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Kneser–Tits for a rank 1 form of E6 (after Veldkamp)

Skip Garibaldi

Abstract

We prove the Kneser–Tits conjecture for groups of index 2E29
6,1 using an argument inspired

by a 1968 paper by Veldkamp. We also prove that these groups are stably rational varieties.

Introduction

The notion of simple for an algebraic group is different from the notion of simple for abstract groups.
Recall that an abstract group Γ is projectively simple if Γ/Z(Γ) is simple as an abstract group, where
Z(Γ) denotes the center of Γ. For a given field k, the Kneser–Tits conjecture asserts that for every
simply connected and absolutely quasi-simple k-isotropic algebraic group G, the abstract group G(k)
is projectively simple.

A good survey of the conjecture is given in [PR94, § 7.2]. We give a few highlights. Many cases
of the conjecture for classical groups are part of ‘geometric algebra’ as in the books by Artin
[Art57] and Dieudonné [Die71]. The conjecture holds for k algebraically closed, for the real numbers
(Cartan [Car27]), and for nonarchimedean locally compact fields (Platonov [PR94, p. 414]). It fails
wildly if the simply connected hypothesis is dropped. Some groups of inner type An provide
counterexamples to the conjecture; these amount to central division algebras with nontrivial SK 1.
In order to prove the conjecture for a particular field k, Prasad and Raghunathan [PR85] showed
that it suffices to consider the groups of k-rank 1.

For k a number field, no counterexamples are known. In order to prove the conjecture in that
case, it remains only to prove it for groups with the following Tits indexes:
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(The index of a semisimple algebraic group is defined in [Tit66, 2.3], and the list of possible indexes is
given in that paper. The conjecture has long been known for the classical groups, cf. [PR94, p. 410].
The trialitarian groups are treated in [Pra05].) We remark that when k is a totally imaginary
number field or a global function field, the two indexes displayed above do not occur [Gil01, p. 315,
Theorem 9b], hence the conjecture is proved in that case. The conjecture is still open for number
fields with real embeddings, such as the rational numbers.

In fact, one of the two ‘open’ cases was (essentially) settled in 1968. The purpose of this paper
is to give a proof of that case, i.e. to prove the following theorem.

Theorem. For every field k of characteristic not equal to 2 or 3 and every simply connected k-group
G of index 2E29

6,1, the abstract group G(k) is projectively simple.

This theorem is 9.5(i) in Veldkamp’s paper [Vel68], although his paper is missing an argument
that his groups have index 2E29

6,1 and that every simply connected group of index 2E29
6,1 is one of

his groups. We present a proof from a different viewpoint that is inspired by his and uses some-
what modernized language. We feel that this is worthwhile, partially because his result does not seem
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to have been incorporated into the literature. For example, it is not mentioned in Tits’s excellent
survey [Tit78]. Also, some delicate aspects of his proof can be avoided with modern techniques.

In [Vel69], Veldkamp modified his proof slightly in order to include also the cases where G is
quasi-split or of index 2E16′

6,2 . However, these cases are already covered by Tits’s survey, so we only
consider groups as in the theorem.

We exclude characteristics 2 and 3, as Veldkamp did, in order to use convenient facts about
quadratic forms and Jordan algebras. For the reader interested in global function fields, this
hypothesis is harmless, as there are no groups of index 2E29

6,1 over such a field.
We include also a proof of the following result which strengthens [CT00, Theorem 2.12b]. Recall

that a variety X is stably rational if X ×A
n is birationally equivalent to an affine space for some n.

Proposition 0.1. For every field k of characteristic not equal to 2, every k-group G of index 2E29
6,1,

simply connected or adjoint, is stably rational as a variety.

