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LIFTINGS OF TENSOR FIELDS AND CONNECTIONS

TO TANGENT BUNDLES OF HIGHER ORDER

AKIHIKO MORIMOTO

§ Introduction

In the previous papers [1], [2] we have studied the prolongations of G-

structures to tangent bundles of arbitrary order, and in [3] we have con-

sidered the prolongations of connections to the tangential fibre bundles of

higher order. The purpose of the present paper is to study the liftings of

tensor fields and afEne connections to tangent bundles of higher order. In

fact, most of results in [4], [5] will be generalized in a natural fashion and

some of the formulas concerning vertical and complete lifts in [5] will be

unified and generalized in our formulas concerning U)-lifts (cf. §3).

The crucial starting point of our procedure is the following fact (§ 1):

For any vector field X on a manifold M and for any integer λ = 0,1, r,

there exists one and only one vector field Xw (called the U)-lift of X) on
r

the tangent bundle TM of order r satisfying the following equality

for any differentiable function f on M and any μ - 0,1, ,r, where f(μ}

r

is a function naturally lifted to TM from M.

Second, we construct (A)-lifts of differential 1-forms in § 2. After pre-

paring several nice equalities between the U)-lifts of functions, vector fields

and 1-forms on M, we shall construct in § 3 the (λ) -lifts of any tensor fields
r

on M to TM for λ = 0,1, , r. In the case r - 1, i.e. in the case of usual

tangent bundle, our (O)-lifts coincide with the vertical lifts, while our (l)-lifts

coincide with the complete lifts in [5]. Therefore, our (r)-lifts of tensor fields

can be considered as a generalization of complete lifts of tensor fields.

As an application of our U)-lifts, we consider in § 4 the case of almost

complex structures, and we shall prove that if M is a homogeneous (almost)
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r

complex manifold then TM is canonically a homogeneous (almost) complex

manifold.

In § 5, we shall consider the lifting of affine connections. We shall

prove similar results to [5], and, in fact, some formulas are unified in a nice

equality. As one of its consequences, we obtain locally affine symmetric
r

spaces TM from any locally affine symmetric space M for any integer r.

In § 6, we shall enumerate, without proof, some results concerning

the liftings of Riemannian structures and others.

In this paper, all manifolds and mappings (functions) are assumed to

be differentiable of class C°°, unless otherwise stated.

We shall fix a positive integer r throughout the paper.

§ 1. (Jl)-lifts of functions and vector fields.
Let M be an n-dimensional manifold. We denote by C°°(M) the algebra

r r

of all differentiate functions on M. Let {TM,π) be the tangent bundle of

order r to the manifold M (cf. [2]). We shall define the (^-lifting
Lλ : C°°{M) -> C°°(TM) of functions as follows:

DEFINITION 1.1. For any /eC°°(M), we define Lλ{f) = fx)^C°{TM) for

λ = 0,1, ,r as follows:

λ

for [<p]r^TM, where <p:R-*M is a differentiable map. For the sake of

convenience, we define f{λ) = 0 for any negative integer λ. We shall call

fλ) the U)-lift of / . Clearly, /<°> = / o π holds. We see readily that fw is
r

a well-defined differentiable function on TM, i.e. the value f(λ\φ]r) of (1.1)

is independent of the choice of the representative φ.

LEMMA 1.2. The (λ)-lifiing Lλ : C°°(M) -+C°°{TM) is linear and satisfies the

following equality

(1.2) (/ flθ(a>= Σ / ( * ) 0('-*)

for every f%gG:C°°{M).

Proof The linearity of the map Lλ is clear from the equality (1.1).

The equality (1.2) is verified as follows:
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for every M . G T M Q.E.D.

Let ^~{M) = Σ^~a(Λ/) be the tensor algebra of all tensor fields on M,

where ^\{M) is the subspace of all tensor fields of type {p,q) on M (p-

contravariant, ^-covariant).

