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Abstract How do states distribute the burdens of collective defense? This paper
develops a network theory of burden sharing. We focus on bilateral defense cooperation
agreements (DCAs),whichpromote cooperation in a variety of defense,military, and secur-
ity issue areas.Usinga computationalmodel,we show thatDCApartners’defense spending
depends on the network structure of their agreements. In bilateral terms, DCAs increase
defense spending by committing states to defense activities and allowing partners to recip-
rocallypunish free riding.However, as a state’s local network of defense partnerships grows
more densely connected, with many transitive “friend of a friend” relations, DCAs have the
countervailing effect of reducing defense spending. Themore deeply integrated states are in
bilateral defense networks, the less they spend on defense. We distinguish two potential
mechanisms behind this effect—one based on efficiency improvements, the other on free
riding. An empirical analysis using multilevel inferential network models points more to
efficiency than to free riding. Defense networks reduce defense spending, and they do so
by allowing countries to produce security more efficiently.

Problems of burden sharing and defense cooperation have come to the fore of public
debate. During his tenure in office, US president Donald Trump frequently took aim
at NATO, singling out member states for “not paying their fair share”1 and insisting
that “the distribution of costs has to be changed.”2 Burden sharing encapsulates a fun-
damental collective-action problem—how best to divide the burden of common
defense among partners—that extends across the realm of international security.
This paper develops and tests a network theory of burden sharing. Recent work on

networks shows that the structure of international relations substantially influences
state behavior.3 Classic public-goods models of burden sharing—in which
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contributions or “spill-ins” from alliance partners affect individual defense effort4—
implicitly acknowledge this network context but do not consider its implications.
Empirical studies of burden sharing often focus on country-level determinants of
defense spending, such as economic constraints or political ideology.5 Much less is
known about how states select defense partners, and how the resulting network struc-
ture of those partnerships influences burden sharing.
Our analysis focuses on defense partnerships established through bilateral defense

cooperation agreements, or DCAs. These agreements have proliferated dramatically
since the early 1990s and now play a central role in the global security environment.6

By promoting a broad range of cooperative activities—intelligence sharing, arms
trade, training and officer exchanges, peacekeeping operations, and joint military
exercises, among others7—DCAs help countries modernize their militaries and
pool resources against shared threats. Because these activities require defense
outlays, DCAs naturally pose the question of whether formal defense commitments
lead to increased defense effort.
Our network approach to burden sharing shows that defense agreements have

divergent effects on defense spending. In strictly bilateral terms, DCAs enable detec-
tion and informal punishment of free riders. Contrary to the “large numbers” problem
of public-goods models, defense spending increases as countries sign more DCAs.
However, the network structure of defense agreements exercises a countervailing
influence. As states form increasingly dense defense ties, characterized by friend-
of-friend relations or “transitive triads” in their local networks of partners, defense
agreements in fact reduce spending. The overall impact of defense cooperation on
burden sharing thus depends on how defense relations are structured. We use an
agent-based model (ABM) of network–behavior coevolution to develop the argument
and derive hypotheses, and we test the hypotheses with inferential network models.
This analysis makes three contributions to our understanding of burden sharing.

First, we show that forming defense partnerships and determining an appropriate
level of defense effort are interdependent processes. Governments do not create
defense agreements randomly but instead select those partners that best contribute
to mutual defense.8 At the same time, these partnerships determine the influence of
agreements on burden sharing. Put differently, defense partnerships and individual
defense effort coevolve over time, and the influence of those partnerships on
burden sharing depends, in part, on how states select partners.
Second, we theoretically separate the bilateral influence and network influence of

DCAs, and we empirically assess the independent impact of each. We find that
although bilateral DCAs put upward pressure on defense expenditures, as those
agreements congeal into dense local networks they instead reduce individual

4. Olson and Zeckhauser 1966.
5. Chowdhury 1991; Whitten and Williams 2011.
6. Kinne 2018.
7. Kinne 2020, 730.
8. Digiuseppe and Poast 2018.
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defense effort. This network effect is wholly unapparent from a bilateral perspective.
Post-estimation analysis further reveals that the DCA network is a more important
determinant of defense spending than virtually all covariates, including regime
type, alliance membership, and economic growth.
Finally, we identify two distinct mechanisms that connect network structure to

reduced defense effort. On the one hand, dense local networks may promote conver-
gence in defense policies, rendering defense cooperation less costly and more efficient.
On the other hand, dense local networks may undermine reciprocity-based punishments
and increase the publicness of defense goods, inviting free riding. Scholarship on
burden sharing recognizes the importance of both mechanisms.9 We incorporate
these mechanisms into the ABM, derive testable hypotheses for each, and empirically
determine which effect dominates. The results suggest that DCA networks reduce
defense effort primarily by generating efficiencies, not by inducing free riding.
Overall, the network perspective shows both that particular structures of cooper-

ation reduce defense effort, and that such reductions are not necessarily suboptimal.
Rather, networks may allow states to produce security more efficiently. This finding
means that individual contributions to burden sharing should be viewed from a
broader network context, as instances of apparent free riding may in fact reflect
network efficiencies. More generally, these findings underscore the importance of
theorizing and empirically modeling international relations as a global network,
where network structure influences behaviors in ways that are unobservable from
standard dyadic perspectives.

Defense Cooperation and Burden Sharing

The literature on burden sharing typically focuses on formal alliances.10 The eco-
nomic theory of alliances, first articulated by Olson and Zeckhauser, is perhaps the
most widely employed burden-sharing framework.11 In this view, alliances
produce pure public goods, such as deterrence or reduced militarized conflict.
Because these goods are nonexcludable and nonrival, they create incentives for coun-
tries to free ride, or enjoy the security benefits of defense cooperation at little or no
cost to themselves. Others argue that alliances generate “joint products”—not only
pure public goods, but also private and impure public goods. Free riding declines,
but does not altogether disappear, when the gains of defense cooperation are more
commensurate with individual effort.12

While research on alliances has produced important insights on defense cooper-
ation, we know little about burden sharing beyond alliances. Formal alliances exist

9. Olson and Zeckhauser 1966; Sandler and Hartley 2001.
10. E.g., Fuhrmann 2020; Oneal 1990; Sandler 1993.
11. Olson and Zeckhauser 1966.
12. Cornes and Sandler 1984.

Free Riding, Network Effects, and Burden Sharing 407

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
20

81
83

22
00

03
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0020818322000315


primarily to deter conflict,13 and they focus more on partner reliability in militarized
confrontations than on routine cooperation.14 DCAs, by contrast, involve no defen-
sive, offensive, neutrality or other conflict-specific commitments, and they explicitly
establish “institutional frameworks for routine defense cooperation.”15 DCAs encour-
age such day-to-day defense activities as military exercises, training and officer
exchanges, arms trade, peacekeeping, research and development, and sharing of clas-
sified information, with a combined focus on interstate security issues and more non-
traditional threats like terrorism, maritime security, and nonstate armed groups.
States continue to sign new DCAs at a high rate, and there are now nearly as many

dyads with DCAs in place as there are dyads with alliances (Figure 1). These empirical
trends, combined with the emphasis of DCAs on routine, substantive defense cooper-
ation—which places an immediate expectation on states to contribute to joint security
—present an opportunity to explore burden sharing beyond formal alliances. Further,
the institutional features of DCAs mitigate common methodological problems. DCAs
tend to be (1) similarly structured, prioritizing a common set of issue areas; (2) virtually
always bilateral; and (3) lacking in institutionalized enforcement mechanisms.16 These
features hold constant the potential confounding influences of institutional design, issue-
area variation, multilateral politics, and intergovernmental organizations.
Most importantly, existing research does not consider how endogenous aspects of

defense cooperation affect burden sharing. The choice to sign defense agreements
with particular partners is not independent of the subsequent influence of those agree-
ments on defense behavior. Defense scholars typically treat partner selection as
exogenous.17 Yet, as Digiuseppe and Poast observe with regard to alliance formation,
“defense pacts and military spending are co-determinous processes.”18 In networks,
states strategically select partners to maximize their utility, and this selection process
generates distinct network structures.19 Scholars of international relations have
shown that across issue areas—alliance formation, militarized conflict, status and
reputation, trade and human rights, and even joint security production20—network
structures influence behavior. Yet, despite the implicit network logic of free-riding
arguments,21 studies of burden sharing typically focus on exogenous factors like
external threats, domestic politics, leader attributes, or financial constraints.22 We

