefore 
does not depend on the specific flow. This is in contrast to the method of ‘proper 
orthogonal decomposition ’ (Lumley 1967), which constructs basis functions that 
maximize the energy contained in the smallest number of modes. Here we do not 
attempt any such optimization, and so the number of wavelets needed is generally 
high. However, such an approach is necessary to study local properties of 
instantaneous realizations of turbulent flows, because for example in the case of 
homogeneous flows, the proper orthogonal decomposition yields the usual non-local 
Fourier modes. 

We also point out that several previous studies (Siggia 1977 ; Zimin 1981 ; Nakano 
1988) attempt the use of ‘wave packets’ for obtaining meaningful approximations to 
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472 C. Meneveau 

the Navier-Stokes equations, and then deduce energy cascade models. These studies 
use self-similar wave packets, so that they are essentially equivalent to wavelets. We 
believe that it is necessary to complement such efforts with measurements in actual 
turbulent flows, using similar basis functions. This may provide better guidance for 
modelling the nonlinear interactions. Also, we notice that spatially compact octave 
filters (again in essence equal to wavelets) were used by Sulem & Frisch (1975) to  
establish a rigorous bound (equal to  - 9 )  for the inertial-range exponent of the 
turbulent energy spectrum, required to guarantee that the spectral flux does not 
vanish at  high Reynolds numbers. 

After having outlined the conceptual reasons for proposing orthonormal wavelets 
as a tool for statistical analysis of turbulence, we turn now to the more physical 
questions to be addressed in this paper. One of the most important features of a 
turbulent flow is the transfer of kinetic energy from large to  small scales of motion. 
For isotropic turbulence, the three-dimensional energy spectrum E ( k ,  t )  (Monin & 
Yaglom 1971) obeys 

aE(k t )  
2 = T ( k ,  t )  -2vk2E(k, t ) ,  

at (3) 

where T ( k ,  t )  is the net transfer of energy to wavenumbers of magnitude k .  T ( k ,  t )  is 
formally defined in terms of triple products of fluctuating velocity and thus embodies 
the closure problem resulting from the nonlinearity of the equations. The total 
spectral flux of energy through wavenumber k to all smaller scales is given by 

n ( k ,  t )  = T(k’, t )  dk’ = - T(k’ ,  t )  dk’. (4) 1: J: 
The usual arguments of equilibrium and stationarity lead to the condition that in the 
‘inertial range ’ 7 << k-’ << L,  where L is the integral scale and 7 is the Kolmogorov 
microscale, the ensemble average of the flux must equal the overall rate of 
dissipation : 

(4k t))eIls = E .  ( 5 )  

Usually the mechanism of energy transfer is visualized by simplified models such 
as the successive break-down of ‘eddies’, or as the creation of small scales by the 
stretching and folding of vortical elements. One then argues that through scales of 
motion of size k- l ,  there is a net flux of kinetic energy to smaller scales, which is equal 
to the time average of m(k, t ) .  Notice that n ( k ,  t )  does not depend on position because 
of the Fourier representation used to obtain ( 5 ) .  If one now wishes to reconcile this 
definition of a ‘flux’ of energy to smaller scales with the phenomenological picture 
of breakdown of eddies, one needs to tacitly make the assumption that its average 
value ( n ( k ,  t ) )  is indeed physically representative of the underlying physics in every 
region of space. In  some loose sense, this corresponds to the theory of Kolmogorov 
(1941), which neglects the phenomenon of intermittency. 

It has been known for a long time (Batchelor & Townsend 1949) that  the rate of 
dissipation E ( X ,  t )  is distributed very intermittently (a behaviour which increases with 
the Reynolds number of the flow), and that its moments increase with Reynolds 
number according to power-laws in the inertial range (see e.g. Kolmogorov 1962 ; 
Novikov 1971 ; Mandelbrot 1974). This permits a self-consistent statistical and 
geometrical representation of E in terms of multifractals (Parisi & Frisch 1985; Benzi 
et ad. 1984; Meneveau & Sreenivasan 1987a, b ;  Meneveau & Sreenivasan 1991, 
hereinafter referred to as I). The observation of power-law behaviour of spatial 
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Analysis of turbulence in the orthonormal wavelet representation 473 

moments of the dissipation can be modelled rather naturally within the framework 
of break-down of eddies, but now assuming that the flux of energy to smaller scales 
exhibits spatial fluctuations. These fluctuations accumulate as the scales of motion 
become smaller, and can lead to very intermittent distributions of the dissipation. 
This suggests the need for defining a flux of kinetic energy which, as opposed to (4), 
should retain some information about spatial locality. This cannot be achieved with 
Fourier modes, and provides us with a specific motivation for the use of wavelets to 
define new quantities related to the energy dynamics of turbulence. Using the 
wavelet representation of the velocity field, we will introduce quantities that are 
analogous to the Fourier spectra of energy E ( k ,  t ) ,  transfer T(k, t )  and energy flux 
n(k,  t ) ,  but which depend on location as well as scale. These quantities can be used in 
several ways, e.g. to correlate specific local events with possible structures or 
topological features of the flow field. In  this paper we will restrict our attention to 
statistical descriptions of the spatial distribution of these quantities. These are easy 
to compute and to interpret, and do not depend on specific views about what the 
underlying structures of turbulence are. 

The calculations are performed on three-dimensional fields from direct numerical 
simulations of isotropic flow and homogeneous shear flow and measurements in two 
laboratory wind-tunnel experimental velocity signals (boundary layer and wake 
behind a circular cylinder). 

Section 2 provides a brief review of wavelets intended for the reader not familiar 
with this formalism. We cover the continuous transform, wavelet series and the 
discrete wavelet transform in one dimension and extend the basic ideas to three 
dimensions. The focus is on the orthonormal representation that will be used in the 
subsequent analysis of turbulent flow fields. In  $3, we write the Navier-Stokes 
equations in the wavelet representation both in terms of continuous and discrete 
transforms. Appropriate contractions of the equations lead to an evolution equation 
for the local kinetic energy involving a nonlinear local transfer at every scale. The 
distribution of kinetic energy and transfer are studied in the next sections. 

In $4, we perform the wavelet analysis of the turbulent kinetic energy using 
experimental and numerical data sets. From the laboratory measurements, we also 
attempt to quantify the intermittency of the kinetic energy using notions of 
multifractal distributions. Section 5 deals with the transfer and flux of kinetic energy 
in the wavelet representation, where the appropriate data is taken from the three- 
dimensional flow fields obtained from numerical simulations. In $6 we address some 
issues related to the transfer and flux to (or from) the small scales only, an analysis 
that is relevant for subgrid-scale modelling. Section 7 then re-examines the usual 
phenomenological models of intermittency to incorporate the new features 
encountered in $55 and 6. Finally, a summary and the conclusions are presented in 
$8. Useful details about the implementation of fast wavelet algorithms in one and 
three dimensions, the different types of wavelets used and appropriate windowing 
algorithms are described in the Appendices of Meneveau (1990). Also, a brief account 
of some of the findings reported here has already been given in Meneveau (1991). 
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2. The wavelet transform 
2.1. Continuous wavelet transform 

Given a signal f(z), its wavelet transform is defined as 

where $(x) is a function called a wavelet, satisfying the admissibility condition 

Here $(k) is the Fourier transform of $(x), 

00 

$(k) = I $(x)e-ikzdz. 
-m 

The wavelet $(x) has zero mean, will have some oscillations, and can be real or com- 
plex. A typical example of a real wavelet is the mexican hat $(z) = (1 -x2) exp ( -+x2), 
which can be viewed as the difference between two exponentials of different sizes 
centred around x = 0. The wavelet transform w( r ,  x) can thus be interpreted as the 
relative contribution of scales r to the signal at position x, and is similar to  the Gabor 
transform (or ‘short-time ’ Fourier transform), which uses a translating function of 
fixed width (giving the spatial localization) and another modulating function (such 
as e2nikx ) for which the wavenumber is varied. The main difference is that  the wavelet 
involves only one generating function +(x) providing translations and dilations 
simultaneously to reduce the spatial support at the same rate a t  which the frequency 
is increased (or scale decreased). 

If the wavelet is admissible ($(x) obeys condition (7)),  the wavelet transform can 
be inverted as (Grossmann & Morlet 1984) 

In principle (6) could also be inverted from suitable subsets of the (r,z’)-plane, for 
instance at  some fixed To. One then obtains a Fredholm integral equation of the first 
kind, with its associated problems especially if the wavelet has narrow support in 
Fourier space, and so, in practice, it is convenient to consider the entire ( r ,  2’)-plane. 
Another property of the continuous wavelet transform is a generalization of 
Parseval’s theorem (Grossmann & Morlet 1984) 

of which the equality of energy in physical and wavelet space is a special case (here 
* stands for complex conjugate). 

As a (band-pass) filter which decays to zero rather quickly, the wavelet transform 
commutes with differentiation in the spatial variable, namely 

(11) 
a 

~ F r , z ) [ f l  = W,r,z)[f’l. 
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Analysis of turbulence in the orthonormal wavelet representation 475 

For vector functions Ax) with components fi(x), the transform is a vector w(r ,  x) 
whose components are the transforms of the components pfflx). 

The wavelet transform w(r,  x) can also be obtained fromf(k), the Fourier transform 
off($) as 

m 

w(r ,  x) = C$(Bn)-’ri &(rk)*f(k) eixkdk. 
I m  

One can also compute f i k )  from w(r ,  x) (alternative inversion formula) using the 
Fourier transform of (9) 

2.2. Higher dimensions 
For functions defined in higher dimensions, there are several possibilities. One can 
consider, in addition to the dilations and translations, the (group of) rotations of 
non-isotropic wavelets. For the sake of simplicity we consider here spherically 
symmetric wavelets only, and therefore eliminate the angular dependence. An 
example of such a higher-dimensional isotropic wavelet is the mexican hat, 

+(x) = (1 - 1xI2) exp :( - 1 ~ 1 ~ ) .  (14) 

In what follows we write the transforms, inverse transforms and relations to the 
Fourier descriptions. These expressions will be needed in the next chapter for the 
formal derivation of the wavelet transformed NavierStokes equations. 

The three-dimensional transform is : 

where $(x) = y?(lxl) for the isotropic wavelet. The inversion formula is 

Invariance of energy is now written as: 

The wavelet transform w ( r , x )  can also be obtained from f ik) ,  the Fourier 
transform of f ( x ) ,  as 

w( r ,  x) = ~ ; + ( 2 ~ ) - ~ ~ :  (18) 

and this can be inverted as 

(19) 
d3x dr 

rsy?(rk) exp ( - ix-k)  w(r ,  x) - 
r4 ’ 

Again, because of the translational property of the wavelet transform, differ- 
entiation commutes : 

V. Y r , x ) l f l  = Yr,x) [V. . f l ,  (20) 
16 FLM 232 
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and 

The continuous wavelet transform has proved to  be useful in many aplications, see 
Kronland-Martinet et al. (1987) and Farge & Rabreau (1988) to mention just a few. 
Notice that in the case of one-dimensional signals, the field is represented or unfolded 
into a two-parameter space (scale and position) and much redundant information is 
generated. This need not be a problem per se, and there are many instances when this 
is an advantage. I n  the context of turbulence, however, the number of degrees of 
freedom in three dimensions is extremely high to start with, thus we need a 
decomposition that does not increase the size of the database. 