LEMMA 1.3. Let X, Ϋ^^l(TM). If X(f(v)) = Ϋ(f(v)) for every fξ=C~(M),

v = 0,1, ,r, then X = Ϋ.
r r

Proof Take an element a = [φ]r^TM with π(a) - x0. Let U be a co-

ordinate neighborhood of x0 with coordinate system {x19 ,%n} and let

{Xi\l,2, ' ,n; v = 0,1, ,r} be the induced coordinate system (cf. [2]) on
r O) _ (v)

(π)"*1^). By Definition 1.1 we have #* = (^ί)(υ). Therefore, we get -Xα(α?i) =

?(aj«) for every i = 1,2, ,n; i> = 0,1, ,r. Hence we have Zα = Ϋa for

every a^TM. Q.E.D.

For any vector field X^^\{M), we shall define the U)-lift X<» of X

For that purpose we shall prove the following
L E M M A 1.4. For any X<BJ7~\(M) and any λ = 0,1, , r , there exists one

r

and only one XW<^J7~Ί(TM) satisfying the following equality

(1.3) xwfw = (x/yi+p-r)

for every f<=C°°(M) and μ = 0,1, ,r.

Proof Take a coordinate neighborhood U in M with coordinate system

{ίCj, ,^u}. As in [2], let {α̂ } be the induced coordinate system on {π)~λ{U).

The vector field X can be expressed on U as follows:

where fl,GC"([/), i = 1,2, ,n. Consider the vector field X= Xv on (π)"1
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defined by

fj

We shall prove

for every /eC°°(ί/) and v = 0,1, ,r.
(v)

First, we see that £(&<) = 4M+A-r> = (XxtY
v+x-r> and hence (1.4) holds for

00
f — xι (i = 1,2, ,w), since 8f = (#ί)(v) for every z = 1,2, ,n; y = 0,1,
• ,r. We denote by A the set of all /eC~(J7) such that (1.4) holds for

every v = 0,1, ,r.

We assert that if / , g&A, then f g^A. For, we calculate, using

Lemma 1.2, as follows:

Έf9

» + βμ) Xg{v~μ)}

= Σ
μf = 0

and hence / ffεA On the other hand, it is clear that / , g&A implies

/ + g&A and that c&R, f&A imply c f^A. Therefore, every polynomial

of xu ,xn is contained in A.

Now, we shall prove (1.4) for every / e C°°(i7). Take an element

M r εT(ί/)) = (π)"ι{U). We have to verify

(1.5) {Xf'V)) (Wr) = (XfF+'-r)Wr).

ίV) (v)

For that purpose, put xAφ%) = α? for i = 1, ,n; v = 0,1, ,r, and
(0) O) (v)

Vi = %i — xt for ί = 1, 9n. I t is clear that α̂  = ^ for y = 1,2, , r and
(0)

that 2/i([>0]r) = 0 for ί = 1, ,». Since f^C*{U)% by considering Taylor

expansion of / , we can find polynomials Pu Po of #i, ,2/Λ and a function

fteC"(t/) (i = 1,2, ,ft) such that degP^ > r , d e g P 0 ^ r and that
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/= Σ
j

on [/. Put fi — Pi'9i. Since P0^A, it remains to prove (1.5) for / =

Put P=Pl9 flr=&. Since d e g P > r , we have P^([φ']r) = (l/μ\) [

Now, by Lemma 1.2, we have fψ — J^pwg(v-μ) and hence we get

(1.6) X(f\v)) = Σ XPW g(v~μ) + Σ P w Xg(v-μ)

μ=0 μ=0

= ϊ}(XPf+μ-r) g{v-v+ Σ, P^ - Xgiv'μ\
μ = 0 μ=0

The first term of the right hand side in (1.6) is equal to

(1.7) Σ {XPf+v-f'-r). flfC") = A+jj~r

μ/=0 μ=Q

On the other hand, we calculate as follows:

(1.8) (X/1)
w+"-r) = (.XP. flr + P Xg)^-r)

)
μ=0 μ=0

From the equalities (1.6), (1.7), (1.8) and the fact that Pw([p°]r) = 0 for

μ = 0,1, ,r, it follows that (1.5) holds for / = fx. Thus (1.4) holds for

every feC*{U) and y = 0,1, ,r.