13. Benson 2012; A. Smith 1998.
14. Crescenzi et al. 2012; Leeds 2003; Mattes 2012. According to data from Leeds et al. 2002, less than

15 percent of alliances require peacetime contact between member states.
15. Kinne 2018, 803.
16. Kinne 2020.
17. Lai and Reiter 2000; Simon and Gartzke 1996.
18. Digiuseppe and Poast 2018, 997.
19. Kinne 2013.
20. E.g., Beardsley et al. 2020; Chyzh 2016; Cranmer, Desmarais, and Kirkland 2012; Duque 2018;

Maoz 2009; Ward, Siverson, and Cao 2007.
21. Olson and Zeckhauser 1966.
22. E.g., DiGiuseppe 2015; Fuhrmann 2020; Nordhaus, Oneal, and Russett 2012; Whitten and Williams

2011.
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show that network structures matter both for the selection of defense partners and for
the influence of partners on individual defense effort.

A Network Theory of Burden Sharing

In Olson’s classic model, provision of public goods decreases as group size
grows.23 Large alliances thus encourage free riding.24 This logic provides a baseline
expectation for DCAs. As a focal state’s number of DCA partners increases, its
incentive to free ride on its partners’ efforts increases, and its defense spending
declines. This well-known “large numbers problem” relies on three assumptions:
(1) there is a distinct group of actors, and the fraction of the group benefit for
any given actor shrinks as the group grows; (2) states cannot easily implement
the strategic interactions needed to encourage contributions; and (3) organization
costs are high.25

These assumptions readily apply to multilateral agreements and formal organiza-
tions. But DCAs are not multilateral and do not create organizations.26 Instead,
DCAs are separable bilateral agreements, and they produce defense benefits that,
prima facie, resemble club goods, shared among the members of the arrangement.27

In practical terms, DCAs provide a way for states to align their defense policies
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FIGURE 1. Trends in defense cooperation agreements (DCAs) and alliances,
1990–2010

23. Olson 1965, 35.
24. Olson and Zeckhauser 1966, 268.
25. Kahler 1992, 683.
26. Thompson and Verdier 2014.
27. Buchanan 1965; Sandler 2013.
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toward shared goals and interests.28 This alignment may involve large-scale strategic
issues, such as determining which global threats to prioritize and how to respond to
those threats.29 Or alignment may involve technical considerations like interoperabil-
ity, logistics and supply, training standards, and information-sharing protocols,
among others. When defense policies align, states prioritize similar types of threats
and implement similar operational standards in addressing those threats.
Production of collective security goods requires not only that states align their pol-

icies but also that they make ongoing contributions to mutual defense. To modernize
their militaries, for example, governments must invest in research and development,
weapons procurement, training, and innovative military doctrines. Improving access
to classified intelligence requires investments in signal and human intelligence-gath-
ering capabilities (such as satellites and spies), as well as implementation of safeguard
protocols at the organizational level. Any agreed-upon joint actions—military exer-
cises, peacekeeping operations, counterterrorism operations—necessitate further
operation-specific expenditures. Without mutual contributions, the benefits of
defense cooperation are minimal.
As bilateral agreements, DCAs include an informal punishment mechanism.30 If

one partner falters in its obligations, the other withholds its own contribution, and
the club good is not produced. The bilateral nature of DCAs enables tit-for-tat strat-
egies that encourage individual defense effort.31 Governments are acutely aware of
this mechanism. Turkey’s DCA with Indonesia, for example, explicitly defines
cooperation as “activities based upon reciprocity.”32 Implementing reciprocity-
based punishments is simply a matter of withholding cooperation in response to per-
ceived lack of effort by partners. Such reciprocity gradually undermined a 1995 DCA
between Indonesia and Australia, until the agreement was abrogated in 1999.33 Less
dramatically, reciprocal punishments leave agreements to languish, such that they fail
to produce security goods. In strictly bilateral terms, contrary to the large-numbers
problem, this potential for punitive reciprocity should encourage defense spending.

The Network Structure of Defense Cooperation

However, DCAs are not merely bilateral. They also comprise a larger network. A
network consists of a set of agents, or “nodes,” connected by a set of ties, or
“edges.” Network ties are interdependent; the formation, maintenance, and/or termin-
ation of one edge depends on edges elsewhere in the network. In addition to maintain-
ing their ties, nodes engage in various unit-level behaviors, such as allocating

28. Abercrombie 2019; Loewen 2018.
29. Fazal and Poast 2019; Porter 2019.
30. Sandler 2013; Verdier 2008.
31. Keohane 1986; Sandler and Hartley 2001.
32. Agreement on Defense Industry Cooperation between the Government of the Republic of Indonesia

and the Government of the Republic of Turkey, 29 June 2010, Article III.
33. “Indonesia Revokes Defense Pact with Australia,” Wall Street Journal, 17 September 1999.
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expenditures to defense, which may affect—or be affected by—edge formation. This
network–behavior setup allows us to theorize the selection of defense partners and the
influence of those partners on defense effort from within a single coevolutionary
framework.

As the network evolves, distinctive structures emerge. These structures may gen-
erate higher-order effects that disrupt the straightforward logic of bilateral cooper-
ation.34 Accordingly, we separate the bilateral influence of DCAs from their
network influence. We focus on one particular network structure, the transitive
triad, also known as a triangle, wherein three nodes are mutually connected by
three unique edges, as illustrated in Figure 2.35 Triads are the building blocks of net-
works. They enable social arrangements—mediation, brokerage, coalitions—that are
impossible with only two actors.36 Triads are also essential to more complex network
features, such as hierarchy, clustering, and modularity.37 As the most elementary
form of network structure, triads provide crucial insight into the effects of structure
on behavior.
Analyzing the topology of the DCA network reveals that DCA ties have grown

increasingly transitive, such that bilateral DCA partners often have mutual DCA
ties to common third parties (Figure 3). At the same time, the network has grown
denser and less “centralized,” or less dominated by a small number of highly
active nodes (such as major powers). The key question is how these structural fea-
tures matter for burden sharing.

Selection and Influence at the Network Level

To understand how network structure influences defense effort, we merge network-
analytic concepts with insights from the burden-sharing literature. We identify two
specific mechanisms—one based on policy convergence and efficiencies, the other
on free riding—that connect transitive triads to burden sharing.

(a) Intransitive triad

k

i

j

(b) Transitive triad

k

i

j

FIGURE 2. Two types of triadic structures

34. Hollway and Koskinen 2016; Kinne and Bunte 2020; Maoz 2012.
35. Holland and Leinhardt 1971.
36. Simmel 1950.
37. Newman 2006; Newman and Girvan 2004.

