Low plasma concentrations of arginine and asymmetric dimethylarginine in premature infants with necrotizing enterocolitis

Milan C. Richir1, Michiel P. C. Siroen1, Ruurd M. van Elburg2, Willem P. F. Fetter2, Freeke Quik2, Robert J. Nijveldt1, Hugo A. Heij1, Bert J. Smit3, Tom Teerlink4 and Paul A. M. van Leeuwen1*

1Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
2Department of Pediatrics, VU University Medical Center, Amsterdam, The Netherlands
3Department of Neonatology, Emma Children’s Hospital Academic Medical Center, Amsterdam, The Netherlands
4Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands

(Received 13 June 2006 – Revised 8 December 2006 – Accepted 8 December 2006)

Several studies have described reduced plasma concentrations of arginine, the substrate for nitric oxide synthase (NOS) in infants with necrotizing enterocolitis (NEC). No information on the plasma concentrations of the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA) in patients with NEC is currently available. We investigated whether plasma concentrations of arginine, ADMA, and their ratio differ between premature infants with and without NEC, and between survivors and non-survivors within the NEC group. In a prospective case–control study, arginine and ADMA concentrations were measured in ten premature infants with NEC (median gestational age 193 d, birth weight 968 g), and ten matched control infants (median gestational age 201 d, birth weight 1102 g), who were admitted to the Neonatal Intensive Care Unit. In the premature infants with NEC, median arginine and ADMA concentrations (\(\mu\text{mol/l}\)), and the arginine:ADMA ratio were lower compared to the infants without NEC: 21.4 v. 55.9, \(P=0.001\); 0.59 v. 0.85, \(P=0.009\) and 36.6 v. 72.3, \(P=0.023\) respectively. In the NEC group, median arginine (\(\mu\text{mol/l}\)) and the arginine:ADMA ratio were lower in non-surviving infants than in surviving infants: 14.7 v. 33.8, \(P=0.01\) and 32.0 v. 47.5, \(P=0.038\) respectively. In premature infants with NEC not only the NOS substrate arginine, but also the endogenous NOS inhibitor ADMA and the arginine:ADMA ratio were lower than in infants without NEC. In addition, low arginine and arginine:ADMA were associated with mortality in infants with NEC. Overall, these data suggest that a diminished nitric oxide production may be involved in the pathophysiology of NEC, but this needs further investigation.

Necrotizing enterocolitis: Asymmetric dimethylarginine: Dimethylarginine: Arginine: Premature infant

Low plasma concentrations of arginine and ADMA in NEC may be associated with increased mortality. In an experimental piglet model, it was shown that arginine could have therapeutic potential in NEC by attenuating intestinal injury, whereas administration of the NO synthase (NOS) inhibitor L-NAME caused haemorrhagic congestion of the gut wall (Di Lorenzo \textit{et al.} 1995). Previously, we showed in a rat model that low arginine plasma levels in combination with a low dose of endotoxin compromised blood flow through the small intestine (Nijveldt \textit{et al.} 2000). Interestingly, Amin \textit{et al.} (2002) showed that arginine supplementation in premature infants, reduced the incidence of all stages of NEC.

Recent insights into NO metabolism have shown an important role of endogenously produced inhibitors of NOS, in particular asymmetric dimethylarginine (ADMA; Vallance & Leiper, 2004). ADMA as well as symmetric dimethylarginine (SDMA), are synthesized when arginine residues in proteins are methylated by the action of protein arginine methyltransferases. ADMA is an endogenous inhibitor of all isoforms of NOS, while SDMA is not.

Abbreviations: NEC, necrotizing enterocolitis; ADMA, asymmetric dimethylarginine; SDMA, symmetric dimethylarginine; NOS, nitric oxide synthase; CAT, cationic amino acid transporters; DDAH, dimethylarginine dimethylaminohydrolase.

*Corresponding author: Professor Paul A. M. van Leeuwen, fax +31 20 444 3620, email pam.vleeuwen@vumc.nl

†Present address: Department of Neonatology, Sophia Children’s Hospital Erasmus University Medical Center, Rotterdam, The Netherlands.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 29 Apr 2018 at 09:39:20, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0007114507669268
Arginine is transported into endothelial cells by the cationic amino acid transporters (CAT) of system \(y^+ \), where it serves as a substrate for NO synthesis (Closs et al. 1997). Thus, the arginine:ADMA ratio is an important determinant of NO production by NOS (Bode-Boger et al. 1996; Boger et al. 1998).