2.3. Wavelet series 
Instead of a continuous transform, a function can be decomposed into a discrete set 
of orthonormal basis functions. Again, one is interested in a set of self-similar 
functions, whose dilations and translations provide simultaneous resolution in scale 
and position. By using a logarithmically uniform spacing of scales with increasingly 
coarser spatial discretization at larger scales, such bases can be made orthogonal and 
complete. These requirements have led (see Meyer 1986 ; Daubechies 1988 ; Mallat 
1989) to the definition of basis functions of the form 

where m is a variable scale index and i is a variable position index (not to be confused 
with d-1). The parameter a, is the base of the dilations and b, is the translation 
length in units of ar.  Notice that now the net translation depends on the dilation. 
The choice for a, and b, is not completely arbitrary (Daubechies 1988); here we will 
use the simplest case a, = 2 and b, = 1 and thus consider all scales along octaves Zm 
and all translations 2”i in multiples of the scale rm = 2m. In  terms of the uncertainty 
principle for wave packets, this means that the wavelets obey the following 
constraint at every m : 

At smaller scales (larger wavenumber), the spatial resolution becomes better, but we 
lose resolution in terms of the wavenumber. Also, we will deal only with real wavelets 
(it has been argued that the phase of a complex wavelet contains important 
information, but i t  appears to  us that while a phase angle is useful for specifying 
spatial shifts for waves - i.e. specifying the right mix of sines and cosines - this goal 
is accomplished in the case of a real wavelet by its translations anyway). 

2.3.1. One-dimensional case 

contributions of different scales and locations according to 
For one-dimensional signals, one decomposes the function into a discrete set of 

where (25)  
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FIGURE 1. (a) Example of an orthonormal wavelet basis function @(z) (LMB wavelet of order-n = 4) 

having exponential decay in physical space. (b )  The modulus of its Fourier transform @(k). 

The function $(x) to be employed has the remarkable property that it is 
orthonormal to its own translates and its own dilations. In other words, 

Evidently, only very special functions will have this property. The simplest one is the 
Haar basis, $(z) = 1 for 0 < z < t ,  $(x) = - 1 for 4 < z < 1 and $(x) = 0 elsewhere. 
However, one would like smoother basis functions, preferably with better locality in 
Fourier space (the Haar basis is compact in physical space, but not in Fourier space 
where it decays very slowly as kl). 

Functions which meet these requirements have been discovered only recently 
(Meyer 1986; Daubechies 1988). A brief description of the conditions that they must 
satisfy and pointers on how they can be constructed can be found in Daubechies 
(1988) and Appendix B of Meneveau (1990, hereinafter referred to as 11). Figure 1 
shows one of them, the wavelet constructed by Lemarie & Meyer and by Battle (see 

16-2 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

91
00

37
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112091003786


47 8 C .  Meneveau 

Mallat 1989) ; for short notation, we will call it from now on the LMB wavelet. Also 
shown is the modulus of its Fourier transform. The wavelet has exponential decay in 
physical space and a k-* decay in Fourier space. Since it is well localized both in 
physical space and in scale coordinates, it provides a reasonably sharp decomposition 
of the signal into contributions of scale and position. The localization is limited to 
bands both in x and k space (these bands cannot both have zero thickness because 
of the uncertainty principle). 

Because of (26) ,  we can compute the discrete wavelet coefficients for the function 
f(x, as 

$ ( m ) ( ~ - 2 m i )  f(x) dx. (27 ) rw w(m)[i] = 

Therefore, the coefficient ~ ( ~ ) [ i ]  measures the contribution to the signal of scales 2m 
in the neighbourhood of the point 2mi. Orthonormality implies that total energy 
obevs 

w w  c" f(x)2dx = ( ~ ( ~ ) [ i ] ) ~ .  
J -W m--w i--a0 

2.3.2. Three-dimensional case 

separable basis functions, that is, we use basis functions of the form 
To obtain practical representations in higher dimensions, it is useful to consider 

where xt (i  = 1 ,2 ,3 )  are the three Cartesian coordinates. We still retain the idea of 
using scales of the form 2m but must now consider all locations in three-dimensional 
space. It turns out that for a complete representation one also must consider 
additional internal degrees of freedom. These complement the function formed by 
the product of the wavelets along the three Cartesian directions as in (29) The details 
are given in Appendix A of 11, and here we simply note that it is iecessary to 
use 7 distinct basis functions (indexed by q).  This additional requireinent can be 
understood intuitively by noting that in one dimension an increase in scale by a 
factor two decreases the number of gridpoints by a factor of two, the difference of 
information being provided by the wavelets of the next scale. In  three dimensions the 
reduction is a factor of eight, the difference in information thus requires 7 distinct 
wavelet coefficients. Now the position is indexed by the triplet indices [ i l , i 2 , i 3 ]  
(denoted compactly as [q), and the scale is indexed by m, as before. One defines 

The function qVm)(x-2"i) is called a 'smoothing function ', which is also generated 
by translations and dilations of a single function according to 
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FIGURE 2. Smoothing function d(z) that is orthonormal to the LMB wavelets. It also has 

exponential decay in physical space. 

It also has the property that its translates are orthonormal to itself as well as to the 
wavelets $, but it is not orthogonal to its own dilations. 

Figure 2 shows $(z). Intuitively, the basis function !Pm.*)[x-2mfl for q = 1 picks up 
variations of scale 2m that occur in all three directions (zl, xg, x 3 )  simultaneously, for 
q = 7 it only picks up fluctuations along the direction x3, etc. It can be proved that 
with a proper choice of both $(x) and $ ( x ) ~  one can represent a three-dimensional 
function f ( x )  as 

7 

f ( x )  = c c c w'm.*)[i 1 , i  27 i 3 ] Y(m.*)[X--2mZ3. (34) 
m 9-1 (i,, i,, is) 

Again, the coefficients can be computed as 

f(X) !Pm~*)[~-2mfldxl dz,dx,. (35) L rm W(m**)[il, i,, i3] = 

2.4. Discrete wavelet transform 
Thus far we have considered continuous functions f(z). For practical applications, it 
is important to have a discrete transform, because functions such as f(z) will only be 
known on a discrete mesh xj. 

2.4.1. One-dimensional case 

and h is the mesh spacing. The discrete analogue of (24) is 
We consider a function f(z) sampled on a discrete mesh, f(z,) = f[j], where z, = j h  

a m  

f[j] = 2 w'"'[i]g'"'[i-2mj], 
m-1 +-a, 

(36) 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

91
00

37
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112091003786


480 C. Meneveau 

where g"@[i] is a discrete version of the wavelet function @('@(x). The precise sense 
of 'discrete version ' and how to compute g(m)[i] is explained in Appendix B of 11, here 
we indicate only that @(x) is sampled a t  discrete meshpoints using not &-functions 
but rather the smoothing function $(z) introduced above. Figure 3 shows g(m)[i] for 
m = 1 corresponding to the LMB wavelet. This function obeys the 'discrete 
orthogonality ' condition 

The coefficients ~ ( ~ ' [ i ]  are given by 

W 

w y i ]  = c g'"'[i-2mj]f[j]. 
j--m 

(38) 

These convolutions can be performed either in physical space or in Fourier space. If 
the support of g[i] is small (i.e. it is non-zero on a few grid-points) it is more 
convenient to operate in physical space. If the support is not small (such as with the 
LMB wavelets which decay exponentially) one can perform the convolution in 
Fourier space using the FFT. Furthermore, the different levels m are handled in a 
recursive fashion, leading to the 'fast wavelet transform '. In practice one deals with 
finite domains so that the sums of (36) and (38) extend over N grid-points. In this 
work we will use periodicity when computing the convolutions via FFT ; when the 
fields are not periodic, appropriate windowing is used. More details on all of these 
issues are given in Appendices A, B and C of 11. The total energy obeys again 

m OD 

f[j]2 = 5 2 (w(7yi])2. (39) 
+-OD m-1 i--m 

To illustrate the discrete wavelet transform, consider the functionf[j] of figure 4, 
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FIQURE 4. Illustrative example : function with regions of fluctuations of different wavelength 
and white noise at different locations. 

with N = 512 grid-points. It exhibits localized oscillations at different scales and 
positions. To the right, it consists of white noise. Now we compute the transform by 
performing the convolutions of (38) using the LMB wavelet and the fast wavelet 
algorithm reviewed in Appendix B of 11. The convolutions of (38) are computed with 
FFTs, assuming periodicity for the function f [j] and using the fact that the wavelet 
g(m)[i] decays rapidly and is negligible at the boundaries (for the largest scales 
m - log, ( N )  this is not true, but the errors are negligible : in this case the total energy 
of the signal and the wavelet coefficients were the same up to 11 significant digits). 

Figure 5 shows the discrete coefficients, placed on a mesh of scale and position. 
There are M = log, ( N )  = 9 different values for m, and the transform is defined on 
N/2m positions at each level. Thus at  large scales, the discretization is much coarser. 
Also, we remark that the total number of wavelet coefficients is 

M N  C - = N - l .  
m-1 2" 

Additionally, one obtains a 'global DC offset ' scM) related to the mean of the signal 
(see Appendix B of 11), so that information is conserved, as it should be for an 
orthonormal representation. 

2.4.2. Three-dimensional case 

discrete version of $(m)(z). The decomposition is : 
In three dimensions we again need an additional function h(")[j] which is the 

g'"'[i1-2mj1]g(m)[iz-2mj,]g(m)[i3-2"j3] w ( m J ) [ j 1 , j 2 , j 3 ] + .  . . 

The formula to obtain the coefficients is 

~ ( ~ . Q - l ) [ i ~ ,  i,, i3] = C q'"'[i, -2mjl]g(m)[iz-2mjz]g(m)[i3-2mj3] f [j1,j2,j3], (42) 
j i , f r .  j a  

and the other permutations of g and h yield all 7 coefficients for each scale m and 
location [il, i,, i3]. Because of separability into a product, the convolutions can be 
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FIGURE 5. Discrete wavelet transform of the function in the preceding figure. The coefficients are 
defined on a grid becoming increasingly coarser at the larger scales. The coefficients are large at  a 
scale corresponding to m = 3 and 4 (scales equal to 23 and Z4) only near locations at  the left, where 
the signal has oscillations of wavelength x 12. Some leaking to other m bands is visible, owing to 
the finite bandwidth of the basis functions. The large-scale oscillation gives high coefficients at 
larger values of m while the white noise at  the right produces non-zero coefficients at  every scale 
on the right portion. 

performed in succession along the three Cartesian coordinates. These convolutions 
can be performed either in physical space or in Fourier space. The total energy of the 
signal is given by summing over all scales m and components q :  

We now have the tools to efficiently compute the discrete wavelet transform of a 
field in one or three dimensions (if other dimensionalities are required, the formalism 
is easily extended). We can also invert the transform, and compute the energy of the 
signal using the wavelet representation. In the remainder of the paper, we use these 
tools to analyse turbulent velocity fields. 