The theorem and Proposition 0.1 are connected by the notion of R-equivalence of k-points of
an algebraic group due to Manin, Colliot-Thélène, and Sansuc, see e.g. [Vos98, ch. 6] for definitions
and basic properties. Fix G as in the theorem. One writes RG(k) for the subset of G(k) of elements
that are R-equivalent to the identity. Proposition 0.1 implies that RG(k) is all of G(k), see e.g.
[Mer96, Proposition 1]. On the other hand, RG(k) is a noncentral normal subgroup of G(k), so the
theorem also implies that RG(k) is all of G(k).

Rationality results for isotropic groups of type E6 with other indexes can be found in
[CP98, § 9].

Notation and conventions
Throughout this paper, C denotes an octonion k-algebra and K is a quadratic field extension of k.
We occasionally write C also for the quadratic norm form on C. We write CK for the ‘K-associate’
of the norm NC/k on C as defined in [KMRT98, p. 499]: if the norm form on C is 〈1〉 ⊕ q and
K = k(

√
α), then CK is the quadratic form 〈1〉 ⊕ 〈α〉q. We record that

CK is Witt-equivalent to 〈α〉C ⊕ 〈1,−α〉. (0.2)

We writeH1(k,G) for the Galois cohomology groupH1(Gal(ksep/k), G(ksep)), where ksep denotes
a separable closure of k.

1. Outline of proof of the theorem

For a semisimple group G, write G(k)+ for the subgroup generated by the k-points of the unipotent
radicals of the parabolic k-subgroups of G. For G quasi-simple, G(k)+ is projectively simple [Tit64].

Fix G as in the theorem and a rank 1 k-split torus S in G. Write H for the centralizer of S
in G; it is reductive of type 2D4. As in [Tit64, 3.2(18)], we have

G(k) = H(k) ·G(k)+. (1.1)

In § 3 below, we prove that

D(k) ⊆ G(k)+, (1.2)

where D is the stabilizer of a particular vector in the irreducible 54-dimensional representation of G.
In §§ 4 and 5, we observe that

H(k) ⊆ D(k) ·G(k)+. (1.3)

Combining (1.1)–(1.3), we find that G(k)+ = G(k), which proves the theorem.
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2. Explicit description of G

In this section, we assume that we are given a group G0 of index 2E29
6,1 as in the theorem, and we

produce an explicit description of G0 using Galois descent.
Write K for the quadratic extension of k over which G0 is of inner type. The semisimple

anisotropic kernel of G0 is isomorphic to Spin(CK) for some octonion k-algebra C that is not
split by K (see [GP05, 2.10]). By Tits’s Witt-type theorem, this sets up a bijection between the
set of isomorphism classes of simply connected k-groups of index 2E29

6,1 and the set of isomorphism
classes of pairs (K,C), where K is a quadratic extension of k and C is an octonion k-algebra not
split by K; cf. [GP05, Proposition 11.1]. We remark that one can detect C using the Rost invariant
of G0, see [GP05, § 2].

Write A for the Albert k-algebra of hermitian 3-by-3 matrices with entries in C.
(See [SV00] or [KMRT98] for background about Albert algebras.) It has a nondegenerate sym-
metric bilinear form ‘tr’ defined by

tr






ε1 c3 ·
· ε2 c1
c2 · ε3


 ,



ν1 d3 ·
· ν2 d1

d2 · ν3





 =

3∑
i=1

[εiνi + C(ci, di)],

where C denotes the symmetric bilinear form deduced from the norm on C. (When writing elements
of A, we replace some entries with a ‘·’. No information is lost, because these entries are determined
by the condition that the matrix is hermitian.)

We write 1G for the group of isometries of the cubic form

ε1 c3 ·
· ε2 c1
c2 · ε3


 �→ ε1ε2ε3 + traceC(c1c2c3) −

3∑
i=1

εiC(ci)

on A. This group is simply connected quasi-simple of index
1E28

6,2 	 	 	 	 	
	


 


It acts on the 54-dimensional vector space A⊕A via the homomorphism ρ defined by

ρ(g)(a1, a2) = (ga1, g
†a2),

where g† is defined by the equation tr(gx, g†y) = tr(x, y) for all x, y ∈ A. The map g �→ g† is an
automorphism of 1G of order 2, see [Jac61, p. 76] or [SV00, 7.3.1]; it is outer because it is not the
identity on the center of 1G.