Free Riding, Network Effects, and Burden Sharing 411

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
20

81
83

22
00

03
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0020818322000315


Efficiency concerns, or the quantity of security produced relative to spending, are
central to burden sharing.38 Research on alliances shows that certain defense policies
—such as “sharing and standardization schemes” to ensure interoperability of
weapons and forces39—can reduce defense outlays by promoting complementarity
and mitigating risk.40 Building on this insight, we focus on network efficiencies. A
network efficiency exists when actors derive utility not only from their individual
ties but also from the structure of those ties.41 For transitive triads, network efficiency
means that the aggregate utility generated by a triangle is greater than the sum of
those ties’ individual utilities. Put differently, states benefit from the joint defense
products of each DCA in which they are members, and they benefit from the
overall connectedness of their DCA partners. By this logic, the structure in
Figure 2(b) generates more utility for a given focal node than does the structure in
2(a), even if its number of direct ties is identical in the two cases. Network efficiencies
are similar to synergy effects.42

Transitive triads can generate efficiencies by facilitating convergence in the
defense policies of states, thus reducing the costs of defense cooperation.43 This argu-
ment prioritizes the role of DCAs in defense policy coordination and builds on the
burden-sharing literature’s emphasis on policy-driven sources of efficiency. As
Pannier and Schmitt observe, “policy convergence is a prerequisite to effective

Americas &
Europe

Africa &
Middle East

Asia &
Oceania

Centralization = 0.95
Transitivity = 0.08

1990

Americas &
Europe

Africa &
Middle East

Asia &
Oceania

Centralization = 0.82
Transitivity = 0.28

2010

Triangles
25

0

Notes: Nodes are countries. Edges are DCAs. Node size and color correspond to defense
expenditures as a percentage of GDP. Edge color indicates the number of triangles in which each
edge is embedded. Centralization and transitivity are calculated at the global level.

FIGURE 3. DCA network topology at two time points

38. Sandler and Hartley 2001, 872.
39. Sandler and Forbes 1980, 428.
40. Compare Conybeare 1994, 415–17.
41. Jackson 2003; Jackson and Wolinsky 1996.
42. Cranmer, Desmarais, and Kirkland 2012.
43. Bennett 1991; Cao 2017; Drezner 2001; Greenhill 2010; Greenhill, Mosley, and Prakash 2009.
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cooperation.”44 When governments share strategic goals, they can more readily iden-
tify and act on mutual threats. In technical areas, by coordinating policies on inter-
operability, training, logistics, and other standards, governments can subsequently
engage in joint exercises, counterterrorism and peacekeeping operations, arms
trade, and investment in research and development. For example, policies that
improve interoperability—on such issues as ammunition caliber, aerial refueling
technology, and software protocols, for example—allow defense partners to adopt
exchangeable force units and hardware, increase compatibility in communications
technology, and standardize data exchanges.45

Defense policy adjustments are costly and must contend with budgets, bureaucra-
cies, technological limitations, and other barriers.46 The wider the policy gap between
prospective partners, the greater the costs of adjustment.47 In a transitive triad, focal
node i’s partners j and k are also aligned with one another by virtue of their direct tie,
jk. Thus any policy adjustments i makes with regard to one partner are extensible, in
part, to others. This effect is similar to regulatory convergence, where governments
adopt a modal policy in lieu of multiple, potentially contradictory regulations.48

On sharing of classified information, for example, the US maintains different stan-
dards with South Korea than it does with Japan, largely due to an absence of
direct Japan–Korea standardization. When attempting to cooperate on issues of
mutual interest, such as the North Korean threat, this patchwork arrangement “only
covers about half the necessary information and creates significant lag in the informa-
tion flow.”49 Standardization between Japan and South Korea would allow the US to
implement a common intelligence-sharing policy with regard to both states. More
generally, transitive triads reduce the need for discrepant standards and allow states
to coordinate policies at lower cost.
As transitive triads persist, they push defense policies further into alignment via

third-party influences. When two states align their policies with a common third
party, they indirectly align those same policies with one another. This convergence,
in turn, reduces the operational costs of defense activities. For example, the defense
policies that Japan and Australia individually adopted in their respective relations
with the US ultimately lowered barriers to direct Japan–Australia cooperation on
arms procurement, joint ballistic missile defense, intelligence sharing, and force com-
plementarity.50 Similarly, the post-World War II hub-and-spoke system of bilateral
ties in East Asia, defined by policy coordination with the US, facilitated coordination
between the spokes themselves, yielding a “web of security relations” and frequent

44. Pannier and Schmitt 2014, 271.
45. Hura et al. 2000.
46. Bellais and Guichard 2006; R. Smith 1995; Whitten and Williams 2011.
47. Drezner 2005, 846.
48. Lazer 2001.
49. Wicker 2016, 6.
50. Wilkins 2015, 102–03.
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joint military activities.51 This indirect convergence effect mirrors a general homo-
phily effect, observed in many social networks, where third-party ties increase
belief similarity.52 Such third-party influences promote efficiency by lowering
policy barriers to defense activities.
Finally, transitive triads reduce the operational costs of trilateral or larger plurilat-

eral actions, such as peacekeeping, military exercises, and counterterror operations.
Effective trilateralism requires extensive “spoke-to-spoke” interaction, where each
leg of the triangle effectively coordinates with the others.53 From i’s perspective,
the more closely aligned j and k are, the more easily all three states can leverage
their respective bilateral ties for trilateral purposes. For example, Turkey has long
encouraged greater policy coordination between Azerbaijan and Georgia—its two
key defense partners in the Caucasus—in the hopes of promoting trilateral activities,
improving regional security, and avoiding the expense of holding separate bilateral
exercises, trainings, and exchanges.54 This policy alignment within transitive triads
lowers operational costs in similar fashion to “minilateral” strategies.55

The allure of reduced adjustment and operational costs directly affects partner
selection. Countries have an incentive to select partners in a way that yields transitive
triads and captures network efficiencies. As they do so, dense local networks emerge,
where a given node’s defense partners are also partnered among themselves
(Figure 4). This structure maximizes triangle-based efficiencies. While an accumula-
tion of bilateral ties—as in a sparse local network—increases a given node’s defense
obligations, a dense local network lowers the costs of those obligations. Ceteris
paribus, the lower the costs of security production, the weaker the demand for
defense outlays.56 Precisely this outcome motivates states to form triangles in the
first place. In terms of influence, then, the focal node’s defense spending should
decrease as the density of its local network increases.
Importantly, efficiency-driven reductions in defense effort are the result of lowered

costs, not free riding. However, dense local networks may also incentivize free riding,
in two ways. First, as with network effects more generally,57 the utility generated by
efficiencies increases with the number of participants. As states converge in their
security strategies, a growing number of partners stands to benefit from the actions
of a few vigilant actors. Policy convergence increases the odds that the security-
minded efforts of some states will address threats of importance to others, thus
increasing the publicness of defense goods. By demarcating groups of like-minded
states—defense partners in dense local networks—and expanding the range of

51. Blair and Hanley 2001, 9–11.
52. Asikainen et al. 2020; Kossinets and Watts 2009. This effect has also been observed in socio-

economic networks like environmental standards (Loconto 2017) and trade regulations (Corning, 2020).
53. Satake 2011, 19.
54. Cecire 2016.
55. Wuthnow 2019, 136–37.
56. Sandler and Hartley 2001, 872.
57. Katz and Shapiro 1994.
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beneficiaries, network efficiencies resurrect a key assumption behind the large-
numbers problem: that a distinct group exists, and larger groups reduce the fractional
benefit for any given actor.58

Second, dense local networks may endanger the reciprocity mechanism that deters
free riding at the bilateral level. As political economists have long argued59—and as
Farrell and Newman show with regard to economic networks and security issues60—
policy interdependence reduces flexibility. In a dense local network, j’s attempts to
punish a free-riding i are more likely to negatively impact j’s other partners—who
expect to benefit from production of defense goods—regardless of whether those
third parties engage in free riding themselves. If dense local networks indeed
reduce states’ ability to deter free riding via strategic interactions, they effectively
reinstate the additional two assumptions behind the large-numbers problem—that
is, states lack strategic mechanisms to encourage contributions, and they face organ-
izational costs.61 Opportunistic states, recognizing the limited ability of their partners
to inflict punishments, can more easily free ride on those partners’ efforts. Notably,
free riding in this case arises not from multilateral treaties or international organiza-
tions but from network structure.
Both efficiency and free riding reduce defense spending, but for starkly different

reasons. Separating these mechanisms is necessary to illuminate the overall security
benefits of defense cooperation. A key distinction is that efficiencies are a general
effect of network structure as such,62 while free riding is conditional on the defense
effort of one’s partners.63 That is, efficiencies emerge when defense partnerships
coalesce into transitive triads. By contrast, the incentive to free ride on the efforts of

(a) Sparse local network
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(b) Dense local network

k
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FIGURE 4. Sparse versus dense local networks

58. Kahler 1992, 683.
59. Rodrik 2000, 182–83.
60. Farrell and Newman 2019.
61. Kahler 1992, 683.
62. Jackson and Wolinsky 1996.
63. Olson and Zeckhauser 1966, 268.
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other states depends on the effort expended by those states. We exploit this distinction to
separate the effects of network efficiencies from triangle-induced free riding.