Elevated plasma levels of ADMA have been found in diseases related to endothelial dysfunction including peripheral arterial disease, hypertension, hyperlipidemia, diabetes mellitus and hyperhomocysteinemia (Siroen et al. 2006). Interestingly, ADMA have been shown to independently predict intima media thickness of the carotid artery in individuals without clinical manifestations of arteriosclerosis (Miyazaki et al. 1999; Nanayakkara et al. 2005). Furthermore, it has been shown that ADMA is an independent risk factor for CHD and in critically ill patients an independent risk factor for intensive-care-unit mortality (Nijveldt et al. 2003a; Schulze et al. 2006).

We hypothesize that in addition to low arginine levels, premature infants with NEC have an increased plasma concentration of ADMA. Increased ADMA levels are associated with reduced NO synthesis and may consequently lead to a decreased mucosal blood flow and barrier function of the gut.

Therefore, the primary aim of this study was to measure the arginine, ADMA, and SDMA concentrations in premature infants with NEC and in control infants without NEC. The secondary aim was to study the relation between arginine, ADMA, and SDMA concentrations and mortality in premature infants with NEC.

Methods

Study design

We performed a prospective case–control study with a 1:1 ratio of case to control subjects. The hospital ethics committee approved the study and all infants were included after written informed consent of their parents.

Patients

All infants with a gestational age < 34 weeks (assessed by last menstrual period of the mother and/or ultrasound before 20 weeks gestation) and a birth weight ≤ 2000 g admitted to the level III neonatal intensive care unit of the VU University Medical Center or the Academic Medical Center, Amsterdam, who developed NEC, were eligible for participation in the study. Only patients with NEC ≥ grade II diagnosed between 08.00 hours and 20.00 hours were included in the study. Exclusion criteria were major congenital or chromosomal anomalies.

NEC was diagnosed and classified according to the criteria of Bell et al. (1978). NEC grade I was characterized by non-specific systemic signs and abdominal signs including increased gastric residuals or abdominal distension. NEC grade II encompasses the signs of grade I, absent bowel sounds or abdominal tenderness. The abdominal radiograph shows intestinal dilation, ileus and pneumatosis intestinals. NEC grade III is characterized by bowel perforation visualized as pneumoperitoneum on the abdominal radiograph. An independent paediatric radiologist made the diagnosis of pneumatosis intestinals.

According to the protocol guidelines for parenteral and enteral nutrition, all infants received either breast milk with breast milk fortifier (intake about 57 mg arginine /100 ml; Dupont, 2003), and/or a formula feeding (Nenatal Star®, Nutricia Nederland BV, Zoetermeer, The Netherlands, containing 71 mg arginine /100 ml) and/or total parenteral nutrition (a hospital pharmacy based all-in-one mixture, containing 102 mg arginine/100 ml). After the diagnosis of NEC, a peripheral venous blood sample (0.3 ml) was collected and the infants were treated according to the standard protocol for NEC; nothing by mouth, broad-spectrum antibiotics and parenteral feeding. If this treatment failed or in the case of intestinal perforation, surgery was performed.

Control infants

For each premature infant with NEC, one premature infant without NEC was selected. The selection was based on the characteristics of the NEC patient including gestational age, birth weight, head circumference, Apgar score at 5 min and postnatal age at the time of the NEC diagnosis. After inclusion, a peripheral venous blood sample (0.3 ml) was collected.

Plasma analysis of arginine, symmetric and asymmetric dimethylarginine

The blood samples taken from the premature infants were immediately placed on ice and centrifuged at 3000 rpm for 10 min at 4°C. Plasma was immediately put in liquid N\(_2\), and stored at −80°C before analysis.

The concentration of ADMA, arginine and SDMA were determined simultaneously by HPLC as described previously (Teerlink et al. 2002). In brief, solid-phase extraction on polymeric cation-exchange columns was performed using monomethylarginine as the internal standard. After derivatization with \(\delta \)-phthalaldehyde reagent containing 3-mercaptopropionic acid, analytes were separated by isotropic reversed-phase HPLC with fluorescence detection. Intra- and inter-assay CV were better than 1.2 and 3.0%, respectively. The arginine:ADMA ratio was calculated.

Statistical analysis

Due to non-normal distribution of the amino acids, non-parametric tests were used, and data are presented as median and range. The Mann-Whitney U test was used to investigate differences in plasma amino acid concentrations between the premature infants with NEC and the control group, and between surviving and non-surviving NEC patients. A value of \(P < 0.05 \) was considered statistically significant. Statistical analysis was performed using SPSS 11.0 for Windows (SPSS Inc., Chicago, IL, USA).