Abbreviate A ⊗ K as AK and write ι for the nonidentity k-automorphism of K. Consider the
k-space V of elements of AK ⊕AK fixed by

(a1, a2) �→ (τιa2, τ ιa1),

where τ ∈ 1G(k) is defined by

τ



ε1 c3 ·
· ε2 c1
c2 · ε3


 =




ε1 π(c2) ·
· ε3 π(c1)

π(c3) · ε2


 ,

where π denotes the canonical involution on C.
Define G to be the group 1G with a twisted Gal(K/k)-action given by

ι ∗ g = τι(g)†τ−1 for g ∈ G(K), (2.1)

where the action on the right is the usual action on 1G(K). Note that ρ is a k-homomorphism
G→ GL(V ).
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Proposition 2.2. The group G constructed above is simply connected quasi-simple of index 2E29
6,1.

It is k-isomorphic to the given group G0.

Proof. The group G is simply connected quasi-simple of type E6 because it is so over K. It is of
type 2E6 because it is obtained by twisting the group 1G of inner type by the outer automorphism †.

Since C is not K-split, G has index 1E28
6,2 over K. Every circled vertex in the k-index of G must

also be circled in the K-index, so G is anisotropic or is of index 2E29
6,1. Although it is easy to show

that G is isotropic, we must do some more work in order to identify the semisimple anisotropic
kernel of G.

Let Rel be the group of related triples of proper similarities of C as defined in [Gar01, § 7]; it is
a reductive group of type 1D4 with a two-dimensional center. A k-point of Rel is a triple (t1, t2, t3),
where ti is a proper similarity of the norm on C and the ti satisfy the identities

µ(ti)−1ti(π(x)π(y)) = π(ti+2(x))π(ti+1(y)) (x, y ∈ C)

for i = 1, 2, 3, where µ(ti) ∈ k× satisfies C(tici) = µ(ti)C(ci) for all ci ∈ C. There is an injection
ψ : Rel → 1G defined by

ψ(t1,t2,t3)



ε1 c3 ·
· ε2 c1
c2 · ε3


 =



µ(t1)−1ε1 t3c3 ·

· µ(t2)−1ε2 t1c1
t2c2 · µ(t3)−1ε3


 . (2.3)

We identify Rel with its image in 1G. We remark that

ψ†
(t1,t2,t3)

= ψ(µ(t1)−1t1,µ(t2)−1t2,µ(t3)−1t3).

The center of Rel has k-points the triples (λ1, λ2, λ3) of elements of k× such that λ1λ2λ3 = 1.
The automorphism † acts on the center by sending such a triple to (λ−1

1 , λ−1
2 , λ−1

3 ).
The image of s : Gm → 1G defined by

s(λ) = ψ(1,λ,λ−1)

is a rank 1 torus S in the center of Rel. We claim that Rel is the centralizer in G of S. To see this,
consider an element g ∈ 1G that centralizes S. Write ei for the element of A whose only nonzero
entry is a 1 in the (i, i) place. The weight spaces of S in A (e.g., ke2 and ke3) are invariant under g.
Since s(λ)† = s(λ−1), the element g† also commutes with S, hence

g(e3 ×A) = (g†e3) ×A = e3 ×A,

where × denotes the Freudenthal cross product as in [KMRT98, p. 519] or [SV00, p. 122]. The space
e3 ×A is the direct sum of the S-weight spaces

ke1, ke2, and




0 C ·
· 0 0
0 · 0


 ,

with weights 0, −2, and −1. Therefore, g leaves the subspace kei invariant for all i, hence g is in
Rel by [All67, p. 254, Corollary].