A Computational Model of Network–Behavior Coevolution

To derive testable hypotheses, we must (1) explicitly model interdependence between
selection and influence; (2) separate the bilateral and network influences of DCAs;
and (3) distinguish the effects of network efficiencies from those of free riding.
Because network relations and individual behaviors are mutually endogenous, models
that rely on analytic solutions, such as game-theoretic and decision-theoretic models,
are generally not feasible. Instead, we build an ABM using a network–behavior
coevolution approach, which is designed to assess how network relations and individual
behaviors mutually influence one another.64 Similar ABMs have been used to study
selection–influence dynamics across a range of networks and behaviors, including the
international system.65 A methodological benefit of this approach is that it is readily
extensible to empirical analysis, as discussed later. This subsection explains the key ele-
ments of the ABM. The online supplement gives a thorough presentation.
Consider a finite set of agents, N = {1, …, n}, with ties g∈ {0, 1}, in an n × n

matrix, representing bilateral DCAs. The n × 1 matrix r∈ {1,…, M} defines an indi-
vidual behavior, scaled across M ordinal categories, representing defense effort.
Agents adjust their ties or behaviors when given an opportunity to do so according
to separate rate functions, such that g and r coevolve in continuous time. A focal
agent i may create a new network tie, terminate an existing one, or make no
change at all. Let g+ denote the network that exists after i has been given an oppor-
tunity to adjust its ties. Similarly, let r+ denote the matrix of behaviors that results
from i having an opportunity to change its behavior. When agents adjust their ties
or behavior, they maximize their utility with respect to two objective functions:
f neti (g, gþ, r) for the network and f behi (g, r, rþ) for behavior.
The network choice probabilities for i are defined as

P(gþ) ¼ exp ( f neti (g, gþ, r))
Pn

k¼1
exp ( f neti (g, gþk, r))

ð1Þ

64. See Snijders 2001; Steglich, Snijders, and Pearson 2010. While there is a growing literature on
network games (Jackson and Zenou 2015), the bulk of this work addresses fixed networks, with
network structure as an exogenous, static influence (Bramoullé and Kranton 2016). The few existing
game-theoretic models of network–behavior coevolution are exploratory and require highly restrictive
assumptions about network formation to arrive at closed-form solutions. For example, Canen, Jackson,
and Trebbi 2022 assume that network ties form according to a “random matching protocol,” while
Badev 2021 assumes a process of chance encounters among a predetermined subset of nodes. Further,
network games predict a large number of equilibria (Galeotti et al. 2010, 219), many of them trivial or
unrealistic, and are not amenable to empirical analysis (Badev 2021, 1182).
65. Bianchi, Flache, and Squazzoni 2020; Finn et al. 2019; Lehmann, Rolfsen, and Clark 2015;

Stadtfeld, Takács, and Vörös 2020; Zhang et al. 2015.
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where the sum in the denominator refers to all possible g+k states of the network, or
the options available to i for toggling its network ties.66 Similarly, the choice prob-
abilities for behavior change are defined as

P(rþ) ¼ exp ( f behi (g, r, rþ))
PM

k¼1
exp ( f behi (g, r, rþk))

ð2Þ

where the sum in the denominator refers to possible r+k levels of the behavior.
The ABM implements these objective functions as linear combinations of effects:

f neti (g, gþ, r) ¼
X

h

βneth sneth (i, g, gþ, r) ð3Þ

f behi (g, r, rþ) ¼
X

h

βbehh sbehh (i, g, r, rþ), ð4Þ

where the statistics sh must be specified on the basis of theory and may include
endogenous features of the network g, various aspects of behavior r, or exogenous cov-
ariates. The βh parameters are weights that determine the extent to which agents attempt
to achieve a network–behavioral state that yields large values for the corresponding sh
statistics. The ABM captures network–behavior coevolution by including behavior
terms in the network equation and network terms in the behavior equation.
The ABM defines a micro-level, actor-oriented process,67 which approximates the

decision-theoretic approaches common in the study of burden sharing.68 The out-
comes of interest are macro-level features of the network and behavior, which are
not themselves explicitly modeled but are emergent properties.69 We derive hypoth-
eses by observing how the ABM specification affects these macro-level outcomes.
The key outcome in this case is mean defense effort. The ABM outcomes are statis-
tical approximations of stable equilibria in which agents cannot further improve their
utility.70 See the online supplement for equilibrium analysis.
We calibrate the ABM using observed empirical data on the DCA network and

defense spending for the year 2000.71 The initial g matrix is the observed DCA
network, where gij = 1 indicates a DCA in force. The initial r matrix is an eleven-
point scale (M = 11) of country-level defense effort, derived from defense spending
as a percentage of GDP. By assuming that individual behavior takes on ordinal

66. Note that because DCA networks are nondirected, target j of i’s network tie must confirm the tie in
order for it to be created, based on a choice probability similar to that in equation (1). See the online
supplement.
67. Snijders and Steglich 2015.
68. Butts 2017, 48.
69. Pumpuni-Lenss, Blackburn, and Garstenauer 2017.
70. De Marchi and Page 2014, 10–11.
71. The data sources are the same as those used in the empirical analysis. The choice of year is

inconsequential.
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values, we can represent network–behavior coevolution in a common statistical
framework—specifically, a continuous-time Markov chain with a discrete outcome
space.72 A continuous behavior metric would entail a virtually infinite number of
choices (see equation (2)), which is computationally infeasible. In network–behavior
models, discretization is widely used and well established.73 We discretize defense-
spendingdata at absolute 1percent increments fromzero to 10percent,with a residual cat-
egory for spending above 10percent; that is,we specify cut points at [0, 0.01,…, 0.1, 1].74

DCA Degree and Defense Spending

We first examine the f behi (g, r, rþ) behavior function in isolation. We specify the
standard public-goods model described by Sandler and Hartley, where optimal
defense effort for country i is a function of the price of defense goods, national
income, level of threat, and spill-ins from defense partners.75 When the relationship
between spill-ins and defense effort is the focus, the additional terms in the model can
be held constant, which allows derivation of reaction functions that indicate i’s
optimal response to the efforts of its partner j.76 We model this response as

f behi (g, r, rþ) ¼ αbehri þ πci þ γdi, ð5Þ
where {αbeh, π, γ} are the βbehh parameters of equation (4), given unique designations
for clarity. ri is agent i’s current level of defense effort. ci is the ith observation of an
n × 1 random variable with an exponential distribution that represents exogenous,
unit-specific demands for defense spending, such as variations in national income
and/or exposure to security threats. di is i’s number of partners in the DCA
network, or “nodal degree,” which reflects anticipated defense contributions from
one’s partners and thus corresponds to spill-in in the public-goods framework.77

Table 1 lists all the component variables of the ABM, with formal definitions. See
the online supplement for parameter profiles.
The γ parameter determines the effect of i’s DCAs on its utility. The claim that free

riding increases with group size assumes that γ is negative.78 As defense partners
increase in number, the incentive to spend on defense declines. Accordingly, we first
set γ at incrementally decreasing values from zero. Because public-goods models do
not consider network structure, at this point all parameters in the network equation
are zero; that is, states select DCA partners at random.79 We then simulate the
coevolution of the DCA network and defense spending. Figure 5(a) illustrates

72. Niezink, Snijders, and van Duijn 2019, 296.
73. Niezink 2018, chapter 6.
74. Compare Ripley et al. 2021, 26.
75. Sandler and Hartley 2001, 873.
76. Sandler 1993, 453.
77. Conybeare, Murdoch, and Sandler 1994.
78. Olson 1965, 35.
79. Snijders 2001, 373.
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equilibrium defense spending behavior as γ decreases. These equilibria mirror the
familiar response curve of a decision-theoretic public-goods model.80 The greater the
anticipated spill-ins from defense partnerships, the less effort i expends on defense.