Thus, for every coordinate neighborhood U in M, we have a vector

field Xu on M" 1^) such that

Xu(f(v)) = (X/)(υ+'-r)

for every f^C*(U) and y = 0,1, ,r. If £/ and ί/r are both coordinate

neighborhood in M such that Uf)U' = t/" =¥ ̂ , then we have Xπ\Ufr = Xu'XU"

since we can apply Lemma 1.3 for X = XU9 Ϋ — Xυ' and M=U". There-

fore, we obtain a vector field Xw on M such that Xw\U = Xπ for every

coordinate neighborhood U in M. This vector field Xw clearly satisfies the

condition (1.3) for every f^C*(M) and μ = 0,1, ,r.

The uniqueness of X(λ) is clear virtue of Lemma 1.3. Q.E.D.

COROLLARY 1.5. We have the following

d \ w

 = d
)
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for i = 1, n λ = 0,1, , r.

Proof In the proof of Lemma 1.4 we have put X= Σ#iw + A~ r )(-J^-

\ oXi

for X = Σ ̂  - ~ — . We have β(0) = a and #(υ) = 0 for v = 1, , r, if is a

constant. Hence we get (d/dx^ = djd%~^. Q.E.D.

COROLLARY 1.6. Notations being as in the proof of Lemma 1.4, we have,

for any /eC"(ί/) tfftύ? A, μ = 0,1, , r fA* following

{x-μ)

Proof. Making use of Lemma 1.4 and Corollary 1.5, we calculate as

follows:

DEFINITION 1.7. The vector field Xω in Lemma 1.4 will be called the

(XjΊift of X to TM.

LEMMA 1.8. Let X9 Y^J5Γ\{M). Then we have the following equality

(1.9) [Xw< Yw~\ = [X, Yf +μ~r)

for every λ, μ = 0,1, ,r.

Proof Take a function /eC°°(M). For any v = 0,1, ,r, we calculate

as follows:

Since / is arbitrary, we get (1.9) by Lemma 1.3. Q.E.D.

LEMMA 1.9. The (λ)-lifting X-+Xω is a linear map of ^\{M) into

for every 2 = 0,1, ,r.
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Proof. Clear from the uniqueness of X(λ) and the linearity of the (λ)-

lifting of functions. Q.E.D.

LEMMA 1.10. For any f(=C°°{M) and X e ^ J ( M ) , we have

(1.10) {f-X)ω = Σ/WX(^>

for every λ = 0,1, , r.

Proof. Take a function #eC°°(M). By virtue of Lemma 1.3, it suffices

to prove that the values of both hand sides of (1.9) are equal at g(v) for

every v = 0,1, , r. Now, we calculate as follows:

y) = ((fX) g)(v+λ-r) = (f-Xgp+'-r)

= J]fw (Xg)iv+λ-r-μ) = Σ βμ) (X(λ-μ)g(v))
μ-0 μ=0

where we have used, in the third equality, the following fact: For every

μ > v + λ - r, we have (Xg)(v+λ~r-μ) = 0. Q.E.D.

Remark 1.11. If X is a vector field induced by a one-parameter group
r

of transformations φt on M, then the r-tangent Tφt is also a one-parameter

group of transformations on TM and hence Tφt induces a vector field X on

TM. We can verify, by a tedious calculation, that X is identical with X(r)

in Definition 1.7.

In the case of usual tangent bundle T{M), i.e. the case r = 1, we can

verify, by a straightforward calculation, that the (0)-lift of X is identical with

the vertical lift of X, while (l)-lift of X is identical with the complete lift

of X (cf. [5]) as mentioned above.