The map ψ defines a map from a twisted form H of Rel into G, where the twisted ι-action on
H sends (t1, t2, t3) ∈ H(K) to a triple

(πι(µ(t1)−1t1)π, πι(µ(t3)−1t3)π, πι(µ(t2)−1t2)π). (2.4)

Since

ι ∗ s(λ) = τs(ι(λ)−1)τ = s(ι(λ)),
S is a rank 1 k-split torus in G. By the preceding paragraph, H is the centralizer in G of S.
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Finally, we claim that the semisimple anisotropic kernel of G is isomorphic to the group
Spin(CK). To see this, note that ψ restricts to an inclusion Spin(C) ↪→ 1G, where Spin(C) consists
of the triples (t1, t2, t3) such that µ(ti) = 1 for all i. This gives rise to an inclusion of a twisted form
T of Spin(C) in G, where ι acts on a related triple (t1, t2, t3) in T (K) via

ι ∗ (t1, t2, t3) = (πι(t1)π, πι(t3)π, πι(t2)π).

That is, T is the spin group of the quadratic form obtained by restricting the norm on C ⊗ K to
the elements fixed by the map v �→ πιv, which is CK by [KMRT98, 36.21(1)].

Since Spin(CK) is also the semisimple anisotropic kernel of G0, the last sentence of the propo-
sition follows from Tits’s Witt-type theorem [Spr98, 16.4.2].

Remark 2.5. Our explicit construction of a group of index 2E29
6,1 is different from that in Veldkamp’s

paper. The groups arising as in his 3.3(3) are indeed of index 2E29
6,1 by [GP05, 9.6], and all groups

of index 2E29
6,1 are obtained as in his 3.3(3) by [GP05, 11.1].

3. The subgroup D

Write e for (e1, e1) ∈ V , and let D be the subgroup of G that fixes the vector e ∈ V . Over K, it is
isomorphic to Spin(〈1,−1〉 ⊕C) by [Spr62, Proposition 4].

Lemma 3.1. The subgroup D is k-isomorphic to the spin group of a 10-dimensional quadratic form
of Witt index 1.

Proof. From the description of D over K, we can conclude that D is, as a k-group, quasi-simple
simply connected of type D5 and of k-rank at most 1. The k-rank of D is exactly 1 because D
contains the rank 1 k-split torus S from the proof of Proposition 2.2.

To complete the proof, it suffices to show that the vector representation ofD is k-defined. Suppose
not. Then D is k-isomorphic to the spin group of a five-dimensional, isotropic skew-hermitian form
over a quaternion division k-algebra that is split by K. It follows that the K-rank of D is at least 2,
which is a contradiction.

Remark 3.2. We can realize D concretely in the following way. (We omit details as this will not be
used below.) The 10-dimensional subspace

e1 ×AK =




0 0 ·
· K C ⊗K
0 · K




of AK is D-invariant and the equation a× a = q(a)e1 defines a quadratic form q given by

q




0 0 ·
· ε2 x
0 · ε3


 = ε2ε3 −NC/k(x).

The action of D on e1 × AK gives a K-homomorphism D → SO(q). A descent computation using
(2.1) shows that D is k-isomorphic to the spin group of a k-form of q, namely 〈1,−α〉 ⊕ 〈−1〉CK .
That is, D is isomorphic to Spin(〈1,−1〉 ⊕ C) also over the base field k.

A classical result from geometric algebra [Die71, § II.9(C)] implies that D(k)+ is all of D(k),
see [PR94, pp. 409–410]. The proof of (1.2) is completed by the following lemma, pointed out to me
by Prasad.

Lemma 3.3. Let G′ and G be isotropic reductive k-groups such that G′ is a subgroup of G.
Then G′(k)+ is contained in G(k)+.
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We remark that the lemma is obvious when k is perfect. In that case, G(k)+ is the subgroup of
G(k) generated by the unipotent elements, and the lemma follows by the definition of G′(k)+.