By contrast, if bilateral agreements enable detection and punishment, then i cannot
accrue the benefits of defense partnerships without making contributions. In this case, γ
is positive, reflecting the utility iderives from spending on defense and ensuring continued
cooperation from its partners. Figure 5(b) illustrates equilibrium defense spending as γ
increases from zero. Contrary to the expectations of free-riding models, increases in γ
sharply increase defense effort—despite the pressure of exogenous influences and the
nonzero costs of defense. Two clarifications are in order. First, because γ parameterizes
the relationship between nodal degree and individual behavior, the effect illustrated in
Figure 5 depends not only on γ but also on each agent’s respective nodal degree. That
is, as a country’s number of ties increases, so does the impact of γ on defense effort.
Second, because this result is agnostic about network structure and the underlying
process of network formation, it is strictly limited to the bilateral effects of DCAs.
Overall, under the assumption that bilateralism facilitates reciprocal punishments, and as
a counter to public-goods expectations, themodel yields the following testable hypothesis:

H1: As a state’s number of DCA partners increases, its defense spending
increases.

TABLE 1. Summary of terms in the agent-based model

Variable Parameter Name Definition Description

Defense spending equation

ri αbeh CONSTANT ri Baseline defense spending behavior, or cost of
defense effort

di γ DCA DEGREE ri
Pn

j gij Effect of bilateral DCAs on i’s defense effort

qi ψ DCA DENSE TRIADS ri
Pn

j,k gijgikgjk Effect of DCA triangles on i’s defense effort

zi η DCA TRIADS EFFORT qiri
Pn

j gijrj Effect of DCA triangles conditional on partners’
defense effort

ci π Monadic covariate rici Exogenous influences at the country level

DCA network equation

gi• αnet DENSITY
Pn

j gij Baseline tendency to form ties, or cost of DCAs

aij τ TOTAL DEGREE
Pn

j gij(gj� þ gi�) Selection of partners based on total number of
DCAs signed

bij δ TRANSITIVE TRIADS
Pn

j<k gijgikgjk Selection of partners based on closure of triangles

rj ζ DEFENSE SPENDINGj
Pn

j gijrj Selection of high-spending partners

cj ϕ Monadic covariate
Pn

j gijcj Exogenous country-level influences on partner
selection

wij ξ Dyadic covariate
Pn

j gijwij Exogenous country-pair influences on partner
selection

80. Sandler 1993, 455.
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Influence of Transitive Triads

To incorporate the influence of network structure on defense spending, we must first
specify the components of the network objective function, f neti (g, gþ, r). Drawing on
empirical work on DCA networks,81 we specify

f neti (g, gþ, r) ¼ αnetgi� þ fcj þ ξwij þ ζrj þ τaij þ δbij ð6Þ

where {αnet, ϕ, ξ, ζ, τ, δ} are the βneth parameters of equation (3). The αnetgi� term
models i’s baseline tendency to form ties. As in equation (5), cj is an n × 1 random
variable, which in this case reflects exogenous monadic attributes of j that influence
partner selection. wij is a random variable in the form of an n × nmatrix to account for
exogenous dyadic influences. The ζrj term models the tendency for i to select DCA
partners that spend highly on defense. The endogenous term τaij accounts for the
tendency of high-degree nodes to sign DCAs with other high-degree nodes.82

The final term, δbij, is the most critical. bij is the sum of triangles in i’s network ties.
The parameter δ determines the utility i derives from selecting defense partners in a
way that yields triangles. If δ is positive, agents prefer to form dense local networks; if
negative, agents prefer intransitive triads and sparse local networks. We set δ at a
positive value to reflect the attraction of network efficiencies, consistent with existing
empirical work.83

With equation (6) in place, we update equation (5) to include network structure:

f behi (g, r, rþ) ¼ αbehri þ πci þ γdi þ ψqi ð7Þ
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(b) With detection and punishment

Notes: Based on 25 simulations of network–behavior coevolution for each γ ∈{–0.05, . . . ,0}
(left) and γ ∈{0, . . . , 0.05} (right); ρ = 200. Box-and-whisker plots show distribution of
defense spending behavior in each set of simulations. Black line is a loess curve across all
simulations. Network partner selection is random.

FIGURE 5. Equilibrium outcomes in the network–behavior agent-based model

81. Beardsley et al. 2020; Kinne 2018; Kinne and Bunte 2020; Winecoff 2020.
82. Kinne 2018.
83. Kinne 2018; Kinne and Bunte 2020.
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where qi is a count of triangles in i’s local network. The ψ parameter determines the
additional utility that triangles generate for i. If triangles are irrelevant, then ψ = 0. If
triangles generate network efficiencies, then ψ is negative.
The ABM uses both equations (6) and (7) to simulate the coevolution of the DCA

network and defense spending. We vary ψ from negative to positive values while
holding γ at a constant positive value, consistent with H1. This specification captures the
countervailing effect of network structure even as, in purely bilateral terms, DCAs exert
consistent upward pressure on defense effort. Figure 6(a) illustrates equilibrium defense-
spendingbehavior. Positive values ofψ—whichmight obtain if, say, dense local networks
improve detection and punishment—generate small increases in defense spending. By
contrast, negative values of ψ result in correspondingly larger reductions in defense
effort, consistent with the influence of network efficiencies. This result obtains even
though the positive bilateral effect of DCAs, reflected in γ, remains unchanged.

Network–behavior coevolution plays an essential role in generating these out-
comes. We thus far have assumed a network formation process in which agents pri-
oritize transitive triads ðδ > 0Þ. Consider an alternative network formation process,
known as “preferential attachment,”84 where agents prefer ties to high-degree
nodes and avoid transitive closure ðδ < 0Þ. This process yields a hub-and-spoke top-
ology, consistent with theories that emphasize hierarchy in the international system85

and the primacy of great power politics.86

We simulated the ABM using this alternative parameter profile for network forma-
tion (equation (6)) while keeping the behavior profile (equation (7)) unchanged.87
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(a) Coevolution with triangle influence
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(b) Coevolution under preferential attachment

Notes: Based on 100 simulations of network–behavior coevolution for each
ρ = 100. Box-and-whisker plots show distribution of defense-spending behavior in each set of
simulations. Black line is a loess curve across all simulations. Left δ : = 0.5. Right δ : = –0.75.

 ψ ∈{–0.005, . . . ,0.005}.

FIGURE 6. Agent-based model with coevolution and dense local networks

84. Barabási and Albert 1999.
85. Jung and Lake 2011; Lake 2009.
86. Maoz 2012; Mearsheimer 2001.
87. Note that in this model the quantity aij in the τaij term is defined solely in terms of target j’s nodal

degree, which better represents the process of preferential attachment. See Barabási and Albert 1999.
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This model generates sharply divergent outcomes, illustrated in Figure 6(b).
Transitive triads have no discernible effect on defense spending, even though the
parameters for equation (7) are identical to those used to produce the results in
Figure 6(a). When states have little incentive to form triangles, then the influence
of triangles on spending declines to trivial levels, even if, in principle, triangles
should reduce defense effort. These results reinforce the crucial insight that
network formation and individual behavior are interdependent processes. If we
ignore the strategic motivations behind agents’ selection of partners, or if we misun-
derstand those motivations, we may reach wildly divergent expectations about the
influence of network ties on behavior. The model yields the following hypothesis:

H2: As the number of triangles in a state’s local DCA network increases, its
defense effort decreases.