§ 2. (Λ)-lifts of 1-forms.
r

We shall now lift 1-forms on M to 1-forms on TM. For that purpose,

we prove the following

LEMMA 2.1. Let fi9 g^C^iM) (i = 1, ,fe) be functions on M such that
k

Σ Qidfi = 0 on M. Then the following equality
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Σ ΣlffdA*-* =o
f l

r

holds on TM for every λ — 0,1, ,r.

/*. Take a coordinate neighborhood Z7 with coordinate system

{#i, t#Λ} and let {#*} be the induced coordinate system on (π)"1^). It

is sufficient to verify the following

for j = 1, ,n and y = 0,1, , r. Now, by the assumption, we have

Hΰi'idfJdXj) = 0 for every i = 1, ,n. Hence, by using Corrollay 1.6,

we calculate as follows:

2-1 ZJ y i a J i V (ΰj~J -~ 2-i 2-1 9ϊ (v)
1 μ~ dXj ι μ = 0 dXj

— y 1 y 1 a^ (•—-"-) — y 1 y ^
~ ZJ ZJ i/i y /̂£ y - ZJ Zjί/i

-?(•-&•)"-

LEMMA 2,2. T^ r̂̂  m ^ o^ β ^ on/); one lifting Lλ

for λ = 0,1, , r satisfying the following condition:

(2.1) Lλ(f>dg)=

for every / , 0<ΞC°°(M).

f. Take a 1-form θe^'KM). Using a local coordinate system

{#!, ,xn} on a neighborhood U9 θ can be written as β^^a^x^

Consider the 1-form

r

on {π)~ι{U). By Lemma 2.1, the form #7 is independent of the choice of the

coordinate system on U. Thus, we obtain a 1-form θ on TM such that

ΰlto'KU) = θu Put LA(̂ ) = ff. We shall prove (2.1) on {π)~ι{U) as follows:
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L2J
i μ=0

f

Σ Σ Σ
i 0 0

Σ Σ Σ

= Σ J o Σ>(ΊSΓ)*""*

v=0 μ=0

The uniqueness of Lλ is now clear.

DEFINITION 2.3. We denote β(λ) = Lλ{θ) for

(Λ)-/f/ϊ of θ for λ = 0,1, , r.

COROLLARY 2.4. i w /GC°°(M)

(2.2) (/ 0)(;o =

for λ = 0,1,. ,r.

/; Using a coordinate system {xl9

and hence we calculate as follows:

(fθ)w = Σ (/ atdxjv = Σ Σ (/ a
i i 0

Σ Σf iv)a\λ-
0 0

LEMMA 2.5. For any

(2.3)

Q.E.D.

and call 0(i)

we have

we can write θ =

Q.E.D.

the following

,̂ /̂  = 0,1, ,r.

Proof Let 0 = ΣίfidXi be the local expression of θ. We calculate as

follows:
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= Σ
i \

-?
= Σ

j

yi

λ

ι/=0

λ

Σ/ (

ί "
) (^^ i )

( " + "- v - r )

v = 0

λ

i v=0

ΣvΣ/

r )

= Σ (Λ rfajίίX))*'^-'' = (^X))"1^-'1, Q.E.D.
i

§ 3. (^)-lifts of tensor fields.
(r)

Let t / ' ( r ) ( M ) = Σ ι f ' ξ ( I ) be the (r + )-times direct sum of the tensor

algebra ^ ( Γ M ) = Σ ^ Ί ί ( T M ) f where ^ξ(Af) = ^^?(TM)© -®^~Ϊ{TM)

(r + 1 factors). Take two elements T = (70, r i ? , Tr) e .^?(M) and

S = (So, Si, , S r ) e ^ j ; ( M ) . Define the multiplication E/ = T(x)S = (J70

ί/lf ,ε/ r )e^?:?;(M) as follows:

(3.1) t/,= Σ T , ® ^
μ = 0

(r)

for ^ = 0,1, ,r. We can readily see that ^"(M) is a graded associative

algebra with this multiplication.