Results

Between September 2001 and October 2003, a total of thirty-three premature infants with NEC were eligible to enter the study. Of these thirty-three infants, twenty-three were included in the study. Of these thirty-three infants, twenty-three were included in the study.
The ten premature infants with NEC ≥ grade II were included in the study. Six premature infants with NEC were treated by surgery, while four infants were treated with antibiotics and parenteral nutrition only. The control group consisted of ten case-controlled premature infants without NEC. Patient and nutrition characteristics are presented in Table 1. The patient characteristics were not different between the NEC and control group. Breast milk feeding, parenteral nutrition energy intake and the intake of arginine, carbohydrate, protein and fat were not different between the two groups. Plasma concentrations of arginine, ADMA, SDMA and the arginine:ADMA ratio are shown in Table 2. The arginine concentration in premature infants with NEC was lower \((P=0.001) \) compared to the infants without NEC. The ADMA concentration in infants with NEC was also lower \((P=0.009) \) compared to the control group. Plasma SDMA was not different between the two groups. The arginine:ADMA ratio was lower \((P=0.023) \) in the NEC group.

Of the ten NEC patients, four patients died because of circulatory and respiratory insufficiency. In the non-surviving NEC infants, arginine and arginine:ADMA concentrations were lower \((P=0.01, P=0.038 \text{ respectively}) \) than in the surviving infants (Table 3).

The plasma concentrations of the premature infants without NEC and the surviving NEC patients are shown in Table 4. The plasma concentration of arginine, ADMA and SDMA were lower in the surviving NEC patients \((P=0.022, P=0.011, P=0.022 \text{ respectively}) \) than in the non-surviving infants (Table 3).

Discussion

Our study shows that premature infants with NEC have significantly lower plasma concentrations of arginine than premature infants without NEC. The lower concentration of arginine in NEC patients is in line with the results of other studies (Zamora et al. 1997; Becker et al. 2000). In addition, ADMA and the arginine:ADMA ratio are also significantly lower in premature infants with NEC. Furthermore, we found in non-surviving NEC patients a significantly lower arginine concentration and arginine:ADMA ratio than in surviving NEC patients. However, compared to the control patients, the surviving NEC patients had still significantly lower arginine and ADMA concentrations, but the arginine:ADMA ratio was not significantly different. These results indicate that NEC patients have less substrate available for NO synthesis, which is important to sustain blood flow in the gut of these premature infants. Moreover, these results suggest that a decreased availability of substrate for NO synthesis is associated with an increased risk of mortality.

In adult mammals, approximately 60% of net arginine synthesis occurs in the kidney, whereas in neonates, arginine is synthesized in the enterocytes of the small intestine (Wu & Morris, 1998). Wu & Knabe (1995) studied the arginine synthesis in the enterocytes of fetal piglets and concluded that there was little synthesis of arginine in the enterocytes of preterm piglets. This near absence of intestinal arginine synthesis in preterm piglets is in sharp contrast to the high rate of intestinal arginine synthesis in term piglets (Wu, 1997). In the enterocytes of preterm piglets, there is low activity of the Δ1-pyruvone-5-carboxylate synthase enzyme, which may limit the conversion of glutamine into citrulline (Wu & Knabe, 1995). Furthermore, there is negligible expression of argininosuccinate synthase and argininosuccinate lyase. Both enzymes are essential for the conversion of citrulline into arginine. Notwithstanding that these studies are performed in animal models, decreased expression of argininosuccinate synthase and argininosuccinate lyase and the incapability of the fetal kidney to synthesize arginine may account for the decreased level of arginine in premature infants.

Arginine is a physiological precursor for the synthesis of NO which plays an important role in regulating vascular tone, the development of gastrointestinal circulation, and in preserving the integrity of the gastrointestinal mucosal barrier (Stark & Szurszewski, 1992; Alican & Kubes, 1996; Wu & Morris, 1998; Wu et al. 2004). Conversely, the NOS inhibitor L-NNA preferentially reduces the gastrointestinal blood flow as shown in fetal sheep (Fan et al. 1996). In a rat model, the NOS inhibitor

Table 1. Nutritional and patient characteristics of premature infants with necrotizing enterocolitis (NEC) and without NEC (control)

(Median values and ranges)