3. Navier-Stokes equations in wavelet space 
Let us define wi(r ,x)  as the wavelet transform of the fluctuating part of the 

(divergence-free) velocity field ut(x) .  In vector notation this will be denoted as 
w(r,  x) (these variables obviously also depend on time, which is omitted from here on 
for notational simplicity). From (20) it follows that w(r, x) is divergence-free. 
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Applying (18) to the Fourier-transformed Navier-Stokes equations (equation (2)), 
where the velocities on the right-hand side have been replaced by the inverse 
transform of wt(r, x), one obtains the evolution equation for wt(r, x) : 

dr’ dr” d3xt d3x” 
X r/4rt‘4 7 (44) 

where 

zt,k(r, x; r’, r”, xf, x”) = (-i) (rr k , ~ , ( k )  $(rk)*$(r/q) $[r”(k--q)] 

xexp ( i [k . (x-x”)+q. (x”-x’ ) ] )d3qd3k.  (45) 

Multiplication by wt(r, x) and adding over the components i yields the equation for 
the local energy: 

where (47) 
t-1 

is the local density of kinetic energy at  scale r ,  and 

is the local transfer of kinetic energy to scale r at location x. This term exhibits 
interactions among triads of scales (r, r’, r”), as well as interactions among triads of 
locations (x, x’, x”). In  (46), e(r, x) is the energy dissipation incurred by scales of size 
r ,  and is given by 

aw, aw, aw 
e ( r , x )  = v- a , [ a X ,  -++ aJ , 

Because of (lo), the transfer conserves energy 

The flux of kinetic energy 
rate of change in the local 
than r ,  

(49) 

through scale r at location x is defined by integrating the 
energy due to nonlinear interactions over all scales larger 

dr’ 

This is defined as usual with a negative sign, so that a decrease in energy of the large 
scales corresponds to a positive flux. This quantity is analogous to (4) in the wavelet 
representation, and because of (50) we have the condition 

lim x) d3x = 0. (52) 
r-0 
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These formal expressions are not very useful in themselves, but they illustrate that 
there are complicated interactions of the wi(r, x) occurring at different positions as 
well as a t  different scales. These non-local and inter-scale interactions are controlled 
by the properties of I i jk ( r ,  x ; r', r" ,  x', x"). We note that the complexity of this 
quantity stems primarily from the fact that in general the triads are not closed as 
they are in the Fourier case, i.e. there is no detailed energy conservation in the 
wavelet representation. 

Further development of this formulation should concentrate on possible 
approximations to Iiik(r,  x ; r', r", x', x") in order to simplify the nonlinear interactions 
(see Nakano 1988). In  this paper we concentrate instead on analysis of actual 
turbulent flows and will make no approximations a t  this stage. When the velocity 
field is known, we can compute quantities such as e ( r ,  x), t (r ,  x) and n(r,  x) by taking 
the wavelet transform of the Navier-Stokes equation with the nonlinear terms 
written as a function of the original velocity field. Also, as outlined in $2,  we will use 
the discrete formulation, which is presented below. 

We return to  the Navier-Stokes equations written in physical space for the 
fluctuating velocity and pressure, (1). Let wim.'J)[z] be the wavelet coefficient of the 
ith component of the velocity field, where i =  ( i l , i , , i 3 )  denotes location on a 
rectangular grid with constant mesh-sizes h,, h,, h,. This location will be given by 
y = 2m(h, i,, h, i,, h, i3). We then have 

u,(x) !Pm."[x-y] dx, dx, dx,. (53) rw r* s_z, wl".q'[q = 

Now we take the inner product of the Navier-Stokes equation with the wavelet 
basis function lym*q)(x-y). Also, as a short notation, the coefficients of the terms 
other than velocity will be denoted by enclosing them in brackets like {. . . }(m.Q)[q.  
Therefore, we write 

Multiplication by wlm-'J)[il and contraction over the three components i and seven 
terms q yields the evolution equation for the local kinetic energy density e(m)[z-J, of 
scale rm and location y = 2m(hl i,, h, i,, h3i3)  : 

This equation is analogous to  (3), but it depends on position as well. Here t (m) [ i l  is the 
local transfer of kinetic energy to scales rm a t  location indexed by i, which is given 
bv 

The pressure appearing in this definition need not be the total pressure, but is the one 
that arises from solving the Poisson equation, the source term including only the 
fluctuating part of the velocity and not the mean speed (for more details, see 55.2). 
d m ) [ z 7  is the viscous term (containing dissipation and viscous transport of kinetic 
energy), and is given by 

3 7  
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We focus attention on the nonlinear term t(")[i], which indicates how the kinetic 
energy is transferred by the nonlinear interactions, among the different scales and 
locations. This term conserves energy on the whole 

M x x t(m)[i1,i2,i3] = 0, 
m=1 L,, 1,. 1, 

(58) 

a property that follows from the condition that the volume integral of u-Vu+ W p  is 
zero (for homogeneous turbulence), and from the orthonormality of the wavelets. 

In analogy to (4), the flux of kinetic energy through a spatial region of 
characteristic size rm and location given by the index [il, i,, i3] can be computed by 
adding the transfer (density) of all larger scales at  that location, according to 

It is the quantities e('@[l), t(")[a and drn)[q that we wish to measure in turbulent 
flows. The next section focuses on the energy itself; one part of it can be measured 
for the laboratory flows, while in three-dimensional direct numerical simulations it 
can be measured in its entirety. 

4. Spatial statistics of turbulent kinetic energy 
The purpose of this section is the measurement and characterization of the local 

kinetic energy at  every scale in turbulent flows. Before describing the actual 
measurements, we introduce a few tools that will be used, and highlight their 
connection with the usual Fourier analysis. 

4.1. Basic concepts 
In Fourier analysis, the tools often used to characterize a process are correlation 
functions or the power-spectral density E(k)  that represent the energy-density 
contained in a band dk of wavenumbers, and thus provides a measure of the 
relevance of each scale of motion. However, important spatial information is lost 
owing to the non-local nature of the Fourier modes. We will relate the wavelet 
energies with E(k) ,  and use them to quantify the spatial distribution of the energy 
in more complete statistical terms. 

Let u(z) be a one-dimensional finite-energy function of zero mean, and let G(k)  be 
its Fourier transform. The total energy is given by 

U ( Z ) ~  d s  = - G(k)  6(k)*  dk = 1: E ( k )  dk, J-: 277 T -m 
(60) 

where E(k)  is the energy spectrum. The wavenumber k in Fourier space is related to 
physical distances r by 

Let w(r ,z )  be the continuous wavelet transform of u(z). From (10) and (6l) ,  the 
total energy can be written in terms of the wavelet energies as 

m 

U ( X ) ~  d s  = 1: E,(k) dk, 
J - m  

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

91
00

37
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112091003786


486 C. Meneveau 

where 
i r m  

This is the energy-density at wavenumbers k obtained from the wavelet 
coefficients. This spectrum is analogous to  the Fourier spectrum E ( k ) ,  but need not 
be exactly the same a t  every k because of the finite bandwidth associated with the 
wavelet transform. Before averaging in physical space, we can perform other 
statistical calculations that will reveal more detailed information about u(x ) .  For 
instance, we can inquire about deviations from Gaussian behaviour at every scale by 
computing the skewness and flatness factors of w( r ,  x). The flatness factor is given by 

where the averaging is performed over x. 

velocity field : 
In the discrete case, we consider ~ ( ~ ) [ i ] ,  the discrete wavelet coefficients of the 

m 

w ( ~ ) [ ; ]  = I-, u ( x )  $cm)(x-2mi) dx. (65) 

When u(x)  is represented as u [ j ]  on a finite domain on N gridpoints, we compute 

N 

w'""i] = c u[j]g'""j-2mi], 
I-1 

where N = 2M.  From (28),  the total energy density contained in scales r, = 2"h is 
given by 

2M-m 

N-1 (w'rn'[j])2. (67) 
I-1 

The wavenumber corresponding to this scale is 

The power-spectral density (per unit wavenumber) is expression (67) divided by Ak,. 
From (68) it  follows that Akm = 2n2-,h-' In 2. Finally, the power-spectral density 
corresponding to k ,  will be given by 

where the average is a spatial one over a l l j  locations a t  scale corresponding to k,. 
Notice however that the resolution in terms of scales is considerably less dense than 
in the case of the Fourier spectral density: there we have information at  
wavenumbers spaced linearly, here we obtain that information only on octaves. 
However, in addition to the energy spectral density, we can inquire about deviations 
of the energy about its mean ((~(~'[j])~) or E(k , ) .  This can be quantified by the 
variance of (w(m)[j])2, which is essentially a fourth-order moment of the wavelet 
coefficient. The standard deviation of energy is 
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This is a measure of the spatial fluctuations of the localized energy contributions, in 
the same units as E(km).  A plot of E(k,)  as well as of E(k,) + aE(k,)  gives a compact 
representation of the energy contained in each scale and its spatial variability. We 
will refer to such a representation as the 'dual spectrum ' of a signal, and will use this 
and similar tools frequently throughout this paper. 

Furthermore, the flatness factor is given by 

Here again the averaging is over all j-locations at  a given scale and we use the 
property that the mean of the wavelet coefficients is zero for each scale. We believe 
that such quantities can give useful insight about the spatial properties of turbulence 
in a compact statistical fashion, at  every scale of motion. Furthermore, we stress that 
the calculations can be made a t  a similar cost to the usual FFT analysis. 

In practice, the scale range of interest does not need to extend to scales as large 
as the total length of the signal. In such a case one can compute the transform over 
segments of the signal and then average over them. As when computing Fourier 
spectra, certain windowing procedures must be used. The details of this are given in 
Appendix C of 11. 

In three dimensions, we use the wavelet coefficient of the ith velocity component, 
wkm*'J)[z) (see (53) ) .  The energy spectral tensor of the velocity field u is 

where the average extends over all points [ I ) ,  and we have defined 

In (72) ,  we have accounted for possibly, non-equal mesh-sizes in each direction by 
taking the characteristic scale as-the geometric mean, 

rm = 2m(hl h, h3)i. 

The total kinetic energy (per unit volume) of the field 

3 M  

&' = Z Z AkmEti(km). 
(-1 m=1 

(74) 

is given by 

(75) 

The spectral tensor E,(k , )  is analogous to the radial energy spectrum tensor E,(k) 
from Fourier analysis, but is not necessarily equal to it at  every k because of the 
width of the Fourier transform of the wavelet. The spatial variation of eaP)[q is 
measured by its standard deviation in units of Eij(km) a0 

The three-dimensional dual energy spectra will be given by the traces of these 
tensors. The skewness and flatness factors can be determined by spatial averages 
over all points, and one can define different factors for each velocity component, a5 
well as for each term p = 1,. . . , 7 .  
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C. Meneveau 
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FIQURE 6. (a) Streamwise velocity signal measured in the wake of a circular cylinder, as a function 
of streamwise position (Taylor's hypothesis has been used). (b)-(e) Energies of the velocity at  
different locations and different scales of motion (the energy is plotted in arbitrary units). The 
energy increases at the large scales, but large fluctuations in physical space are visible at every scale 
of motion. 
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In  the remainder of this paper we will use the scale r,, wavenumber k, or the index 
m to denote the size of the wavelet in an interchangeable fashion. 

4.2. Applications to laboratory measurements 
In  this section we compute the dual spectra of two experimental data sets consisting 
of records of streamwise velocity component. The flows considered are a turbulent 
boundary layer and the turbulent wake behind a circular cylinder. 

The experimental velocity fields have been obtained in a suction wind-tunnel 
(at Yale University) using a single-point hot-wire anemometer. Details of the 
measurements can be found in I .  The boundary-layer flow has a free-stream velocity 
of 12 m/s, the hot wire is located at  y/6 = 0.2 (where the boundary-layer thickness 
is 6 z 4 cm), and the Taylor micro-scale Reynolds number is Re, = 110. The 
turbulent wake flow has a free-stream velocity of 9 m/s, the measuring station is in 
the centreline a t  x/d = 90, where d = 1.9 cm is the cylinder diameter. The Reynolds 
number is Re, = 50. For both experiments, the turbulence intensity is low (5 and 
3.6%) compared to the convecting mean speed, and Taylor’s hypothesis has been 
used in interpreting the data sets as linear sections through a ‘frozen’ flow field. 
Digitizer noise from the 12 bit analogue-to-digital converter was eliminated by 
passing the signal through a low-pass filter with a cutoff frequency of k~ = 1 using 
a digital filter of approximately 100 dB/octave. This affects only the smallest scales 
(corresponding to 5 grid-points or less), which are much smaller than those a t  the 
peak of the dissipation spectrum. 