While these results are consistent with an efficiency mechanism, they may also be
driven by free riding. To separate these mechanisms, we capitalize on the distinction
noted earlier. Efficiencies are a general feature of network structure, not conditional
on nodal attributes.88 By contrast, the free-riding incentive depends on spill-ins
from the efforts of one’s defense partners.89 Bilateralism mitigates free riding by
enabling reciprocal punishments. Yet, as dense local networks undermine the
ability of states to impose punishments, the free-riding incentive reemerges—spe-
cifically in the context of a dense local network, where an opportunistic agent can
reap the gains of its triangle partners’ efforts while strategically avoiding
punishments.
We model i’s responsiveness to spill-ins from its triangle partners as

f behi (g; r; rþ) ¼ αbehri þ πci þ γdi þ ψqi þ ηzi; ð8Þ

where zi measures triangles as a function of the defense effort of i’s partners, and the
parameter η determines the strength of the free-riding incentive, or i’s prospects for
evading bilateral punishments. Considering η alongside ψ separates the general
effect of network efficiencies from the conditional effect of free riding.
Figure 7 illustrates the plausible parameter space for η and ψ as each decreases

from zero. Free riding and efficiency are independently capable of reducing
defense effort. That is, even if we altogether eliminate free riding (η ¼ 0), trian-
gles still push defense effort downward, regardless of partners’ defense efforts,
via the general influence of network efficiencies ðψ < 0Þ. Conversely, if we
assume that triangles as such generate no utility (ψ ¼ 0) but we allow dense
local networks to undermine reciprocity ðη< 0Þ, an opportunistic agent will
reduce its defense effort so long as it obtains spill-ins from its local network

88. Jackson and Wolinsky 1996.
89. Sandler 1993, 451.
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partners. These results cleanly separate the causal mechanisms and yield two test-
able hypotheses:

H3 (Efficiency): Triangles reduce a state’s defense effort regardless of the effort
of its partners ðψ < 0; η ¼ 0Þ.

H4 (Free riding): Triangles reduce a state’s defense effort only as the effort of
its partners increases ðψ ¼ 0; η< 0Þ.

Overall, the ABM provides insights that, to our knowledge, have not been considered
in the burden-sharing literature. First, the anticipated effect of defense agreements on
defense effort depends on critical assumptions about whether an accumulation of
bilateral DCAs raises the same large-N problems that plague collective action in
multilateral and organizational frameworks. Second, states engage in a strategic
selection–influence dynamic when joining defense agreements, and this dynamic
generates distinctive network structures. Third, the network structures that emerge
from strategic partner selection influence defense effort in ways that are not apparent
from bilateral relations. Finally, these network influences may involve either free
riding or efficiency, and these competing mechanisms carry distinct empirical
implications.

Research Design and Data

The complexities of the ABM—simultaneous equations across levels of analysis,
endogenous influences within the network, and selection–influence dynamics—are
intractable in traditional regression-based empirical models. To our knowledge, the
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Notes: Cells indicate mean defense spending at specified ψ  and η values, based on twenty-five
simulations of network–behavior coevolution for each cell. ρ = 100. Specified ranges include
 parameter floor values; further decreasing ψ  or η has no effect.

FIGURE 7. Effect of efficiency and free riding on defense effort
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only established empirical model capable of modeling such features of network–
behavior coevolution is the stochastic actor-oriented model (SAOM).90

Fortunately, the network–behavior architecture of the ABM also underlies the
SAOM, and moving from the ABM to empirical analysis is straightforward. The
SAOM implements a simulated method-of-moments estimator, which uses
network–behavior simulations to calculate expected values of included model statis-
tics, compare those expected values to observed values, and derive parameter esti-
mates. In this sense, the SAOM validates the ABM against real-world data.91 In
empirical studies of international relations, SAOMs have been used to model
single networks over time,92 network–behavior coevolution,93 and dynamics of
multiplex networks.94

We first update the objective functions to incorporate longitudinal empirical
network–behavior data. Let g be a 1 . . . T stack of symmetric, binary n × n matrices,
where T is the number of years of data. As in the ABM, gij;t ¼ 1 indicates that a DCA
is in force between i and j in year t. Let r be a 1 . . . T stack of n × 1 matrices. Again
mirroring the ABM, each ri;t entry of r takes on some ordinal integer value, where
larger values indicate greater defense effort.
The empirical implementation of the network objective function in equation (3)

can be written as

f gi (g; r) ¼
X

h

βghs
g
ih(g; r) ð9Þ

and the behavior objective function in equation (4) can be written as

f ri (g; r) ¼
X

h

βrhs
r
ih(g; r) ð10Þ

To ensure that the empirical model aligns with the ABM, we use the same network
terms in the SAOM as in the ABM (summarized in Table 1). For clarity, in the SAOM
we refer to these terms by their full names. Equation (9) thus includes DENSITY, TOTAL
DEGREE, TRANSITIVE TRIADS, and DEFENSE SPENDINGj, all of which are calculated on empir-
ical DCA data. Similarly, equation (10) includes CONSTANT,95 DCA DEGREE, DCA DENSE

TRIADS, and DCA TRIADS EFFORT. We incorporate the exogenous covariates of the ABM,
ci, cj, and wij, using multiple monadic and dyadic controls, as discussed later.
The SAOM uses empirical data to calculate observed values for each of the sgih and

srih statistics in the respective network and behavior objective functions. To obtain
expected values for these statistics, the model simulates network–behavior

90. Snijders 2001; Steglich, Snijders, and Pearson 2010.
91. Snijders and Steglich 2015.
92. Kinne 2013, 2014; Manger, Pickup, and Snijders 2012; Warren 2010.
93. Chyzh 2016; Elkink and Grund 2022; Kinne 2016.
94. Hollway and Koskinen 2016; Htwe, Lim, and Kakinaka 2020; Kinne and Bunte 2020; Milewicz et al.

2018; Warren 2016.
95. We also include the square of Constant in case of nonlinearities.
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coevolution using the same choice probabilities as in the ABM, where states adjust
ties to maximize the function in equation (9) and adjust defense spending to maximize
the function in equation (10). Unlike the ABM, these simulations are fully con-
strained by the observed data, and the parameter values are estimated rather than
determined. A Robbins-Monro Markov-chain Monte Carlo algorithm searches the

parameter space and locates vectors of parameter estimates, β̂gh and β̂rh, where the
expected values of the model statistics, calculated on the simulations, are equal to
the observed values. Standard errors are derived using the delta method. Null

hypotheses are tested with a standard t-statistic, th ¼ β̂h
s:e:(β̂h)

. See the online supplement

for an extensive formal treatment.
We build the DCA network using Kinne’s Defense Cooperation Agreement

Dataset.96 Our analysis employs the “general” category of DCAs, which includes
only agreements that institutionalize the full range of countries’ defense cooperative
activities, including mutual consultation, training, joint exercises, intelligence
sharing, research and development, and arms trade, among others. We obtain
similar results if we also include “sector” DCAs (see the online supplement).
We measure country-level defense effort as defense expenditures divided by GDP.97

We discretize this metric into eleven categories of defense effort, identical to the ABM.
The online supplement explores discretization in greater depth and shows that the
results are robust to numerous alternative approaches, such as increasing or decreasing
the number of ordinal categories, taking log transformations, and using alternative
metrics of defense effort. Data on expenditures come from the Correlates of War
national military indicators data set.98 GDP data are from the Penn World Table.99

In the network equation of the ABM, the terms wij and cj reflect exogenous dyadic
and monadic influences, respectively. To operationalize these terms, we draw on
recent work on DCA networks, which shows that exogenous demand for DCAs is
determined largely by geography, shared economic and political interests, member-
ship in formal alliances, and economic resources.100 We thus include the following
controls:

• DISTANCE: the log-transformed geographic distance between i and j’s capital
cities.101

• ALLIANCE (NON-NATO): a dummy variable that equals 1 if i and j share membership
in any alliance other than NATO.102

96. Kinne 2020.
97. Hartley and Sandler 1999, 674.
98. Singer 1987; Singer, Bremer, and Stuckey 1972.
99. Feenstra, Inklaar, and Timmer 2015.