<table>
<thead>
<tr>
<th>NEC (n = 10)</th>
<th>Control (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>Range</td>
</tr>
<tr>
<td>Male: Female</td>
<td>5:5</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>968</td>
</tr>
<tr>
<td>Head circumference (cm)</td>
<td>28</td>
</tr>
<tr>
<td>Apgar score at 5 min</td>
<td>9</td>
</tr>
<tr>
<td>Postnatal age (d)</td>
<td>16</td>
</tr>
<tr>
<td>Breast milk feeding (n)</td>
<td>4/10</td>
</tr>
<tr>
<td>Parenteral nutrition (n)</td>
<td>3/10</td>
</tr>
<tr>
<td>Enteral feeding (n)</td>
<td>9/10</td>
</tr>
<tr>
<td>Energy (kcal/kg)</td>
<td>70</td>
</tr>
<tr>
<td>Carbohydrate (g/kg)</td>
<td>9</td>
</tr>
<tr>
<td>Protein (g/kg)</td>
<td>1:7</td>
</tr>
<tr>
<td>Fat (g/kg)</td>
<td>3:8</td>
</tr>
<tr>
<td>Arginine (mg/kg)</td>
<td>82</td>
</tr>
</tbody>
</table>
L-NMMA enhanced intestinal damage after administration of endotoxin. However, this damage could be reversed by administration of arginine (Hutcheson et al. 1990). The mucosal permeability of the feline ileum increased after infusion with the NO synthesis inhibitor L-NAME, while infusion with the NO donor sodium nitroprusside or arginine reversed this effect (Kubes, 1992). These animal studies indicate that a low plasma concentration of arginine, and inhibition of the arginine–NO pathway, could contribute to decreased synthesis of NO, thereby resulting in decreased gastrointestinal blood flow and impairment of the intestinal mucosal barrier.

Interestingly, in contrast to our hypothesis, a significantly lower ADMA concentration was found in premature infants with NEC. Because ADMA is an endogenous inhibitor of all isoforms of NOS, a decrease of ADMA in premature infants with NEC could be associated with attempted regulatory changes aimed at a preservation of NO production in the presence of low arginine concentrations.

Although we cannot designate a single mediator for the observed effect, theoretically an increased metabolic turnover of ADMA may be responsible for the lower levels in NEC patients. ADMA is eliminated from the body by renal excretion as well as being metabolized by the enzyme symmetric dimethylarginine dimethylaminohydrolase (DDAH) which is widely distributed, in particular in the pancreas, liver and kidney (Kimoto et al. 1993; Kimoto et al. 1995). Induction of this enzyme or an increased renal excretion in NEC patients could be responsible for the decreased ADMA concentration (Yudkoff et al. 1984; Kimoto et al. 1995). Nijveldt and coworkers (Nijveldt et al. 2003b; Nijveldt et al. 2004) showed a reduced systemic ADMA concentration in rats during endotoxemia, indicating increased DDAH activity. Also, acute *Escherichia coli* endotoxaemia in human subjects decreased the plasma arginine:ADMA ratio (Mittermayer et al. 2004).

Since arginine and other cationic amino acids such as ornithine and lysine and also ADMA and SDMA are transported into endothelial cells by CAT, changes in the expression of CAT mRNA by endotoxemia may influence ADMA transport (Closs et al. 1997). Hattori et al. (1999), showed that expression of CAT 1 and 2 mRNA in the lung, heart, and kidney was increased by injection of lipopolysaccharide–interferon γ in rats whereas CAT 2A mRNA was abundantly expressed in the liver independent of lipopolysaccharide–interferon γ treatment. The abundant expression of CAT 2 mRNA in the liver indicates a potentially high uptake of dimethylarginines in this organ. The important function of endotoxemia inducing DDAH, as well as the expression of the CAT, provides a possible explanation for lower ADMA concentration in NEC patients.

Although the pathophysiology of NEC is multifactorial, there is some evidence suggesting that the development of NEC is associated with intestinal gram-negative bacterial growth (Neu, 1996; Neu, 2005; Westerbeek et al. 2006). Gram-negative bacteria produce the endotoxin lipopolysaccharide, inducing endotoxemia and the endogenous production of platelet activating factor and TNF (Feuerstein & Hallenbeck, 1987; Beutler & Cerami, 1988; Bone, 1991; Zanetti et al. 1992). The combination of lipopolysaccharide, platelet activating factor and TNF increases intestinal epithelial permeability and often causes necrosis which could contribute to the development of NEC (Hutcheson et al. 1990; Hsueh et al. 2003). Therefore, endotoxemia due to bacterial growth and release of lipopolysaccharide in premature infants can not only contribute to the development of NEC but can also induce DDAH and the expression of CAT, thereby increasing elimination of ADMA.