For the remainder of this section we consider the spatial statistics of the turbulent 
kinetic energy. A portion of the velocity signal consisting of 211 points, obtained in 
the turbulent wake is shown in figure 6 (a) .  We compute the one-dimensional wavelet 
transform of this velocity signal (using the LMB wavelet basis) with M = 12 scales 
with the windowing procedure described in Appendix C of 11. We then determine the 
local energies a t  every location in the flat part of the window. In figure 6(b-e) we 
show the spatial distribution of energy for 4 scales, m = 3 to m = 6. It is quite evident 
that the magnitude of the energy becomes smaller at smaller scales in accordance 
with the spectrum of the signal. The degree of intermittency or spottiness increases 
at smaller scales however. These spotty regions are located near sharp jumps in the 
velocity signal. Intermittent signals like figure 6 (b )  have often been observed when 
measuring small-scale quantities like rates of energy dissipation. Here, on the 
contrary, we are dealing with intermediate scales which are dynamically quite 
important. 

The dual energy spectra are obtained by averaging over many segments of data, 
in each of which the appropriate windowing method is used. We compute the wavelet 
transform with M = 12 for 100 segments and perform the average of (69) over them 
for proper statistical convergence of the spectrum. In figure 7, we show the dual 
spectra of the one-dimensional signals, compared with the usual Fourier power- 
spectrum (solid line). The mean wavelet spectrum agrees fairly well with the Fourier 
spectrum a t  the large scales. At the small scales, the spectrum becomes very steep 
and there is a significant difference. This is due to the tail of the wavelet in Fourier 
space, which generates some ‘leaking’ of energy from the large scales to the small 
ones. Of course, there is no ‘true’ energy spectrum per se, the wavelet spectrum just 
corresponds to the actual energy contained in pulses rather than in waves. The only 
condition that must be met by both spectra is that the total energy be the same, and 
this was checked here to be true up to roundoff accuracy. 

The variance of the energy provides additional information, and for most of the 
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2 x 10-3 10-2 100 

FIQURE 7. Dual energy spectrum of the turbulent flow behind the circular cylinder (streamwise one- 
dimensional spectrum). -, Usual Fourier spectrum ; 0,  wavelet spectrum ; A, wavelet mean 
energy at every scale to which one standard deviation (computed from the spatial fluctuations) has 
been added. 

scales it is of the same order of magnitude as the mean energy itself. The small 
increase in the relative variance of the local energies at large wavenumbers points to 
an increasingly intermittent distribution of the kinetic energy there. This behaviour 
cannot be detected with the usual Fourier spectra. This can be seen more 
dramatically in the plot of the flatness factor F(k,)  as a function of k in figure 8, 
which includes the results for the boundary layer as well as those of the turbulent 
wake. For both flows F(k,)  increases steadily from the Gaussian value 3 a t  the large 
scales through the intermediate ones, and increases more quickly in the dissipative 
range. 

4.3. Multifactal nature of local kinetic energy 
Traditionally, less attention has been given to the intermittent nature of the energy 
than to that of the dissipation because the average of the energy is dominated by the 
large scales of the flow, and thus small-scale intermittency is less relevant. However, 
intermittent behaviour of the local energy is present a t  all intermediate scales and 
may be quite relevant for the formulation of turbulence models. We will analyse the 
possibility that the quantity e(r,  5) = w(r, z ) ~  may behave as a multifractal field 
(measure). For accounts of the multifractal formalism see Mandelbrot (1 974), Parisi 
& Frisch (1985) and I. 

If e ( , ) [ j ]  is multifractal (this discussion is made in terms of the discrete transform 
but can also be made in the continuous version), one can define a set of scaling 
exponents Di for the qth moment by 

Di are the so-called 'generalized dimensions' of the energy which describe the scaling 
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2 x 10-3 lo-* lo-’ 

kT 

FIQURE 8. Flatness factors of the wavelet coefficient computed from laboratory data. 
The circles are for the boundary-layer flow and the squares are for the turbulent wake. 

of moments of order q of the field (there is no connection between this q and the index 
used in the preceding chapters to denote different terms in the multidimensional 
orthonormal wavelet analysis). Also, d is the dimension of the embedding space 
(d = 1 for the experimental data). The prime indicates that these exponents refer to the 
local energies rather than to the dissipation as introduced in Meneveau & Sreenivasan 
(1987a). Alternatively, one can locally define a scaling exponent a’ as 

whose probability density function Pm(a‘) scales as 

d-f  ’(a’) 

Pm(a’) -(?) . (79) 

Here f’(a’) is a scale-invariant function (called the multifracta, spectrum) w ,,en the 
field is multifractal. The generalized dimensions and the function f ’(a’) can be related 
by 

f ’(a’) = qa’(q) - (q- 1)Di. (81) 

It is important to note a fundamental difference between the definitions used here 
and the multifractal formalism commonly employed for conservative measures (such 
as the dissipation or invariant measures in dynamical systems). There one deals with 
‘conservative cascades ’ (see the discussion in I), where the integral or sum of the field 
is a value independent of the scale r .  When dealing with the dissipation, this constant 
value is the overall mean rate of dissipation, and is usually thought to be 
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FIGURE 9. Double logarithmic plots of the properly normalized q-sums of the wavelet energies for 
the laboratory boundary layer. Linear portions for positive q values are clearly visible between 
scales m = 4 and m = 8 (rm/v - 20 and r,,,/v - 200). For smaller scales, there is a clear levelling of 
the curves, and for larger scales, the slopes increase to the space-filling value 1 .  For negative q ,  the 
scatter of the points is very large, even using this many points. The solid lines whose slopes are used 
to obtain the 0; exponents are least-square fits to the points in the scaling range. 

representative of the net flux of kinetic energy from large to small scales, independent 
of scale in the inertial range. Thus the prefactor in the right-hand side of (77) is 
usually independent of r (or m). Here, however, the total kinetic energy a t  some 
particular scale is not a constant and its dependence on scale is given by the energy 
spectrum. As in the previous section, the present multifractal formalism is a means 
of characterizing the intermittency of the energy distribution around its scale- 
dependent mean. Definition (77) is more closely related to the multifractal formalism 
introduced in Parisi & Frisch (1985) for velocity structure functions (of even order). 
The analogy is due to a close (but not exact) resemblance of wavelet coefficients of 
a certain scale with velocity increments over such a scale, which we shall exploit later 
to relate the appropriate exponents. For additional information on the relation 
between multifractals and wavelets, see Arneodo, Grasseau & Holschneider (1988) 
and Barcy et al. (1990). 

In  practice, the exponents Di can be measured from log-log plots of 

versus ( rm/L)  as the slope of a linear region (if i t  exists) somewhere between the 
energy-containing scales and the dissipative ones. By ergodicity, the ensemble 
averaging of (77) is replaced by sums over all j indices, but we emphasize that the 
calculations of (82) are closely related to the evaluation of structure functions (of 
even order p = 2q). To obtain the multifractal spectrum, we then apply (80) and (81). 

Thus we proceed as follows: divide the signal into segments of 2048 points and 
multiply the data by the window described in Appendix C of 11. The wavelet 
coefficients are computed for each segment with M' = 12 = M +  1.  Then the sums 
implied by (82) are computed for every r or m value (m = 1,2 ,  . . . , M )  and for 19 

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

91
00

37
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112091003786


Analysis of turbulence in the orthonormal wavelet representation 493 

1 .o 
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0 0.5 1 .o 1.5 2.0 2.5 
a 

FIGURE 10. Singularity spectra for one-dimensional cuts through turbulence. The symbols are the 
present results from the local kinetic energies (squares for the wake flow and circles for the 
boundary layer). ...., Mean f(a) curve of the field of dissipation obtained previously (see I) from 
a variety of turbulent shear flows; ---, f(a) of the energies deduced from the f(a) curve of the 
dissipation using the usual (local) dimensional analysis. There is excellent agreement with the 
values directly measured (symbols) on the left-hand side but no agreement on the right-hand side. 

values of q, between q = - 3  and q = 6. The sums extend only over those j-values 
within the flat part of the window. To guarantee statistical convergence for the high 
moments, very long segments of data were employed (2.5 x los points). 

This analysis is performed for both the boundary-layer and the wake flow. Figure 9 
shows log-log plots obtained in the boundary layer, which display an approximately 
linear portion for the decade of scales between T m / T K  z 20 and r r n / T K  x 200 for 
the different q-values. This is the same scaling range found for this flow in I from 
analysis of the multifractal properties of the dissipation field. The same result is 
observed for the wake flow. The slopes are computed from least-square error fits 
to the 5 points from m = 4 to m = 8. Figure 10 shows thef(a) curve obtained after 
application of (80) and (81) to the Di curve. In this plot, we also show thef(a) curve 
obtained in I for the dissipation field (dotted line). We note that is larger than 
urnin of the dissipation, indicating that the energy is less intermittent than the 
dissipation. There is a large qualitative difference on the right part of f(a), 
corresponding to the low-intensity regions (this can also be seen in the sharp increase 
in the D, curve at negative q values). While the dissipation is reasonably well behaved 
here (the curve drops continuously to low values), the curves corresponding to the 
local energy seem to level off at a certain (negative) slope. This behaviour is 
indicative of a fundamental change in the distribution (analogous to a phase 
transition, Min Duong-van 1987). This is due to the fact that the probability density 
of the local energies peaks at  zero energy, which differs in a fundamental way from 
the behaviour of the (coarse-grained) dissipation whose distribution function 
vanishes at small dissipation values. This means that negative moments of the 
energy (based on a single velocity component - when adding three components the 
situation would change) do not exist or are ill-behaved if one attempts to compute 
them (a similar conclusion is reached in Bacry et al. (1990), where it is argued that 
the negative moments of velocity differences could not scale in the same fashion as 
those of the dissipation). 
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An interesting question is whether the present results can be related to  the f(a) 
curve of the dissipation through dimensional analysis. In  Meneveau & Sreenivasan 
(1987a, 1991) it has been shown that such a relationship works for the scaling of 
positive even moments of velocity structure functions. The usual assumption is that 
velocity differences Au, (x )~  = [ U ( X + T - ) - U ( X ) ] ~  scale in the same fashion as (rer(x))g, 
where E ,  is the dissipation of kinetic energy averaged over a box of linear size r .  From 
dimensional analysis, one expects that (Au, )~  - kE(k) ,  which leads to 

locally. This can be used to  obtain the following relation: 

where D, are the generalized dimensions of the dissipation field. Applying this 
equation to the mean D, curve for the dissipation obtained in I, and then 
transforming to the f(a) representation, we obtain the dashed line of figure 10. The 
agreement is good on the left-hand part of the curve, but as expected from the 
discussion above, there is no agreement on the low-intensity part. This means that 
(83) is not valid for low values of dissipation and energy. 