Proof. Let u be an element of G′(k) contained in the unipotent radical of a parabolic subgroup.
Then there is a k-homomorphism s : Gm → G′ such that u lies in the k-subgroup U ′ of G′ that
is, over an algebraic closure of k, directly spanned by the one-dimensional root subgroups Uα as α
varies over the roots of G′ such that 〈α, s〉 is positive, cf. [Bor91, § 21] or [Spr98, 15.1.2]. (The group
U ′ is even the radical of the parabolic subgroup ZG′(im s) · U ′ of G′.)

The homomorphism s defines a rank 1 k-split torus in G, and we define a subgroup U of G
analogously to U ′ above. Note that u belongs to the unipotent radical U of the parabolic subgroup
ZG(im s) · U of G, hence u is in G(k)+.

Since elements such as u generate G′(k)+, the lemma follows.

4. Multipliers

Consider the k-subspace {(µe1, ι(µ)e1) | µ ∈ K} of V . It is an H-invariant subspace of V , and for
h ∈ H, we define γ(h) ∈ K× by

ρ(h)e = (γ(h)e1, ι(γ(h))e1).

We have
1 = tr(e1, e1) = tr(ρ(h)e) = γ(h)ι(γ(h)),

so γ defines a k-homomorphism from H to the rank 1 torus T whose k-points are the norm 1
elements of K×. The purpose of this section is to prove the following.

Lemma 4.1. The image of γ : H(k) → T (k) consists of elements λι(λ)−1 for λ ∈ K× such that
λι(λ) ∈ k× is a norm from C.

Proof. From the explicit description of H as a twist of Rel, we find that the kernel of γ is generated
by Spin(CK) and S. Projection on the first entry defines a surjection ker γ → SO(CK) whose
restriction to Spin(CK) is the vector representation. We compute the image of λι(λ)−1 ∈ T (k)
under the composition

T (k) −−−−→ H1(k, ker γ) −−−−→ H1(k,SO(CK)), (4.2)

where the first map is induced by the short exact sequence

1 −−−−→ ker γ −−−−→ H
γ−−−−→ T −−−−→ 1.

Equation (2.3) shows that the element λι(λ)−1, viewed as a point of T over the separable closure
ksep of k, is the image of

t := (
√
Nλλ

−1,
√
λ,

√
λN−1

λ ) ∈ H(ksep)

for some fixed square roots of λ and Nλ := λι(λ) in ksep. For σ ∈ Gal(ksep/k), we claim that the
first entry of t−1(σ ∗ t) is

√
Nλ

−1
σ(
√
Nλ), where σ∗ denotes the action on ksep twisted as in (2.1)

and the σ in the latter expression acts in the usual manner on ksep. If σ is the identity on K, then
the two actions agree, σ fixes λ, and the claim is obvious. If σ is not the identity on K, then

t−1(σ ∗ t) =
λ√
Nλ

σ(λ)
σ(
√
Nλ)

=
√
Nλ

σ(
√
Nλ)

.

As
√
Nλ σ(

√
Nλ)−1 equals ±1, the claim is proved. It follows that the image of λι(λ)−1 under the

composition (4.2) is the image of Nλ under the map

k×/k×2 ∼= H1(k,Z(SO(CK))) → H1(k,SO(CK)).

196

https://doi.org/10.1112/S0010437X06002417 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002417


Kneser–Tits for E6

If λι(λ)−1 is in the image of H(k), it has trivial image in H1(k, ker γ) and consequently in
H1(k,SO(CK)). It follows that Nλ is a similarity factor of CK . Combining (0.2) and the following
proposition shows that Nλ is represented by the norm of C.

Proposition 4.3. Let q be a quadratic form that is Witt-equivalent to
∑n

i=1 uiφi, where u1,
u2, . . . , un are odd-dimensional quadratic forms and φ1, φ2, . . . , φn are Pfister forms of different
dimensions. An element µ ∈ k× is a similarity factor of q if and only if µ is represented by φi for
every i.