In § 1 and 2 we have define a linear map Lλ : ^~\{M) ->• w^'ξ( ΓM) for

(p,^) = (0,0), (p,g) = (lf0) and (p,q) - (0,1). We denote by L :
(r)

J7~\{M) the map

for the above (p9q). Now, Lemma 1.2, Lemma 1.10 and Corollary 2.4 show

that the following

(3.2) { L(f-X) = L(f)®L(X),

L{f-θ) = L(f)®L{θ).

hold for /,f lre^j(M), X e ^ J ( M ) and
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Y

In order to lift tensor fields on M to tensor fields on TM we shall

prove the following
O)

THEOREM 3.1. There exists one and only one linear map L : J7~(M) ~^^{M)

such that

(3.3) L(S(g)U) = L(S) ® L{U)

for S, U^J7~(M), i.e. L is an algebra homomorphism and that L\^p

q{M) = L for

Proof Consider the map L\ of ^~\{M)x x^~\{M)x^~\{M)x x

\{M) (p factors of ^Ί(M) and q factors of J^~?(M)) into j r f ( M ) defined

by

L*q(Xl9 - ,XP9Θ19 ,θq) = L(Xί)(g) ®L(XP)®L(Θ1)®L(Θ1)® --®L(θq)

for X^^liM), i = 1, ,p and ^e^^J(M), i = 1, ,tf. Clearly the
map L\ is multilinear. Therefore, using (3.2), we see that there exists one

(r)

and only one linear map L of ^ ' ξ ( M ) into j7~\[M) such that

K ^ ! ® - ®-Y p®0 1®. ®^) = L(X1)®. .®L(J5ζp)®L(^)®. ®L(θq),

from which it follows that L(S ® £/) = L(S) ® L(ί/) for S9 Ut=^~%(M) with

p > 0 or ^ > 0 , while L satisfies (3.3) for all (p,#) with p + q<l. Therefore,

L satisfies (3.3) for every S, Ue^~(M). On the other hand, the uniqueness

of L is clear. Q.E.D.

DEFINITION 3.2. Take a tensor field K^^v

q{M) on M. Then

L{K) = (HC<°), K^1, ,K ( r )) with K ω e JΓ^(TM) for λ = 0,1, ,r. We shall

call K(λj the {λ)4ift of K to TM. The equality (3.3) shows that for any

K, S^^(M) we have

for every λ = 0,1, , r.

For the sake of convenience, we put Kω = 0 for every negative integer

λ.

Remark 3.3. In the case of usual tangent bundle, i.e. r = 1, ϋί(0) is

identical with the vertical lift of K, w7hile K(1) is identical with the complete

lift of K due to Yano-Kobayashi [5].
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Let X be a vector field on M and let J^?x: ̂ ~ {M)-± ^ {M) be the Lie

derivation with respect to X. We shall prove the following

LEMMA 3.4. Let KZΞJ^(M) and X<=J^l(M). Then, we have

(3.4) JS£OOX<'> = (£?xK)(λ+μ-r)

for any λ, μ — 0,1, , r.

Proof. Since the Lie derivation is a derivation of the tensor algebra, it

suffices to prove (3.4) for the special cases: K= f e^~g(M), K=df or

K=Y^^Γ\{M) and to prove that if S e ^ £ ( M ) (resp T e ^ j (M)) satisfies

(3.4), then

(3.5) Jδ

holds for λ,μ - 0,1, ,r. First, if /£= / , we have

Second, if iΓ = J / , we have

λ+ft'r) = (d(Xf))(λ+fl~r)

Third, if if = F, we have

where we have used Lemma 1.8. Finally, if K=S®T, we calculate as

follows:

) Σ S ( v ) (g) T^-v

v=0

= Σ

= Σ ^ r S ) ( " + v - r ) ® τ (^- v ) + Σ
v=0 v=0

= Σ

λ+β—r λ+μ—r

' 1 — r >
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T + S ® £?xTf+μ-r) = (jSfJ(S ® T))(a+"-r). Q.E.D.