100. Kinne 2018; Kinne and Bunte 2020.
101. Weidmann, Kuse, and Gleditsch 2010. Note that for all logged variables, we add 1 before

transforming.
102. Leeds et al. 2002.
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• NATO: a dummy variable that equals 1 if both i and j are NATO member states.
• UNGA IDEAL POINTS: the distance between the ideal-point estimates of i and j’s

voting records in the UN General Assembly.103

• TRADE: the total bilateral trade between i and j, log transformed.104

• DEMOCRACYj: a dummy variable that equals 1 if the potential DCA partner is a
democracy.105

• CAPABILITIESj: the log-transformed Correlates of War Composite Indicator of
National Capability score for j.106

The defense-spending equation of the ABM includes the exogenous covariate ci.
To operationalize this term, we draw on the empirical literature on defense spending,
which emphasizes internal demand-side factors like political ideology, supply-side
factors like economic growth, and exogenous factors like militarized conflict, alliance
membership, and neighborhood effects. The following controls account for these
influences:

• DEMOCRACY: a dummy variable that equals 1 if the country is democratic.107

Because democracies face domestic challenges in diverting resources from
“butter” to “guns,” they may be less willing to spend on defense.108

• GDP GROWTH: the country’s annual GDP growth rate.109 Ceteris paribus, when
governments have more revenue to spend, they spend more on defense.110

• ALLIANCES (NON-NATO): the number of alliances, excluding NATO, in which the
country holds membership.111 This variable accounts for potential spill-ins in
formal alliances.112

• NATO MEMBER: a dummy variable that equals 1 if the country is a full NATO
member state in the current year. NATO’s unique institutional structure and
expenditure guidelines may influence defense spending differently than other
alliances.

• MILITARY REGIME: a dummy variable that equals 1 if the country’s government is a
military regime.113 This variable accounts for militaristic political ideologies,
which may be inclined toward high levels of defense spending.114

103. Bailey, Strezhnev, and Voeten 2017.
104. Barbieri and Keshk 2016; Barbieri, Keshk, and Pollins 2009.
105. Boix, Miller, and Rosato 2012.
106. Singer 1987.
107. Boix, Miller, and Rosato 2012.
108. Fordham and Walker 2005.
109. Feenstra, Inklaar, and Timmer 2015.
110. DiGiuseppe 2015; Whitten and Williams 2011.
111. Leeds et al. 2002.
112. Sandler and Hartley 2001, 873.
113. Geddes, Wright, and Frantz 2014.
114. Studies of defense spending often control for liberal/conservative government ideologies (e.g.,

Whitten and Williams 2011). Such metrics exclude autocratic regimes, which results in unacceptable
levels of missing data.
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• MIDs: the log-transformed count of the number of militarized interstate disputes in
which the country participated in the current year.115 Countries that frequently
engage in conflict may spend more on defense.116

• SPATIAL LAG: the defense spending of the country’s geographically contiguous
neighbors. High levels of spending in neighboring states may increase spending
in the focal state.117

The online supplement includes robustness checks with additional control vari-
ables, such as bilateral loans, alliance-based spill-ins, and alternative operationaliza-
tions of UNGA ideal points.

Results and Discussion

We estimated four models. Figure 8 summarizes the results, with estimates and con-
fidence intervals scaled for legibility. (See the online supplement for unscaled esti-
mates.) Model 1 is a baseline model that examines the coevolution of defense
spending and DCA partner selection—via DEFENSE SPENDINGj in the DCA equation
and DCA DEGREE in the spending equation—but does not account for higher-order
network effects. The estimates from the DCA equation show partial evidence of stra-
tegic selection. For example, the positive estimates for CAPABILITIESj and DEMOCRACYj

indicate that governments prefer militarily capable and democratic defense part-
ners.118 The estimate for DEFENSE SPENDINGj is statistically indistinguishable from
zero. Governments do not appear to select high-spending partners.119 The estimates
for the remaining variables in the DCA equation are consistent with prior research.120

In the defense-spending equation of model 1 (lower panel), the estimate for DCA

DEGREE is positive and weakly significant (10% level). This result is consistent with
a bilateral influence effect and supports H1. Interpretation of SAOM estimates is
analogous to multinomial logit. Exponentiating the (unscaled) estimates provides
odds ratios. Consider a comparison between two hypothetical countries, i and h,
equal on all observed dimensions except i has one more DCA tie than h. The unscaled
estimate for DCA DEGREE (0.017) indicates that the odds of country i increasing its
defense effort by one unit are about 1.7 percent greater than the odds of h increasing
its defense effort. While this effect is small, large differences in DCA connectivity
accumulate quickly. For example, if i has 10 more DCA ties than h, the odds of i
increasing its defense effort are 19 percent greater than h doing so. If i has twenty

115. Palmer et al. 2015.
116. Nordhaus, Oneal, and Russett 2012.
117. Yesilyurt and Elhorst 2017.
118. Digiuseppe and Poast 2018.
119. However, when using absolute defense spending in lieu of the spending/GDP ratio, the estimate for

DEFENSE SPENDINGj is strongly positive. See the online supplement.
120. Kinne 2018; Kinne and Bunte 2020.
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more DCA ties, the odds are over 40 percent greater. The more DCAs a state signs,
the greater the pressure to increase defense effort.

Model 2 introduces the main network selection term, TRANSITIVE TRIADS, along
with the endogenous TOTAL DEGREE effect. This model estimates the extent to
which countries condition their selection of DCA partners on structural features of
the DCA network. The estimates for the network terms are large and highly
precise, indicating a substantial network selection effect. Based on the estimate for
TRANSITIVE TRIADS, the odds of a given country i selecting a partner j that shares a

Model 1 Model 2 Model 3 Model 4
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Notes: Dots and lines are rescaled point estimates and confidence intervals. Thick lines are 95%
confidence. Thin lines are 99% confidence. Estimates in green are significant at 95%. Estimates
in brown are not significant. All individual convergence diagnostics < 0.1. Total convergence:
model 1, 0.233; model 2, 0.238; model 3, 0.219; model 4, 0.232. See the online supplement for
full table and unscaled estimates.

FIGURE 8. Stochastic actor-oriented model of DCAs and defense spending
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third party k in common are about 22 percent greater than the odds of i selecting an
otherwise disconnected j, all else equal. This effect increases substantially as i and j’s
number of shared third-party collaborators increases. If i and j have, say, five DCA
partners in common, the odds of i forming a DCA with j are nearly 170 percent
greater than i’s odds of selecting some disconnected partner. This selection effect
reflects the attraction of network efficiencies.
Model 3 introduces the DCA DENSE TRIADS term into the defense spending equation,

which indicates the effect of network structure on expenditures. The estimate is negative
and highly significant. Substantively, adding one additional triangle lowers a country’s
odds of increasing its defense effort by about 2 percent. Adding ten triangles lowers
those odds by 20 percent; adding twenty lowers them by 35 percent. Consistent with
H2, dense local networks put downward pressure on defense effort. At the same time,
model 3 shows a larger, more precise estimate for DCA DEGREE, which translates into a 9
percent increase in the odds of a one-unit increase in defense spending—substantially
larger than the 1.7 percent effect found in model 1. The weakly positive estimate for
DCA DEGREE in models 1 and 2 obscures the divergent effects of DCAs. Incorporating
DCA DENSE TRIADS into the model not only reveals the influence of network structure but
also permits a more precise estimate of bilateral influence.
Finally, model 4 incorporates the free-riding term, DCA TRIADS EFFORT. Contrary to