We allow the possibility that one of the φi is the ‘0-fold’ Pfister form 〈1〉. In that case, q is odd-
dimensional and the proposition is the standard fact that the group of similarity factors of an
odd-dimensional quadratic form is the group of squares in k×.

Proof. As q and
∑
uiφi are Witt-equivalent, they have the same similarity factors, so we may

assume that q actually is
∑
uiφi. The case where q is a Pfister form (i.e. n = 1 and u1 = 〈1〉) is a

standard result, see [Lam05, X.1.8]; we call this the base case.
We now prove the general case. The ‘if’ direction follows directly from the base case. To prove

the ‘only if’ direction, we assume that µ is a similarity factor of q, i.e. 〈µ〉q is isomorphic to q. In the
Witt ring,

∑
ui · 〈1,−µ〉φi is zero. Equivalently, we have

n∑
i=1

ui · 〈1,−µ〉φi =
n∑

i=1

ui · hi,

where hi is a hyperbolic form of the same dimension as 〈1,−µ〉φi. As hi and 〈1,−µ〉φi are
Pfister forms and the ui are odd-dimensional, [Ser03, Lemma 22.2] gives that 〈1,−µ〉φi and hi

are isomorphic for all i. Consequently, µ is represented by φi by the base case.

Quadratic forms as in the proposition are common: for example, when k is a global field (or,
more generally, a linked field), every quadratic form can be written as in the proposition by [Lam05,
X.6.27].

5. Conclusion of the proof of the theorem

This section contains a proof of (1.3), i.e. we prove the following lemma.

Lemma 5.1. We have H(k) ⊆ D(k) ·G(k)+.

Proof. Fix h ∈ H(k). We will produce an element g of G(k)+ such that ρ(g)e = (γ(h)e1, ι(γ(h))e1).
Then g−1h will belong to D(k) and the lemma will follow.

By Lemma 4.1, γ(h) is of the form λι(λ)−1 for some λ ∈ K× such that λι(λ) is a norm from C.
Fix a quadratic subfield � of C such that λι(λ) is a norm from �. Since C is not split by K, the tensor
product K ⊗ � is a biquadratic extension field of k which we denote simply by K�. As described
in [Jac61, § 5], there is an injective k-homomorphism

φ : R�/k(SL3) → 1G via φg(a) = gaπ(g)t,

for g ∈ SL3(�) and a ∈ A, where juxtaposition denotes usual matrix multiplication, t denotes the
transpose, and π means to apply the nontrivial �/k-automorphism to the entries of g. Moreover,

φ†g = φπ(g)−t and τφgτ
−1 = φ(2 3)g(2 3),

where (2 3) denotes the matrix
( 1 0 0

0 0 1
0 1 0

)
. (The first equation is from [Jac61, p. 77]. The second

equation is verified in the same manner, i.e. by checking it for elementary matrices g.)
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Let SU denote the group R�/k(SL3) with the twisted Gal(K/k)-action given by

ι ∗ g = (2 3)ιπ(g)−t(2 3)

for g ∈ SL3(K�), i.e. aK-point of R�/k(SL3). By the preceding paragraph and (2.1), φ is a k-injection
SU → G.

Write M for the subfield of K� fixed by ιπ. The k-points of SU are elements of the special
unitary group of the three-dimensional K�/M -hermitian form h such that

h(x, y) = x1πι(y1) + x2πι(y3) + x3πι(y2), (5.2)

cf. [KMRT98, pp. 23ff and 42ff]. That is, SU is the transfer (the Weil restriction) from M to k of a
group of outer type A2. As the hermitian form (5.2) is isotropic, SU is quasi-split.