4.4. Analysis of three-dimensional numerically generated fields 
We now turn to  the statistics of energy from three-dimensional velocity fields. One 
flow considered is a freely decaying isotropic turbulent field with periodic boundary 
conditions, obtained using the pseudospectral method (see Rogallo 1982). The field 
was initialized with Fourier modes with a prescribed energy spectrum and random 
phases. The calculation was performed for a sufficiently long time to establish the 
nonlinear interactions and a velocity derivative skewness S = -0.51. The com- 
putational grid-size was 1203 (expanded during post-processing to  12S3 for the 
analysis in physical space by zero-padding in Fourier space). The Taylor-scale 
Reynolds number is about R, = 30. 

The other flow field considered is a simulation of homogeneous sheared turbulence, 
described in detail in Rogers, Moin & Reynolds (1976) and Rogers & Moin (1986). 
Here we consider the field C128U12, computed on a 12S3 grid using Rogallo's (1982) 
deforming grid algorithm, in which periodic boundary conditions can be used. The 
field a t  a time equal to  12 shear timescales (St = 12) was analysed. The turbulence 
field is homogeneous in all spatial directions, but is not isotropic. Elongated vortical 
structures are visible. The Taylor-scale Reynolds number Re,, is 110, where h is 
defined using the streamwise velocity and streamwise velocity gradient (it is thus 
higher than the equivalent isotropic scale). The physical grid spacing for this 
computation is twice as large in the x-(streamwise) direction as in the other two 
directions. 

We compute the three-dimensional wavelet transform of the three velocity 
components according to the procedure of $2.4.2, again using the LMB wavelet basis. 
Because the fields are periodic no windowing of the data is needed, but because of the 
elongation of the grid in the x-direction, the actual wavelet basis functions are twice 
as long in that direction as in the transverse directions. This is quite appropriate for 
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with N = 128. The characteristic scale corresponding to the index m is computed as 

rm = 2m(h, h, h3)ir (86) 

I 1 I I , I I I 1 I I ,  

10-3 1 0 - 2  lo-‘ 1 OQ 

and the wavenumber k ,  is given by (68). 
The three-dimensional dual spectra are computed as the trace of (72), and those for 

the shear flow are displayed in figure 11. Again, there is good agreement between the 
Fourier radial spectrum of the flow and the wavelet spectrum at large scales and 
again some small disagreement can be seen at  the small scales, where the spectrum 
becomes steeper. Slightly increased relative variance of the energies is again found at 
the small scales in the dual spectrum. We also compute the largest local kinetic 
energy in the computational domain, which is displayed as the upper line in the dual 
spectrum of figure 11. This illustrates fairly well that local energies at  a scale can 
differ greatly from their mean values. 

Next we compute the flatness factors. For every velocity component i and scale m, 
we average over all locations i and over all 7 q-components (one could also define 
flatness factors for each q-component). The values of F,(km) are displayed in figure 12 
for the case of isotropic turbulence. At  the large scales (small k, ) ,  the number of 
coefficients is very low, so that the statistics are poorly converged. However, i t  
appears that the large scales tend to the Gaussian value F = 3. The flatness of the 
small scales increases quickly, and in the same fashion for all three velocity 
components, as expected for an isotropic flow. Figure 13 shows the corresponding 
results for the homogeneous shear flow. Again the large scales appear Gaussian, 
although the poor statistical sampling there precludes us from making any definite 
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FIGURE 12. Flatness factors of the wavelet coefficients computed from the simulation of isotropic 
turbulence. Different symbols correspond to different velocity components: 0,  u ;  0,  v ;  A, w. 

10-2 10-1 loo 

kg 

FIGURE 13. Flatness factors of the wavelet coefficients computed from the simulation of 
homogeneous sheared turbulence. Different symbols correspond to different velocity components : 
0,  u ;  0 ,  v ;  A, w. 

statements. The flatness of the small scales is quite different for each velocity 
component, indicative of small-scale anisotropy. The transverse velocity components 
(in the plane perpendicular to the streamwise direction) tend to  be considerably more 
intermittent than the streamwise component for the two smallest scales. This seems 
consistent with the view that elongated small-scale vortical structures exist, aligned 
with the streamwise direction of the flow. On the other hand, the contribution to 
kinetic energy by the streamwise component is considerably higher than those of the 
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transverse components (see Rogers & Moin 1986). The energy is dominated by the 
larger scales (here a t  ky w and we notice that at that scale the flatness of the 
streamwise component is now the largest. Thus the component dominating the total 
energy is also the most intermittent at that particular scale. 

5. Energy transfer and flux in the wavelet representation 

analysing the results of direct numerical simulations in three dimensions. 
We now turn our attention to the energy transfer in the wavelet representation by 

5.1. Dual spectra of transfer and f lux 
By analogy to the relation between the local wavelet energies and the Fourier 
spectral energy density obtained in 54.1, we obtain 

where the average extends over all points [ I ) .  The spatial variability of t "[q  is 
measured by its standard deviation in units of T(k,) as 

where the average again extends over all points [ I ) .  The relations that hold for the 
dual spectrum of the flux 77 are slightly different because it already corresponds to an 
integral of transfer over scales. To obtain the spectral value equivalent to (4), we 
average the flux over all locations [q, and from an argument similar to the one 
leading to (72) (except that here we do not need to divide by Akm, because an 
integration or sum is already performed), one obtains 

n(k,) = 2-3yn(m)[q), (89) 

(90) 

and the variability, in the units of ~ ( k , ) ,  is then quantified as 

g(,,)(krn) = 2-3m((77(m)[q2) - (n(m)[q)2))". 
5.2. Calculation of dual transfer and flux spectra 

We compute the transfer t(")[q for both three-dimensional flow fields from direct 
numerical simulations. To compute the wavelet transform of the nonlinear terms of 
the NavierStokes equation, we need both the velocity and pressure fields, the latter 
is computed from the velocity using the Poisson equation 

--=-(-)( 1 a Z p  aui ). 
P ax; ax* axi 

This is the ('slow') part of the pressure associated with the fluctuating part of the 
velocity field. We compute the wavelet transform of the velocity and the nonlinear 
terms and evaluate t(")[z) according to its definition in (56), and then we evaluate the 
dual spectrum of the transfer. 

Figure 14 shows the dual transfer spectrum T(k,) and T(km) f rr;;) in Kolmogorov 
units, computed from the homogeneous shear flow. The mean transfer (circles) is 
negative for low wavenumbers and positive a t  high wavenumbers. The solid line is 
the corresponding radial Fourier transfer spectrum and is in reasonable agreement 
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14. Dual spectrum of transfer of kinetic energy for homogeneous shear simulation, 
normalized by Kolmogorov units. -, Usual Fourier transfer ; 0, mean wavelet spectrum ; A and 
+ , wavelet mean, plus and minus one standard deviation computed from the spatial fluctuations 
at  every scale. 
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FIGURE 15. Probability density function of spatial fluctuations of local transfer for the 
homogeneous shear flow simulation, for scales corresponding to:  -, m = 1 ,  kt = 0.74;  ...., 
m = 2, kt = 0.37;  ---, rn = 3, kq = 0.18. 

with the mean wavelet transfer. As expected, on average energy is being transferred 
from large to small scales. However, the standard deviation a[$‘) is very large, 
implying that the transfer of energy is locally often quite far from its mean value. 
This is borne out more clearly in the probability-density of tcm) [ i j  in figure 15, where 
large deviations from the mean are visible, for both positive and negative values. 
Note that the long tails of the distributions are of the exponential type, while the 
central portions of the distributions are more nearly Gaussian. Such distributions 
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00 

FIGURE 16. Flatness factor of the local transfer of kinetic energy at every scale k,q. 
0 ,  Homogeneous shear turbulence ; 0,  isotropic turbulence case. 

have also been observed for velocity increments (Gagne 1989). (As m increases 
the number of samples Z3(7--m) decreases and we cannot accurately measure the 
distribution functions for m 2 4.) The same calculations for the isotropic flow yield 
similar results, the only difference being that the mean transfer T(k,) is considerably 
smaller in Kolmogorov units than in the shear flow. This is mainly due to the 
decaying nature of this flow, there being more energy dissipation than instantaneous 
nonlinear transfer, while in the shear flow at St = 12 the energy is growing. However, 
we again observe large spatial deviations from the spectral mean, and the p.d.f. of the 
energy transfer in the case of the isotropic field again displays non-Gaussian tails (11). 

To quantify more precisely the deviations from Gaussian behaviour we compute 
F,(k,), the flatness factor of the transfer, at  every scale for both flows (figure 16). 
Again, the results at large scales are not accurate owing to insufficient samples, but 
it is clear that there is a fast increase of the flatness factor at  small scales (away from 
the Gaussian value FT(km) = 3). This increase is qualitatively very similar in both 
flows, but the shear flow has slightly higher flatness which may be due to the higher 
Reynolds number of the shear flow. 

We next compute the flux of kinetic energy at  every scale of motion according to 
(59). The Fourier spectrum of the flux is computed from the transfer according to (4). 
The dual spectrum of flux thus obtained is shown in figure 17 for the homogeneous 
shear turbulence case. On the average, there is a flux of energy from large to small 
scales, but large spatial fluctuations of dm)[z]  are visible in the dual spectrum. The 
agreement between the mean wavelet and Fourier spectra is not very good; this is 
due to the width of the wavelet transform in Fourier space, which causes slight 
differences in the transfer, these then accumulate when computing the flux. The only 
constraint given by the exact reconstruction properties of the orthonormal wavelets is 
that the total flux at the smallest scale must equal the overall sum of the transfer, 
which is zero. The dual spectrum of the flux for the isotropic turbulent flow is quite 
similar. To quantify the fluctuations in more detail, we again show probability 
density functions of the flux at  different scales. Figure 18 shows the p.d.f. for the 
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FIGURE 17. Dual spectrum of the flux of kinetic energy from the homogeneous shear flow 
simulation, in Kolmogorov units. --, Fourier flux; 0,  mean wavelet spectrum; A and +, 
wavelet mean, plus and minus one standard deviation computed from the spatial fluctuations a t  
every scale. 
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FIGURE 18. Probability density function of spatial fluctuations of local flux of kinetic energy for 
the homogeneous shear simulation, for scales corresponding to: --, m = 1, kq = 0.74; m = 2, 
kq = 0.37; ---, m = 3, kq = 0.18. 

+ - 
- + 

+ - 
I I I + I  I 

homogeneous shear-flow simulation. These clearly show that while the spatial 
average of n is positive, there are many instances where 7r < 0 (we do not call such 
events ‘backscatter’, because this terminology usually refers to the flux to, or from, 
smaller scales only, and not to dm)[z-J, which also includes spatial flux due to 
sweeping). The tails of the distributions again show clear deviations from 
Gaussianity : they are of the exponential type for both positive and negative values. 
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Returning to the local values of flux, we stress that d m ) [ z ]  does not only represent 
flux of energy between different scales, but also flux from one location to another, a t  
the same scale (spatial mixing of energy, see Kraichnan 1974). The question of flux 
only to or from smaller scales, requires a more detailed decomposition of the 
nonlinear terms, which will be addressed in 56. 