COROLLARY 3.5. Z*tf X e ^ J ( M ) Λ/&/ K(=^~{M). Then we have

(3.6)

(3.7)

(3.8)

(3.9) ^5rco)X(°) = 0 .

Proof Apply (3.4) for λ,η = 0 or r.

Remark 3.6. In Lemma 3.4 and Corollary 3.5 we have unified and

generalized the formulas (1) of Prop. 4.1 and (1), (2), (3) of Prop. 5.1 [5] (cf.

Remark 3.3.)

We now fix a positive integer k. Then, for sl^k, every vector field X

defines a linear map ax = a\ of ^ ? ( M ) into ^?_i (M) such that

<*x(S ® ωx ® ωk (X) ® ωe) = S ® ωi ® (g) ttί^Z) ® ® ωs,

where 5e t ^ '?(M) and ω^^\{M) for / = 1,2, ,s.

LEMMA 3.7. For K(Ξ^P

S(M) and X^^\{M), we have the following

(3.10)

Proof It is sufficient to verify (3.10) for K= T®ωk®U% where

T^^l^M) and U^^°s-k{M). Making use of the equality (2.3), we

calculate as follows:

U)(μ) = Σ

= Σ
/3

= (Γ®

COROLLARY 3.8. For

) { λ + μ - r ) = {ax(T® ωk ® U)){λ+μ-r\

Q.E.D.

and k^s we have the following

(3.11)
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(3.12)

(3.13)

(3.14)

Proof Apply (3.10) for 2, μ = 0 ro r.

Remark 3.9. In Corollary 3.8 and Lemma 3.7 we have unified and

generalized the formulas (3) of Prop. 4.1 and (5), (6), (7) of Prop. 5.1 [5]

COROLLARY 3.10. If KSΞ^~P(M), then

(3.15) Kω(X"r\ , X ^ ) = (K(Xl9 -,Xs)f+μ~r's)

for X^^liM), where μ = Σ/V
i = l

Proof Apply the formula (3.10) 5 times. Q.E.D.

COROLLARY 3.11. If K^^P

S(M), X^^KM), then we have

(3.16) K?\XS:\ , XV) = (K(XU , X,))^

for every λ = 0,1, , r.

Proof Put μi = r in (3.15), then we get (3.16). Q.E.D.

§4. Prolongations of almost complex structures.

LEMMA 4.1. Let A, B^J7~\(M) and consider them as fields of linear endo-

morphisms of tangent spaces of M. Let IM be the field of identity transformations of

tangent spaces of M. Then,

(4.1) (AoB)(r) = Λ(r)oB(r\

(4.2) ω ( r ) = / , .
TM

In particular, if P is a polynomial of one variable, then we have

(4.3) P(Air)) = P(A)lr\

Proof By Corollary 3.10, we have, for any Xe^^J(M) and ^=0,1, ,r,

(A(r) o B(r))(X(i)) = A(r)B(r) (Xw)) = A(r\B(X)(X)

= (A(B(X))YX) = ({A o B) (X))w = {A o J5) ( r )(Z ( i )).
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Therefore, we get A{r) o B(r) = (A o B)(r). Next, IM can be written locally as

follows:

Making use of Corollary 1.5 and Lemma 2.2, we have

— Σ ΣJ (r-λ) ® d Xi

1 λ=° d Xi

= ΣJ]—τχr(S)d(χl = ir . Q.E.D.

Using the same arguments as in the proof of Proposition 6.7 and 6.12

[5], we obtain the following theorems:

THEOREM 4.2. If J^^\{M) defines an almost complex structure on M9 so
r

does J(r) on TM. If Nj denotes the Nijenhuis tensor of J, {Nj)(r) is the Nijenhuis

tensor of / ( r ) .

r

THEOREM 4.3. If M is a homogeneous [almost) complex manifold with almost
r

complex structure / , so is TM with [almost) complex structure / ( r ) .

§ 5. Prolongations of afϊine connections.