H4, the estimate is statistically insignificant. And the estimate for DCA DENSE TRIADS

remains virtually unchanged. We thus find no empirical evidence that dense local net-
works encourage states to free ride on the efforts of their defense partners. Rather,
triangles as such reduce i’s defense effort. This finding supports the more general effi-
ciency mechanism, where network influence is a structural feature of states’ respect-
ive local DCA networks and is not conditional on partners’ spending. That said, the
results here represent only a first step in assessing efficiency versus free riding; add-
itional analyses may produce more nuanced conclusions. We consider extensions of
this analysis in the conclusion.
Overall, the empirical results provide a comprehensive picture of how selection–

influence dynamics combine with network effects to yield unexpected outcomes.
At a purely bilateral level, states prefer capable defense partners. And when they
sign agreements with those partners, ceteris paribus, their defense effort increases.
Though contrary to standard public-goods logic, these findings are consistent with
the logic of reciprocity-based punishment. Incorporating network-level dynamics,
however, complicates the picture. States do not merely select capable partners;
they also select partners in a way that yields transitive triads. Defense agreements
signed within that context generate conflicting incentives. On the one hand, bilateral
agreements pressure states to increase their defense effort and avoid punishments. On
the other hand, dense local networks generate network efficiencies that lower the
costs of defense production, thus encouraging reductions in spending.
To draw out the substantive implications of these findings, we conducted post-esti-

mation analysis, focusing on the defense-spending equation. Because the free-riding
term, DCA TRIADS EFFORT, showed no significant effect, we use model 3 for all
post-estimation analysis. (The results for model 4 are virtually identical.) The key
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variables, DCA DEGREE and DCA DENSE TRIADS, are functions of one another; an accurate
assessment of their respective influence requires that we consider both simultan-
eously. Further, the influence of transitive triads increases nonlinearly with nodal
degree.121 Thus, the countervailing effect of network structure on defense spending
grows more pronounced as a node’s local network densifies.

Figure 9 interprets the parameter estimates for DCA DEGREE and DCA DENSE TRIADS

across a range of hypothetical degree and triangle values, holding all other variables
constant. The left panel shows that the effect of DCAs varies sharply with network
context. If a country increases its number of DCAs from zero to twenty-five, and
those DCAs involve no transitive triads (that is, the ratio of actual to possible triangles
in the country’s local network is zero), then the odds of an increase in defense spend-
ing grow eight-fold, as shown in the top line. By contrast, if those twenty-five DCAs
entail a maximal increase in triangles, as in a dense local network, then the odds of an
increase in spending shrink to virtually zero.
The four panels on the right of Figure 9 illustrate the effect of triangles at fixed

degrees. For a country with five DCAs, the odds of an increase in defense spending
are greater than 1 for all but the very highest triangle ratios. For a country with ten
DCAs, a triangle ratio of 0.4 or greater—indicating that 40 percent or more of the
possible triangles in that country’s local network in fact exist—pushes the odds of
an increase in spending below the 1:1 threshold. And for a country with twenty-
five DCAs, a triangle ratio of just 15 percent reduces the odds of an increase in spend-
ing from nearly 8:1 to 1:1. The more deeply embedded a country is in the DCA
network, the more strongly network structure pushes against bilateral influence.
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FIGURE 9. Interpretation of degree and triangle effects on defense expenditures

121. For a node with degree d, the maximum number of triangles in its local network is d × (d− 1).

430 International Organization

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
20

81
83

22
00

03
15

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0020818322000315


We also conducted counterfactual analysis using real-world cases (Figure 10). We
selected twenty-four high-degree nodes in the 2010 network and split them into two
groups: (1) those with high levels of transitivity in their respective local networks, and
(2) those with low levels of transitivity. Such countries are especially vulnerable to
counterfactual increases or decreases in triangles. Using observed values of all vari-
ables, we iteratively simulated the coevolution of the DCA network and defense
spending, and we calculated the predicted level of spending for both groups. We
then counterfactually reduced the triangle ratio for group 1 and increased the triangle
ratio for group 2, and we again simulated coevolution and derived predictions.
Removing transitive triads (top) predicts a sharp upward deviation from current

spending levels. For example, using observed values, the model predicts little
change in Ukraine’s defense spending. However, if Ukraine’s local network
altogether lacks transitive triads, the model predicts a substantial increase in spend-
ing. Put differently, Ukraine’s level of defense spending—2.3 percent of GDP in
2010, less than most non-NATO former Soviet republics—is sustained, at least in
part, by the structure of its defense relations. By contrast, adding transitive triads
(bottom) attenuates that upward pressure—and for some states, pushes defense
spending in a negative direction. For example, although Sweden’s 2010 expenditures
were already quite low (1.4% of GDP), the model predicts that increasing the density
of its local network would push spending even lower. We emphasize that this
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values of DCA DENSE TRIADS. Y axes indicate difference between predicted and actual levels of defense  
spending for each country, under each of the observed and counterfactual conditions. Top: for high- 
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of increasing transitive triads by 50% while keeping degree at observed values.

FIGURE 10. Counterfactual analysis of selected countries
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counter-factual exercise does not alter states’ numbers of DCAs; it only manipulates
the structure of their respective local networks.
Finally, to compare the influence of DCAs on defense spending to the influence of

other components of the model, we assess variable importance.122 Figure 11 illus-
trates the results. In the early 1990s, variations in defense spending were best
explained by regime type, NATO membership, and alliances. While these influences
continue to matter over time, their importance is gradually eclipsed by DCAs. By
2000, DCA DEGREE is the most important variable in the model. By 2009, DCA

DEGREE and DCA DENSE TRIADS together explain nearly as much variation in defense
spending as all other variables combined. (See the online supplement for variable
importance by country.)

Conclusion

Burden sharing is an enduring collective-action problem. A network approach high-
lights aspects of burden sharing that, to our knowledge, have not been given exten-
sive attention. Our main finding—that the effect of defense agreements on burden
sharing depends on the network structure of those agreements—raises important
questions about the overall provision of security. Our empirical results suggest
that efficiencies, not free riding, are responsible for the negative effect of
network structure on defense effort. Consequently, spending reductions do not
necessarily indicate an underprovision of security. Rather, such reductions should
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FIGURE 11. Relative importance of effects

122. Indlekofer and Brandes 2013.
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be viewed through the wider lens of network context; they may reflect the efficiency
gains of densely connected networks. This insight complements the long-standing
observation that efficiencies reduce aggregate spending even as overall provision of
security remains optimal.123

This research is a first step toward merging network insights with established prin-
ciples from the study of burden sharing, public goods, and collective action. While
our ABM and empirical model implement a theoretically informed way of operation-
alizing efficiency and free riding, other approaches should be explored. In particular,
further research is needed on whether defense networks improve security overall
despite reductions in spending. Counterfactual estimates of optimal defense effort
are notoriously difficult, even with well-defined institutions like NATO.124 Such dif-
ficulties are amplified in a bilateral network context. A more promising approach,
which we explore in related work,125 is to consider whether dense local networks
affect participation in bilateral defense actions, such as joint military exercises,
arms trade, and peacekeeping operations. Such an analysis requires extensive
dyadic data and a carefully specified causal-inference design. If the evidence
indicates that defense activities increase among densely connected partners even as
aggregate spending declines, states may indeed be producing more security at
lower cost.
More broadly, our findings dovetail with recent work showing significant post–

Cold War and post-9/11 shifts in how countries cooperate on defense, with a
greater emphasis on nontraditional security threats and substantive defense activ-
ities.126 Network influences are central to these trends.127 While scholars have also
examined network influences in traditional alliances,128 the applicability of such
studies to present-day security questions is limited by the relative lack of change in
the global alliance network since the early 1990s. In a complex global environment,
where interstate threats coexist alongside myriad nontraditional threats, efficient
coordination of defense policies is an increasingly essential means of achieving secur-
ity. Taken as a whole, our results suggest that bilateral agreements, when embedded
within dense networks of aligned collaborators, may be a viable strategy for achiev-
ing optimal security gains.

Data Availability Statement

Replication files for this article may be found at <https://doi.org/10.7910/DVN/
S0ILRB>.

123. Hartley and Sandler 1999, 669.
124. Hartley and Sandler 1999; Oneal 1990.
125. Kinne 2022.
126. Kinne 2020.
127. Kinne 2018.
128. Cranmer, Desmarais, and Kirkland 2012; Haim 2016; Warren 2016.
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Supplementary Material

Supplementary material for this article is available at <https://doi.org/10.1017/
S0020818322000315>.
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