The lower concentration of ADMA could be a compensatory mechanism to counteract the disadvantageous effect of low arginine concentrations in NEC patients. However, since

Table 2. Plasma concentration of arginine, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and the arginine:ADMA ratio in premature infants with necrotizing enterocolitis (NEC) and without NEC (control) (Median values and ranges)

<table>
<thead>
<tr>
<th></th>
<th>NEC (n 10)</th>
<th>Control (n 10)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginine (μmol/l)</td>
<td>21.4</td>
<td>55.9</td>
<td>0.001</td>
</tr>
<tr>
<td>ADMA (μmol/l)</td>
<td>0.59</td>
<td>0.85</td>
<td>0.000</td>
</tr>
<tr>
<td>SDMA (μmol/l)</td>
<td>1.07</td>
<td>1.39</td>
<td>NS</td>
</tr>
<tr>
<td>Arginine:ADMA</td>
<td>36.6</td>
<td>72.3</td>
<td>0.023</td>
</tr>
</tbody>
</table>

Table 3. Plasma concentrations of arginine, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and the arginine:ADMA ratio in premature infants with necrotizing enterocolitis (NEC, non-survivors and survivors) (Median values and ranges)

<table>
<thead>
<tr>
<th></th>
<th>Non-survivors (n 4)</th>
<th>Survivors (n 6)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginine (μmol/l)</td>
<td>14.7</td>
<td>33.8</td>
<td>0.01</td>
</tr>
<tr>
<td>ADMA (μmol/l)</td>
<td>0.46</td>
<td>0.63</td>
<td>NS</td>
</tr>
<tr>
<td>SDMA (μmol/l)</td>
<td>0.96</td>
<td>1.14</td>
<td>NS</td>
</tr>
<tr>
<td>Arginine:ADMA</td>
<td>32.0</td>
<td>47.5</td>
<td>0.038</td>
</tr>
</tbody>
</table>
the decrease of arginine is larger than the decrease of ADMA, the arginine:ADMA ratio is lower in NEC patients, suggesting a reduced capacity for NO synthesis.

In this study we did not measure the oxidation products nitrate and nitrite as an indirect determination of endogenous formation of NO. Because the nitrate and nitrite concentration is influenced by endogenous NO synthesis, dietary intake and also by the excretion in urine, faeces and expired air, nitrate and nitrite concentration cannot be used as a truly meaningful indicator of NO production in premature infants (Baylis & Vallance, 1998).

In conclusion, the present study confirms the existence of low arginine concentrations in premature infants with NEC. In contrast to our hypothesis, the ADMA concentration is lower in these infants. In spite of the low ADMA concentration, the arginine:ADMA ratio is lower in NEC patients than in controls. Furthermore, a low arginine plasma concentration and a low arginine:ADMA ratio are associated with an increased risk of mortality in NEC patients. These findings suggest that despite the increased need for arginine, premature infants with NEC have lower availability of this substrate to synthesize NO, which may be involved in the pathophysiology of NEC. The results of our study suggest the association between arginine, ADMA and NEC. However it remains to be determined whether low levels of arginine contribute to the pathophysiology of NEC, or if low arginine levels are a consequence of NEC. As suggested in the few other studies to date, we agree that the supplementation of arginine may prevent the development of NEC in premature infants. Due to the low incidence of NEC (on average 6 out of 300 patients per year), and a high local nosocomial infection rate in the VU Medical Center (van der Zwet et al. 2005) a multicentre randomised controlled study of arginine supplementation in premature infants is needed to determine whether arginine supplementation reduces the development of NEC.

Acknowledgements
The authors thank Ms Sigrid de Jong for measurement of the amino acids. M. C. Richir and M. P. C. Siroen contributed equally to this work.

References

Table 4. Plasma concentrations of arginine, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and the arginine:ADMA ratio in surviving premature infants with necrotizing enterocolitis (NEC) and without NEC (control)
(Median values and ranges)

<table>
<thead>
<tr>
<th></th>
<th>Survivors (n 6)</th>
<th>Control (n 10)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arginine (μmol/l)</td>
<td>33.8</td>
<td>55.9</td>
<td>0.022</td>
</tr>
<tr>
<td>ADMA (μmol/l)</td>
<td>0.63</td>
<td>0.85</td>
<td>0.031</td>
</tr>
<tr>
<td>SDMA (μmol/l)</td>
<td>1.14</td>
<td>1.39</td>
<td>0.002</td>
</tr>
<tr>
<td>Arginine:ADMA</td>
<td>47.5</td>
<td>72.3</td>
<td>NS</td>
</tr>
</tbody>
</table>

Kimoto M, Tsuji H, Ogawa T & Sasaoka K (1993) Detection of NG,NG-dimethylarginine dimethylaminohydrolase in the nitric