Let V be the covariant differentiation defined by an affine connection

of M. We shall prove the following

r

THEOREM 5.1. There exists one and only one affine connection of TM whose

covariant differentiation V satisfies the following condition :

(5.1)

for every X, Y^^"\{M) and λ, μ = 0,

Proof Take a coordinate neighborhood U with coordinate system

{#i» »#w} and let Γ\i be the connection components of V with respect

to {x19 ,an}, i.e.

(5 2)
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for i,j = 1, ,w. Let {yίn ,yn] be another coordinate system on U

and let Γί) be the connection components of V with respect to {yu ,2/Λ}.

Then, we have the following equalities:

,r oλ Γ,k _ ^ dxh dxc dyk ^ d2xa dyk
[b'ό) 1 ίj ~ he dVi dVj d*a 1 δ c + ^ dyjy, dxa

for i, j , k = 1,2, ,n. Let {#*} (resp. {2/̂ }) be the induced coordinate

system on {πr)~ι{U). Define

^~) " ~ ^ O V

for /, j , k = 1,2, ,n; ,̂ /i, v = 0,1, ,r. We shall prove that there exists

a connection V whose connection components with respect to the coordinate

system {xt} are given by (5.4). To prove this we have to prove the follow-

ing equalities similar to (5.3):

(0) (r) W
~ v V d^ft aα;c gj/fc ^ r a>

Λ ~ v ^ O) (̂ *) (α) cδ^)c
α'^ r a Λ c dVί dVj dχa

2(α) (J)

-ΓZi2-i {u) (//) (α)

* a d

for z, j , k = 1,2, ' ,n; λ, μ, v = 0,1, ,r, where Γffify^ denote the con-

nection components of V with respect to the coordinate system {y^. To

prove (5.5), we consider the (λ — μ — y)-lift of ΓΊ) in the equality (5.3).

Then by putting p = λ — μ — v and by using Corollary 1.6, we calculate as

follows:

-a \(δ)

dxh γ ' -V 3*. γ'-'> / 92/
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C/3) \ / (r)
a x b \ d x c

a y < / \ dy. I ̂

2( ) (Λ)
. yiyi ^ α d-M

ΊΓ ZJZJ (V) (//) (α)
β α 5 ^ ^

where we have used, in the third equality, the following fact: if

a — β— ϊ >p = λ— μ — v, then at least one of the three numbers β — v>

T — μ, λ — a is negative. Thus, we have proved that (5.5) holds.

Next, to prove (5.1), we first prove the following

The left hand side of (5.6) is equal to

V 9 (ru ) —

2_i 2
A; v =

r / 3 \ 0

= Ύ\ Ύ\-(Γk: .\itt+λ-r-vM )
k. υ ' = n ΐ < 7 ^ vX>k '

(i>+J-r)

which proves (5.6).

Next, we shall prove the following

(5 7)

for any /εC"( ί/) , f, = 1,2, , n ; ,̂ μ = 0,1, ,r. The left hand side

of (5.7) is equal to

(v)~ / Λ N ( / / )
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which proves (5.7).

From (5.7), it follows that

holds for every XG^~\(U)9 j = 1, ,n; r, μ = 0,1, , r.

Finally, ta

late as follows:

Finally, take Fe^~'J(ί7) such that 7 = 2 / , — ^ — . Then we can calcu-
OXj

00

j

Thus, we have proved the existence of a connection V on TM satisfying the

condition (5.1). The uniqueness of such V is clear since \(-γ~) U = l,2, •••,

n; λ = 0,1, , r) is a basis of ^\ζrι(U)). Q.E.D.

DEFINITION 5.2. The unique connection V in Theorem 5.1 will be
r

called the prolongation (or complete lift) of V to TM and will be denoted by

V = V.
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We note that, in the case r = 1, V is identical with the complete lift

Vc due to Yano-Kobayashi [5].

PROPOSITION 5.3. If T and R are the torsion and the curvature tensor fields
O)

for V, then T(r) and R(r) are the torsion and the curvature tensor fields for V .