As λι(λ) ∈ k× is a norm from � and K, the biquadratic lemma (see, e.g., [Wad86, 2.14]) gives
an element γ ∈ K� such that γπ(γ) = αλ for some α ∈ k×. Consider the element

g :=



γιπ(γ)−1

γ−1

ιπ(γ)


 ∈ SL3(K�).

Note that g is in SU(k). On the other hand,

φg(e1) = γιπ(γ)−1π(γ)ι(γ)−1e1 = (αλ)ι(αλ)−1e = λι(λ)−1e1.

Since SU is k-quasi-split, SU(k)+ is all of SU(k) (see [Ste59, § 8]). By Lemma 3.3, φg is in G(k)+.
This proves Lemma 5.1, which in turn completes the proof of the theorem.

6. Proof of Proposition 0.1

This section consists of a proof of Proposition 0.1, i.e. we prove that every group G of index 2E29
6,1 is

stably rational as a variety. We assume throughout this section that the characteristic of k0 is not
equal to 2, and we explicitly allow characteristic 3.

The crux of proving Proposition 0.1 is the following proposition.

Proposition 6.1. Let q be a quadratic form that is Witt-equivalent to u1φ1 + u2φ2 where u1 and
u2 are odd-dimensional quadratic forms and φ1 and φ2 are Pfister forms of different dimensions.
Then the variety PSO(q) is stably rational.

Merkurjev handled the case where q is of the form u1φ1 in [Mer96, p. 204, Proposition 7].
The proof of Proposition 6.1 is a small extension of his arguments.

Proof. Write Vi for the vector space underlying φi. Let Y be the rational quadric in V1 ⊕V2 defined
by the form φ1 − φ2, and let X be the open subvariety of Y consisting of vectors v1 + v2 such that
φ1(v1) is not zero.

Define ψ : X → Gm via φ(v1 + v2) = φ1(v1). For every extension E of k, the image of ψ consists
of those elements of E× represented by both φ1 and φ2, which by Proposition 4.3 are the similarity
factors of q. Moreover, the fiber over an x ∈ E× in the image of α is the product of the rational
varieties defined by the equations φ1 = x and φ2 = x. By [Mer96, p. 198, Corollary 1], it follows
that PSO(q) is stably rational.

With Proposition 6.1 in hand, the proof of Proposition 0.1 follows by standard arguments as
in [CP98, p. 5] or [Tha99].

Proof of Proposition 0.1. Fix a k-group G of index 2E29
6,1. Write M for the centralizer of a maximal

k-split torus in G. The generalized Bruhat decomposition implies that G is birationally equivalent

198

https://doi.org/10.1112/S0010437X06002417 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002417


Kneser–Tits for E6

to U ×M × U where U is the unipotent radical of a minimal parabolic k-subgroup of G. As U is
k-rational, it suffices to prove that M is stably rational.

Set S′ to be the connected center of M . If G is simply connected, then M is the group H from
§ 2, hence S′ is isomorphic to RK/k(Gm) and H1(E,S′) is zero for every extension E/k. If G is
adjoint, then S′ is quasi-trivial (see [Tit88, p. 89, Lemme] or [Spr98, p. 279]) and again we find that
H1(E,S′) is zero for every extension E/k. It follows that M is birationally equivalent to S′×M/S′.
The first term, S′, is a rank 2 torus, so it is rational [Vos98, § 4.9]. The second term, M/S′, is
isomorphic to PSO(CK) for C and K as in § 2. Combining (0.2) and Proposition 6.1 gives that
M/S′ is stably rational, hence G is stably rational.

It is important that the eight-dimensional quadratic form CK is of the special type to which
Proposition 6.1 applies: Merkurjev [Mer96, p. 212] and Gille [Gil97] give explicit eight-dimensional
quadratic forms q such that PSO(q) is not stably rational.
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SV00 T. A. Springer and F. D. Veldkamp, Octonions, Jordan algebras and exceptional groups (Springer,

Berlin, 2000).
Ste59 R. Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 9 (1959), 875–891.
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