5.3. InJluence of wavelet function on energy and transfer statistics 
For the statistical analysis to be complete, one needs to ascertain how robust the 
results of the preceding sections are with respect to the precise wavelet used. Here 
we discuss several possible choices of orthonormal wavelets. We have already 
mentioned the LMB wavelets, with exponential decay in x-space and k-4 decay in 
Fourier space, that were used in the preceding sections. A very simple choice of 
orthonormal ‘wavelet ’ is the Haar base, corresponding to sharp pulses in physical 
space, but poor localization in spectral space. This is the wavelet analogy of a french 
top-hat filter. At the other extreme of the uncertainty principle for ‘wave-packets’ 
or band-pass filters, we have sharp filters in Fourier space, with very poor spatial 
localization. The precise form that allows it to be put into the form of a wavelet will 
here be called a ‘Fourierlet ’ (more details can be found in Appendix B of 11). Another 
very interesting family of wavelets, constructed by Daubechies (1988) has compact 
support in physical space and increasing smoothness as the support increases. We 
plot the discrete version g [ k ]  of these different wavelets in figure 19 ( a d ) .  More details 
on the precise form of such wavelets are given in Appendix B of 11. In  the rest of this 
section we explore the sensitivity of the results presented in the preceding section 
with respect to the precise wavelet function used. 

For that purpose we compute the dual spectra of transfer using all the above 
wavelets, and we also compute the p.d.f.s of the transfer for these wavelets. To 
simplify the numerical implementation (and to be able to use the same numerical 
code), we compute all convolutions in Fourier space for all wavelets. It is important 
to point out that such a procedure is not optimal for bases with support smaller than 
log, ( N )  (where N is the number of grid-points), such as the Haar base. There the 
convolutions would be more efficiently performed in physical space (with O ( N )  rather 
than O(N1og [ N ] )  operations). 

The results for the different wavelets are displayed in figure 20(a),  showing the 
probability densities of the transfer a t  m = 3. As one would expect, the spatial 
variability increases slightly with better localization in physical space, but the main 
features, such as large deviations from the mean of t ( ” ) [ i l ,  exponential tails, etc. are 
quite similar in each case. For completeness, we also compare the statistics of the 
local kinetic energies for different wavelets. The results are shown in figure 2 0 ( b ) ,  
where the local energies are normalized in the same fashion as in the dual spectrum 
of figure 11. Again there is good agreement between different wavelets at this level 
of description. We conclude that from a statistical point of view, it does not matter 
very much what system of orthonormal wavelet basis functions is used. The 
observation that the results using ‘Fourierlets’ do not deviate greatly from the 
others has important implications for interpreting studies using Fourier band-pass 
filtered fields, such as recent work by Domaradski & Rogallo (1990). Nevertheless, it 
must be pointed out that the ‘Fourierlets’ do not comply with discrete 
orthonormality. This is due to the finite domain truncation (or assumption of 
periodicity) of the convolutions. While this is no problem for the other wavelets that 
decay very quickly in space (even the LMB wavelets are essentially zero at  the 
boundaries), the x-l decay of the Fourierlet basis functions means that it is non-zero 
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FIQURE 19. Examples of discrete wavelets: the filter g[k]. (a) Corresponds to the Haar basis; ( b )  
'Fourierlet ' consisting of sharp filtering in Fourier space; (c) Daubechies wavelet of compact 
support on 4 grid-points; ( d )  Daubechies wavelet of compact support on 8 grid-points. The 
convention for the index used here is that i = 1 represents x = 0. 
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(4 
Haar wavelet 

_ _ _ _ _ _ _ _ _ _ _ _ _ _  Daubechies 4 
Daubechies 8 
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Fourierlet 
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e 

FIQURE 20. (a) Probability density distribution of transfer of kinetic energy at scale m = 3 
computed using different wavelet basis functions. ( b )  Probability density distribution of the local 
kinetic energy. 

at the boundaries, causing considerable inaccuracies (even for periodic data because 
the wavelet itself is truncated). 

Finally, we remark that the wavelets used here all share an important property, 
namely octave discretization of scales. One may expect different results if one used 
continuous wavelets, or discretization of scales on a markedly different grid. 
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6. Detailed nonlinear interactions in wavelet space 
In  the preceding section we studied the net transfer to, and flux through a certain 

scale and location, without discriminating the scales between which such energy 
transfer is occurring. The analysis was relatively straightforward, as we only had to  
wavelet transform the velocity field and the nonlinear terms and compute the 
appropriate contractions. It is apparent in the continuously wavelet-transformed 
NavierStokes equation (44)  that  the formulation quickly becomes intractable when 
considering in detail all interactions between triads of scales and locations. This 
situation does not improve when using the orthonormal wavelet basis functions, for 
which the Navier-Stokes equations take on the form 

where 

(93) 

and in addition there are pressure and viscous terms, etc. There are interactions 
among triads of scales and locations, as well as among the internal degrees of freedom 
(q,q",q"). We will not dwell on the subject, but we point out that some meaningful 
approximations to I;;; ?,';?")[i,j',j"] can be made in view of the localization properties 
of ! F m ~ Q ) ( x - 2 " ~ ) .  Such a study was made recently by Nakano (1988), who then 
extends the method of Direct Interaction Approximation to such a formulation (see 
also Siggia 1977). It is important to notice however that the basis functions used here 
are fixed in an Eulerian frame of reference: this means that there can be strong 
interactions between modes a t  the same location corresponding to distant scales of 
motion because of the sweeping of small scales by large ones. To eliminate this 
problem, one needs to consider basis functions advected by the larger scales (this has 
been proposed in an interesting paper by Zimin 1981), but this is outside the scope 
of the present effort. 

In  order to study the transfer involving scales of motion that are smaller than r, 
(this has relevance for large-eddy simulations, Rogallo & Moin 1984), we start by 
performing the sums of (92) over all q', q", j ' , J  and over all scales (m', m") but 
excluding the terms where both m' 2 m and m" 2 m. I n  practice, this is done as 
follows: we recall that the velocity field can be computed from the wavelet 
coefficients according to 

M 

u&) = z ukm)(x), (94) 
m-1 

where (95) 

is a band-pass filtered version of the field. Let us now decompose the velocity field 
according to large- and small-scale contributions, 

m-1 M 

U i ( X )  = U:"(X)+u;m(x) = z [u$")(x)]+ [u$")(x)] .  
n-1 n-m 
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This amounts to low- and high-pass filtered fields, using the wavelet transform. 
Now we decompose the nonlinear advection terms as 

a a a 
- (u2 U j )  = 
3x5 axj 

[ut uj - u ; m u ; y  + - (u;mu;"). (97) 

The first term on the right-hand side represents all possible velocity interactions with 
the scales smaller than m, this being the term in which we are interested. For the 
pressure p ( x ) ,  we consider the same decomposition as (96), 

m-1 M 

p ( 4  = p'"(x)+p'"(x) = 2 [P'"'(x)I+ 2 b ' " ' ( X ) l ,  (98) 

where p(")(x) is obtained as in (95) from the wavelet coefficients of the pressure field. 
We are interested in the small-scale pressure field p<"(x),  which could also be 
computed from the Poisson equation involving a, ai[ui u, - (u2 u,)'"] on the right- 
hand side. Notice that this decomposition of pressure has a different form to the 
decomposition of the advection terms in (97). The decomposition used here is the one 
in which the ' large-scale ' pressure field p'"(x) would be consistent with a divergence- 
free 'large-scale ' velocity field uzm(x). 

Next we take the wavelet transform of these terms and form the following 
expression : 

n-1 n=m 

This is the transfer of energy between scales m and all scales smaller than n, a 
quantity that is analogous to the Fourier transfer spectrum T ( k l  k n ) ,  defined as the 
total contribution to T ( k )  from triads of wavenumbers ( k ,  q ,  k - q )  having k < k,  and 
at least one of the other two legs larger than k, (see e.g. Kraichnan 1976). Needless 
to say, there are many other decompositions that could be performed, e.g. one could 
consider the transfer between bands of scales m and n only, or the transfer between 
bands m, n and positions separated by some distance, etc. More detailed studies in 
that spirit should be attempted in the future. It has been shown by Domaradski & 
Rogallo (1990), for example, that interesting conclusions can be reached from the 
analysis of entire triads of interactions, rather than the contracted form of T ( k  I k,) ; 
we will return to this point later. Here we concentrate on the problem of transfer to 
smaller scales. 

6.1. Dual bispectrum of transfer 
In this section we compute t("9 n)[z) from the numerical simulations. The filtered fields 
u;"(x) and p'"(x) are computed using the wavelet coefficients of the velocity field 
and pressure field, and t(m,n)[z) is obtained from its definition (99), for all m > n. Let 
us fix the index n at some value and compute the mean spatial value of t("* ""1) as 
well as its variance at every scale. This allows the construction of a 'dual spectrum ' 
of the 'subgrid' transfer by plotting the mean T ( k ,  I kn) ,  and T ( k ,  1 k,) k urn,,,, where 
vmJn is the root-mean-square of the spatial fluctuations of the transfer. The 
expressions used are exactly the same as (87) and (88), replacing t(")[q with t("Pn)[z). 
Such a representation as a function of all the m and n will be called the dual 
bispectrum of transfer to smaller scales. 

In  figure 21 (a-c) we show this spectrum for n = 1 ,  n = 2 and n = 3, for the 
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FIQURE 21. (a+) Dual bi-spectra of transfer of kinetic energy for the homogeneous shear 
simulation. Squares correspond to the spatial mean value t(m-n)[tT, analogous to the transfer T(k, k') 
in Fourier analysis. 0 and A, mean, plus and minus one standard deviation computed from the 
spatial variability of t(m.")[iJ (a )  is for the transfer from k = k, to k' = k, for w = 1 ; ( b )  for n = 2 
and (c) for w = 3. 
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k m  4 

FIQURE 22. Dual spectrum of effective eddy viscosity felt by scales k ,  due to all scales smaller than 
k,, with n = 2. 0 ,  Spatial mean value, analogous to the spectral effective eddy viscosity v(k I k') in 
Fourier analysis. 0 and A, mean, plus and minus one standard deviation computed from its 
spatial variability. 

homogeneous shear calculation. The isotropic flow shows very similar behaviour. It 
can be seen that the majority of the transfer occurs at m = n + 1 ,  meaning that the 
transfer to smaller scales is local in scale. This is the same conclusion reached in 
several other studies, see e.g. Domaradski & Rogallo (1990) (nevertheless, these 
authors showed that the third scale involved in the transfer is about an order of 
magnitude larger implying non-local triad interactions). Here we show not only that 
the transfer is local in scale, but also that it fluctuates in space, with the largest 
variability occurring at  the smallest scale n + 1. Another vital observation is that of 
detailed backscatter. For all n, there are many instances where the transfer is 
positive, meaning that larger scales are gaining energy from the small ones instead 
of the other way around. 

The analysis can be made more clear by defining an effective eddy viscosity 

where e ( m ) [ a  is the local kinetic energy that has been analysed in $4. We define again 
a dual spectrum of this quantity by considering its mean value and variance at every 
scale. We focus on some value of n,  say n = 2. That is, we consider the eddy viscosity 
acting on scales of size m, owing to scales smaller or equal to n (or with wavenumbers 
smaller than k, 7 = 0.37 in the case of the homogeneous shear flow). For purposes of 
normalizing the eddy viscosity, we do not use viscous scales, but rather 'inertial 
range' ones. In  figure 22 we show the dual spectrum of effective eddy viscosity 
computed for the homogeneous shear flow, with n = 2 .  There is a 'cusp' near the 
cutoff scale, caused by the prevalent transfer of energy from neighbouring scales and 
the value slightly negative at  the largest scales indicating a (weak) inverse cascade 
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508 C .  Meneveau 

FIGURE 23. Probability density functions of the spatial distribution of effective eddy viscosity 
felt by scales k, due to all scales smaller than k,, with n = 2. -, m = 3, kt = 0.18; ---, 
m = kq = 0.09. 

of energy from very small scales to largest ones. This behaviour was also observed in 
Domaradski & Rogallo (1990) for the case of isotropic turbulence. The main point to 
be made here, however, is that this representation clearly shows that negative local 
eddy viscosities are present a t  all scales. The spatial fluctuations of this quantity 
become more pronounced as one approaches the cutoff limit m = n. To quantify this 
better, we consider the probability density function of ~ ( ~ 9  "-2)[z1, plotted in figure 23 
in the same units as the dual spectrum. At the smallest scale near the cutoff (m = 3 )  
we observe long tails, again of the exponential type. There is a significant fraction 
of space (close to 50%),  where U ( ~ * " ' ~ ) [ Z ~  = u(k,, k , , x )  is negative. 