Proof Let f and R be the torsion and the curvature tensor fields for

V . Making use of Corollary 3.10, we have

= (T(X9Y)f+μ~r)

= T(X(λ\ Y(μ))

for every X, Y(Ξ^~ι

Q(M) and λ, μ = 0,1, , r. Hence we get T(r) = f.

Similarly, we have

R(r\Xω, Y^)Z{V) = (R(X,

V(VZ)(μ+vr) vU(VZ)Cλ+vr) V

00 (

Therefore, we obtain Rir) = Λ. Q.E.D.

PROPOSITION 5.4. For tf y tensor field K on M and any vector field X on

M, we have

(5.9) %\^{K{μ)) = (VxK)(λ+μ~r)

(5.10) ( )

/or every λ9 μ = 0,1, ,r.

f. It is sufficient to prove these formulas in the special cases, where

M), K= Θ(ΞLJJ7~\(M) and K = Γ e j ^ ^ M ) .

i i A — / , men \χ^λ>j — J\ — j — [Λjj — \\χj) . n A — i,

then (5.9) is nothing but the formula (5.1).
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If K = θ, then, using Lemma 2.5, we have

( v ) ) { { μ \ Y ( v ) ) ) {μ)(V

(r)

for every Γ e ^ J ( M ) and v = 0,1, ,r, and hence we get Vxc

Next, to prove (5.10), using Lemma 3.7, we have

= (axVKYλ+μ'r) =

fore very Xej^-'i(M) and ^ = 0,1, ,r, and hence we get (5.10).

Q.E.D.

COROLLARY 5.5. For any tensor field K on M and any vector field X on M,

we have

(5.11) V W £ ( r ) = (VxKYr)

(5.12) Vχ

(5.13)

(5.14) V

(5.15)

I Apply Lemma 5.4 for A, μ = 0 or r.

Remark 5.6. In Proposition 5.4 and Corollary 5.5 we have unified and

generalized the formulas (1) ~ (6) of Prop. 7.2 [5], where we should correct

(6) as Vc

xv(Kv) = 0.

PROPOSITION 5.7. Let X be an infinitesimal qffine transformation of an affine

connection V on M. Then Xw is an infinitesimal affine transformation of V for

every λ = 0,1, ,r.
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Proof A necessary and sufficient condition for X to be an infinitesimal

affine transformation of M is that

for every F e ^ ' J ( M ) . Take Ke^~(M). Using Lemma 3.4 and Proposition

5.4, we calculate as follows:

VrW O

for every v = 0,1, ,r, and hence we get

(r) (r) (r)

for every F G ^ ^ ^ T M ) , which proves that Xw is an infinitesimal affine

transformation of V . Q.E.D.

COROLLARY 5.8. If the group of affine transformations of M with V is
r . o)

transitive on M, then the group of qffine transformations of TM with V is transitive

on TM.

From Proposition 5.3 and 5.4 we obtain

THEOREM 5.9. Let T and R be the torsion and the curvature tensor fields of

an affine connection V of M. According as T = 0, V T = 0, R = 0 or VR = 0, H;£

have T(r) = 09 VT ( r ) = 0, 7?(r) = 0 or V7?(r) = 0. /Λ particular, if M is locally

symmetric with respect to V, JO is TM with respect to V .

§ 6. Final Remarks.

In [5], Yano and Kobayashi considered the complete lifts of special

tensor fields such as pseudo-Riemannian metrics, almost symplectic structures

and others. We can also prove the similar results to those in [5] for our

tangent bundles of higher order. We shall enumerate some of them, without

proof, as follows:
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PROPOSITION 6.1. If M is a homogeneous pseudo-Riemannian manifold with

metric g, so is TM with metric g(r\

PROPOSITION 6.2. If M is a pseudo-Riemannian symmetric space with metric

g, then TM is also a pseudo-Riemannian symmetric space with metric g{r).

On the other hand, by the same arguments as in [5] we have the
following

PROPOSITION 6.3. If M is an qffine symmetric space with connection V, then
r (r)

TM is also an qffine symmetric space with connection V .
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