6.2. Spatial statistics of energy jlux to smaller scales 

In large-eddy simulations, a quantity of great importance is the effective sink of 
kinetic energy due to the unresolved scales of motion (Rogallo & Moin 1984). This is 
needed in addition to the molecular dissipation to damp the equations sufficiently. 
In the Fourier representation, this sink of energy is given as a flux 

where T(k I k,) is the transfer of energy from scales k < k, involving triads with 
wavenumbers larger than k, defined in the previous section. 
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FIGURE 24. Dual spectrum of the flux of kinetic energy from interactions with all smaller scales of 
motion (flux to or from the subgrid scales), for the homogeneous shear flow simulation. 0,  Mean 
wavelet spectrum; A and x , wavelet mean, plus and minus one standard deviation computed 
from the spatial fluctuations at every scale. 

- 
I I I I 

The analogous definition in the wavelet representation is the local ‘subgrid ’ flux 
of energy to smaller scales, 

This differs from the quantity considered in $5 because it represents the flux of 
energy a t  some location, caused only by interactions with scales smaller than m. 
Loosely speaking, if we consider that taking the wavelet transform and then adding 
over all scales larger than m is similar to low-pass filtering the fields as is usually done 
for large eddy simulations, then niz)[zl is analogous to (Leonard 1974) 

where an overbar means the filtering operation. We point out that m;p)[z] also 
includes energy flux due to smaller scales that is really a spatial transport that would 
vanish after summing over all space (for homogeneous flows). This can be seen from 
(103) by exhibiting its divergence part 

Such a separation is not easily done with orthonormal wavelets (there is no simple 
relation between a wavelet and its derivatives), and so we restrict our attention to 
the combined terms given by (102) .  

The subgrid-scale flux mif)[[ iJ  is computed in both the homogeneous shear flow and 
in the isotropic turbulence case. For both flows we again construct the dual 
spectrum, and obtain the probability density of the subgrid flux a t  every scale. 

In  figure 24 we show the dual spectrum computed from the homogeneous shear 
flow simulation, while figure 25 shows the probability distributions for the three 
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FIGURE 26. Dual spectrum of the flux of kinetic energy from interactions with all smaller scales 
of motion (flux to or from the subgrid scales), for the  isotropic turbulence simulation. 0, Mean 
wavelet spectrum; A and +, wavelet mean, plus and minus one standard deviation computed 
from the spatial fluctuations at every scale. 

smallest scales. Figures 26 and 27 show the calculations for the isotropic turbulence 
case. We make the following observations : the mean subgrid flux is always positive, 
indicating that on the average, the subgrid scales extract energy from the large 
scales. There are strong spatial fluctuations, even though they are less pronounced 
for this subgrid flux nSg than they were for the overall flux considered in 95. This is 
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FIQURE 27. Probability density function of spatial fluctuations of local subgrid flux of kinetic 
energy for the isotropic turbulence simulation, for scales corresponding to : -, m = 1, kq = 0.94 ; 
...., m = 2, k7 = 0.47 ; ---, m = 3, kq = 0.23. 

because the latter also included flux due to  sweeping by larger scales. The statistics 
of nsg are far from Gaussian, exhibiting again very clearly long and exponential tails 
that  indicate that the flux is very intermittent in space, a t  every scale of motion. 
Only the central portion of the distributions appears Gaussian. The subgrid flux is 
often negative, a phenomenon called local backscatter. The tails of the distributions 
are close to  being symmetric and the positive average results from a delicate balance 
between large positive and moderate negative excursions. The phenomenon of local 
backscatter has also been observed recently during analysis of channel flow and 
compressible turbulence simulations (Piomelli et al. 1991), with very similar results 
concerning the fraction of points a t  which backscatter is observed. 

The concept of backscatter (or eddy noise) was analysed from the spectral point 
of view by Rose (1977) and Leslie & Quarini (1979). There a spectral backscatter U ( k )  
is defined as the (negative) term that arises in spectral calculations (using the eddy- 
damped-quasi-normal-Markovian approximation) and that cannot be written in a 
form consistent with eddy-viscosity. It is therefore a ‘spectral ’ backscatter term, and 
is in some sense an average over all space not explicitly related to  the negative fluxes 
in physical space (for which one would also need phase information besides spectra). 
Thus a comparison with present results is unfortunately not possible. A recent 
stochastic backscatter model by Leith (1990) addresses (and implements) negative 
fluxes in physical space, and we shall return to  this point in the next section. 

Thus we have studied some dynamically relevant quantities associated with the 
nonlinear character of turbulence in two low-Reynolds number flows. This detailed 
analysis of the nonlinear terms was not facilitated by the use of wavelets, because of 
their rather complicated behaviour under differentiation, multiplication, etc. but the 
results of the analysis complement those of QQ4 and 5.  
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7. Mixed cascade model 
In this section we turn our attention to modelling some features of the observed 

quantities. In  practice, the most useful quantities to  model are the subgrid stresses 
that appear in the evolution equations for the resolved scales. These must then be 
modelled using the resolved quantities. On a scalar level, one is also interested in 
expressions for the drain of energy due to unresolved scales, as a function of the 
resolved ones. In  this section we shall be even less ambitious and examine the general 
circumstances under which one could obtain intermittent fields containing both 
positive and negative values, as a phenomenological model for the local flux of energy 
to (or from) the small scales of motion. 

It is safe to say that it has proved virtually impossible to  understand and model 
small-scale intermittency in quantitative terms by making use of the Navier-Stokes 
equations (see e.g. Nelkin 1989). On the other hand, a variety of phenomenological 
cascade models which mimic intermittency have evolved (for a review of these 
models, see I). Most of them are concerned with models for positive definite 
quantities such as dissipation, and envisage a flux of kinetic energy to smaller scales 
which is positive everywhere and which can become very intermittent a t  small scales 
or at increasing Reynolds number. The well-known p model (Frisch, Sulem & Nelkin 
1978) for example is a dynamically explicit model in terms of the local flux to  smaller 
scales which is always either positive or zero. On the other hand, our analysis via 
wavelets has shown that the flux of kinetic energy is intermittent in space but is 
negative quite often. Such a behaviour is not included in previous phenomenological 
models, and these cannot be expected to model adequately the flux nir)(x) .  In this 
chapter, we propose a simple extension to  these models that incorporates the 
possibility that ni?)(x) < 0 locally. 

Let us first review the basic physical and statistical ingredients of traditional 
cascade models in the inertial range. Physically, one expects portions of the fluid to 
stretch and fold, creating smaller scales of motion. This is modelled conceptually as 
a fragmentation process in which a fraction f of the energy flux is passed from a 
structure of size r to a smaller one of size r' < r ( f  is a random variable that was 
denoted as M in I ; here we use 5 in order to avoid confusion with the limit M of the 
scale index m). A common choice for the scale-ratio that is consistent with local 
transfer of energy is r' = k. This means that in d dimensions each scale transfers 
energy to 2d smaller ones. For global conservation of the flux a t  every stage of such 
a cascade, the random fraction f must have a mean value of 2-d. Let r = 2,+' and 
r' = 2,, and let ZZcrn)(B) be the flux associated with an 'eddy' at location B, of size 
2m arising from one of size r = 2"+l at location A .  At every stage one writes 

n(m)(B) = f n ( m + l )  ( A ) .  (105) 

Here IFrn) is the total flux of energy in a volume or eddy of size r, ; it  is related to 
dm), the flux per unit volume considered before in this paper, according to 

17'")(B) = rL  d m ) ( B ) .  (106) 
At every location X, the flux is then given by a cumulative product of random terms, 
times the overall total flux (which is given by the mean dissipation and the volume 
of the large-scales Ld = ( 2 M ) d )  : 

17'"'(X) = c x  f x . . . x t( € ) L 3 .  (107) 
There are approximately log, ( L / r m )  x M - m such multipliers, which induces 
intermittent behaviour that increases with decreasing scale r.  The hypothesis of scale 
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FIQURE 28. Illustration of an intermittent (multifractal) field generated by a multiplicative process 
in one dimension. The horizontal axis is successively divided into smaller halves, and the area under 
the curve is multiplied by a random multiplier 6. The distribution of multipliers 6 is a triangular one 
(see text), (a) is the result after such a process after 7 iterations, (b) is after 10 iterations. Notice 
that such fields are positive everywhere. 

invariance in the inertial range of turbulence becomes a hypothesis of scale- 
independence of the i$ statistics, and this leads to multifractal behaviour. For a 
detailed discussion of these issues, see I. Another ingredient implicitly assumed by 
such cascade models is sweeping: one assumes that an 'eddy' of size r is advecting 
smaller eddies which originated at  earlier times within a large structure upstream 
during a similar realization of the cascade process. 

One can obtain the f(a) curve of such intermittent fields from 
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1 Time 

J 

FIGURE 29. Sketch of the mixed cascade model. An eddy V,,, is generated by the ‘decay’ of a 
larger one (V,,,), receiving a fraction 5‘ of the flux of kinetic energy associated with V,,,. At the 
same time V, receives a fraction y < 1 (a negative contribution) of the flux associated with all the 
smaller eddies (W,-,, Vk-l and Vl-l) that are being convected by V,. 

where the averages are taken over the probability distribution of the random 
variable (. Figure 28 shows 2 stages of dm) implied by such a multiplicative process 
in one dimension (d  = 1). A single realization of the process after 7 and 10 steps is 
shown, and we have used M = 10. For the probability density of ( we used 

W E < + ;  

f‘(()= 4(1-(), ;<(< 1; (110) (% otherwise. 

This distribution is a good approximation to the measurements of multiplier 
distributions (Chhabra & Sreenivasan 1990) for one-dimensional sections through 
fields of dissipation. As remarked earlier, this is a convenient phenomenological 
model for the intermittency of local rates of dissipation, but it is not expected to be 
valid for the real flux m(,), because the model is never negative. 

Now we turn our attention to a physical scenario that can lead to negative flux 
locally. Let us assume that a t  some places the flow behaves in a two-dimensional 
fashion: a collection of small ‘eddies’, in addition to stretching, wrap around each 
other in a manner similar to vortex pairing. So in addition to creating smaller scales, 
the pairing causes some negative flux of kinetic energy to larger scales. There is no 
a priori reason why this could not happen in three-dimensional turbulence. The next 
question is now to represent such a process in terms of the phenomenological picture 
of breakdown of ‘eddies’. 

Consider the situation depicted in figure 29. While an eddy V, (shaded ‘eddy ’) of 
size rm receives some fraction (* of the flux from its bigger predecessor Vm+l, it  
receives a (negative) fraction y of the flux that was received by all smaller eddies 

WA-l, Wz-l that were created before by eddy W, and that are presently being 
swept by eddy V,. To allow for global conservation, we must impose (* = (1 + y )  (, 
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where the multiplier g is a random variable akin to the multipliers of the traditional 
forward-only cascade (for which ( E )  = 2-d). Therefore, we can write the net flux of 
energy to  smaller scales for the eddy V, as 

(111) 

To compute the flux a t  scale r ,  a t  some location (as opposed to the situation in 
(105)) we must take into account the flux a t  both the large scale and a t  the smaller 
convected scales. These convected scales in turn involve the flux at even smaller 
scales in a similar way, so that the basic physics of such a cascade model involves 
complicated cross-linking between different cascades occurring a t  different times, 
scales and positions. To obtain some quantitative insight into such a process, let us 
assume that y is small. Up to first order in y we express the flux received by eddy 
V, in terms of fluxes occurring at  scales r(,+l)  according to  

(112) 

Here E' and denote different realizations of the random variable 5 and Z7(,+l)( W,,,) 
is the flux pertaining to an eddy W,+, that existed a t  some previous time. From (1  12) 
it is apparent that  without intermittency (if only takes on a single value given by 
its mean 2-d) ,  nCm)(V,) could never become negative. However, if is allowed to 
fluctuate, then even if y is small yg"l"m+l'(W,+l) could locally become larger than 
( 1  + y )  ,$'Z7(m+1)( V,,,) and cause negative flux of energy. 

Equation (112) defines a recursion which can be closed by assuming that a t  
the largest scale r = L ,  (m = M ) ,  the total flux to smaller scales is the (constant) 
value ( .)L3. The net flux through scale rm for some eddy V, of size r ,  can thus be 
written as 

n y  V,) = (1 + y )  ,gH(,+l)( V,,,) - y X n ( m - ' ) (  Wmpl). 

n y  V,) = (1 + y )  , g n ( m + l ) (  V m + l  ) - yg"n("+l) ( W,+l). 

(113) i nyv , )  = (€)L3 c { ( l+y)k-y -y )"c .  , , ( ' , l , ,  . 
k (i) k 

fl-0 1-1 f-1 

Here we have used another scale index k which increases as the scales become 
smaller : 

k = M - m .  

In  (1 13), the t ( j *  n, are independent realizations of 6 for the different indices ( j ,  1 ,  n ) .  
We do not neglect higher powers of y here because they multiply products of Cs,  
which can be relatively large. 

We can now use the definition of the local exponent u in terms of 6, a being the 
singularity strength of a one-way cascade with multipliers 6: 

Using this and relation ( log) ,  we obtain the flux per unit volume (in d dimensions) 
at scale r ,  and some location X 

The sum involves 2' terms with an independent value of u for each term. 
An important condition that must be obeyed by the mixed cascade is that  the 

mean flux averaged over all eddies of a certain scale must be independent of the scale 
or m and equal to <.). Since < E )  = 2-d it follows from (115) that  (rfr-d) = 1,  
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40 
(4 

L" 

-100 ' 
X 

FIGURE 30. Illustration of an intermittent field generated by a multiplicative, but mixed cascade 
process in one dimension with a triangular distribution of multipliers and with y = 0.2 (see text), 
(a) is the result of such a process after 7 iterations, ( b )  is after 10 iterations. Notice that such fields 
can become negative at many locations, but it still has the property of increasing intermittency a t  
smaller scales. 

which implies that  

( n ( " ) ( X ) )  = (s), for all m (0 < y < 1). (118) 

To illustrate some properties of such a process, we generate a one-dimensional 
version of d m ) ( x ) .  For this we generate 2k signals n(')(z) = (rm/L)"-d in the same 
fashion as the signal shown in figure 28, each with a different seed for the random 
multipliers 6, but selected from the same distribution of (1 10). These signals are then 
added point by point according to (116). The result is shown in figure 30 for m = 3 
and m = 0 (corresponding to k = 7 and k = 10) for y = 0.2. The intermittency 
increases with decreasing scale rm,  but  the flux is negative a t  many locations. 
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lo-’ 

10-2 

10-* 

10-4 

- 60 -40 - 20 0 20 40 60 

n(x) 
<n> 

FIQURE 31. Probability density distribution for the flux T obtained from the two realizations of the 
mixed cascade model. -, 7 steps (scale m = 3 or rm = 8); ---, 10 steps (scale m = 10 or rm = 1 ) .  
Notice that the tails become increasingly longer as the scales become smaller. 

Next we obtain the probability density of 7drn)(z) at the two levels shown in the 
previous figures. The result is shown in figure 31. The exponential tails and the 
Gaussian central region are quite consistent with the behaviour of the real local flux 
computed in $5.2. The fraction of space where drn)(z) < 0 is always very close to 0.5, 
independent of the value of y at large k. One difference is a slight asymmetry in the 
probability density functions, the right-hand tail being somewhat longer than the 
one on the negative side. The distributions become more symmetric with increasing 
values of y (and by construction the negative side vanishes for y-+O).  

Notice that in the model the total flux is the same at  every scale, as opposed to the 
three-dimensional simulations. This is due to the low Reynolds numbers which 
precludes the existence of an inertial subrange (in which the nonlinear flux would be 
expected to be a constant equal to the rate of dissipation). For this reason we do not 
attempt a comparison between observations and the parameters of the mixed 
cascade model. However, we find it interesting that it is possible to generate fields 
which become more intermittent in a multiplicative fashion, and exhibit negative 
values at many places. 

We point out that the recent backscatter model of Leith (1990) exhibits Gaussian 
white-noise statistics. In the present model, non-Gaussian structure and two-point 
correlations arise by the multiplicative process involved (the flux at nearby points is 
correlated because small nearby eddies may share a common ‘ancestor’, see 
Meneveau & Chhabra 1990). Nevertheless, it is at  present not clear how one could use 
this ingredient to formulate improved subgrid-scale models, since we do not know 
how to correlate the subgrid structure with the large scales. 
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Finally, we remark that the primary ingredient of the present mixed cascade 
model is mathematical rather than physical : i t  is the additive mixing of multifractals 
which produces a more Gaussian-type behaviour near the mean, while maintaining 
the non-Gaussian tails. The physical picture leaves much room for improvement. For 
instance, one problem with the present model is that small eddies are generated 
regardless of the sign of the flux. It would also be of interest to examine the issue of 
backscatter in the context of intermittency models such as the one recently proposed 
by She (1991). 

8. Summary and conclusions 
We have explored the usefulness of the wavelet transform in analysing turbulent 

flow fields. Because of the simultaneous resolution of scale and position, several issues 
related to intermittcncy and spatial distribution could be addressed. The wavelet 
transformed Navier-Stokes equations were shown to be rather complicated but 
the appropriate contraction relevant to the energetics of turbulence was more 
transparent. We stressed the need to use discrete orthonormal wavelets for practical 
applications, as well as the importance of statistical analysis of the resulting spatial 
distributions. 

In  this spirit we introduced the dual spectra, which measure the contribution of 
each scale and its spatial variability. These can be used to quantify the intermittency 
of the kinetic energy for example. It was shown that the local kinetic energy could 
be described as a multifractal field. The measuredf(a) curve of the kinetic energy was 
consistent with the results of dimensional analysis applied to the dissipation field, 
but only for the high-intensity part of the distribution. Since the energy could locally 
be zero, the behaviour a t  small values was fundamentally different to that of the 
dissipation. 

We then defined local transfer and flux of kinetic energy in the orthonormal 
wavelet representation and computed them in direct numerical simulations of 
turbulence. Strong spatial fluctuations were observed, their mean spectral value 
being quite unrepresentative of local values. It was shown that while n(r, x), the flux 
of kinetic energy through a scale r a t  location x, is positive on the average, large 
deviations from its average value were observed, with typical standard deviations of 
the order of 4 to 5 times the mean. These features were shown to be robust with 
respect to the precise wavelet used. One wavelet tested was essentially a sharp 
Fourier band-pass filter in octaves (Pourierlet), suggesting that statistical results 
obtained by such approaches (c.g. the study of Domaradski & Rogallo 1990) give 
results that are comparable to the ones using wavelet analysis. 

By appropriately decomposing the nonlinear terms of the NavierStokes equation, 
we could subtract the transfer (and flux) due to  the interactions among large scales 
from the total values. This allowed the definition of a dual bispectrum of transfer and 
the definition of a local effective eddy viscosity and of the ' subgrid ' flux of energy 
nsg( r ,x ) ,  involving scales smaller than r ,  a t  location x. All of these quantities 
exhibited intermittent spatial behaviour, with exponential tails in their probability 
distributions, while their spatial mean values were consistent with the usual spectral 
behaviour. The importance of exponential tails in turbulence (Narashima 1989) 
is confirmed by these observations. Quite significantly, large negative values of 
nsg(r, x) were observed, implying local inverse energy flux from small to large scales of 
motion. Although these results havc been obtained for low-Reynolds number flows 
where no fully developed inertial rangc exists, i t  seems unlikely that the local 
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backscatter would disappear a t  higher Reynolds number. In fact, the analysis of 
channel flow by Piomelli et al. (1991) suggests a modest increase of backscatter with 
Reynolds number. The general picture of turbulence that is confirmed by the present 
analysis is that there is strong spatial intermittency in nonlinear quantities ; their 
mean spectral behaviour resulting from a delicate balance between large positive and 
negative excursions. The wavelet analysis is a way of quantifying these observations 
in a standardized fashion by using ‘ flow-independent eddies ’ to decompose the 
velocity field. 

We have proposed a simple extension to  the traditional cascade models of energy, 
which allows for backscatter (negative energy flux) in an intermittent fashion. The 
model suggests (but does not prove) that the detailed spatial statistics of the 
backscatter are intimately linked to the intermittency of the cascade. In  the mixed 
cascade model, if there was no intermittency (as in the original Kolmogorov (1941) 
picture), there would also not be negative flux. Only the strong spatial fluctuations 
produced by intermittency allow some small scales to be very ‘active ’, so that if they 
pair (passing a part of their flux of energy to the larger scale) the resulting negative 
flux may locally overwhelm the positive one. We have shown that such mixed 
cascade models exhibit the same qualitative features as the real local flux : increasing 
intermittency at decreasing scale, exponential-like tails of the probability density 
for both positive and negative values. However, measurements of dm)(x) need 
to be made a t  higher Reynolds numbers before we can make more quantitative 
comparisons with such mixed cascade models. 

In  summary, the present study shows that orthonormal wavelet analysis can be 
performed just as easily as Fourier analysis, and we believe the physical 
interpretation of the wavelet coefficients is more natural to the phenomenon of 
turbulence than the coefficients of globally extended functions such as Fourier 
modes. As remarked by Stewart (1989), one is decomposing the motion into 
‘solitons ’, a concept more appropriate than waves for nonlinear phenomena. 

This work was performed while the author was a t  the Center for Turbulence 
Research (Stanford University & NASA Ames Research Center), where many thanks 
are due to  Professor P. Moin for his numerous suggestions, and for many stimulating 
conversations on this topic. I am indebted to Dr M. Rogers for his help and for 
making available his simulations of homogeneous shear flow, as well as to Dr R. 
Rogallo for providing me with his simulation of decaying isotropic turbulence, for 
very interesting discussions and for his very detailed reading of a prior version of this 
manuscript. I have greatly benefited from comments and conversations with 
Professors A. Grossmann, W. C. Reynolds, J. Ferziger, U. Frisch, Drs M. Farge, 
J. van der Vegt, S. Veeravalli, and Mr M. Krishnan. The financial support from the 
Center for Turbulence Research is greatly appreciated. 

Note added in proof. Recently, Yamada & Ohkitani (1990) have also used orthonormal 
wavelets to  analyse energy spectra in measurements of atmospheric turbulence. 
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