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LIFTINGS OF TENSOR FIELDS AND CONNECTIONS
TO TANGENT BUNDLES OF HIGHER ORDER

AKIHIKO MORIMOTO

§ Introduction

In the previous papers [1], [2] we have studied the prolongations of G-
structures to tangent bundles of arbitrary order, and in [3] we have con-
sidered the prolongations of connections to the tangential fibre bundles of
higher order. The purpose of the present paper is to study the liftings of
tensor fields and affine connections to tangent bundles of higher order. In
fact, most of results in [4], [5] will be generalized in a natural fashion and
some of the formulas concerning vertical and complete lifts in [5] will be
unified and generalized in our formulas concerning (2)-lifts (cf. §3).

The crucial starting point of our procedure is the following fact (§1):
For any vector field X on a manifold M and for any integer 2 =0,1, - - -7,
there exists one and only one vector field X® (called the (2)-lift of X) on

the tangent bundle TM of order 7 satisfying the following equality
X(l)f(ﬂ) — (Xf)(“”"”

for any differentiable function f on M and any g =0,1,+-+,7, where f®
is a function naturally lifted to TM from M.

Second, we construct (2)-lifts of differential 1-forms in §2. After pre-
paring several nice equalities between the (2)-lifts of functions, vector fields
and 1-forms on M, we shall construct in §3 the (2)-lifts of any tensor fields
on M to fM for 2=0,1,---,7. In the case » =1, i.e. in the case of usual
tangent bundle, our (0)-lifts coincide with the vertical lifts, while our (1)-lifts
coincide with the complete lifts in [5]. Therefore, our (r)-lifts of tensor fields
can be considered as a generalization of complete lifts of tensor fields.

As an application of our (2)-lifts, we consider in §4 the case of almost
complex structures, and we shall prove that if M is a homogeneous (almost)
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complex manifold then TM is canonically a homogeneous (almost) complex
manifold.

In §5, we shall consider the lifting of affine connections. We shall
prove similar results to [5], and, in fact, some formulas are unified in a nice
equality. As one of its consequences, we obtain locally affine symmetric
spaces TM from any locally affine symmetric space M for any integer r.

In §6, we shall enumerate, without proof, some results concerning
the liftings of Riemannian structures and others.

In this paper, all manifolds and mappings (functions) are assumed to
be differentiable of class C*, unless otherwise stated.

We shall fix a positive integer » throughout the paper.

§1. (A)-lifts of functions and vector _ﬁelds.
Let M be an n-dimensional manifold. We denote by C*(M) the algebra

of all differentiable functions on M. Let (%‘M,zrr) be the tangent bundle of
order » to the manifold M (cf. [2]). We shall define the (2)-lifting

L,: C”(M)——>C°°(YT‘M) of functions as follows:

DeriniTION 1.1, For any feC*(M), we define L,(f) = f(‘)EC""(’Jy‘M) for
2=0,1,--,7 as follows:

) _ 17 d(feoop)
(1.1) S®(el,) L dE o

for [¢]l,€TM, where ¢ :R—M is a differentiable map. For the sake of
convenience, we define f® =0 for any negative integer 2. We shall call
f® the (2)-lift of f. Clearly, f® = f oz holds. We see readily that f® is
a well-defined differentiable function on ’}M, i.e. the value f¥({¢],) of (1.1)
is independent of the choice of the representative ¢.

Lemma 1.2, The ()-lifting L;: C“(M)—)C‘”(YT“M) is linear and satisfies the
Jollowing equality

A
(1.2) (feg)® = #gf(m . gl-»

Jor every f.geC>(M).

Progf. The linearity of the map L, is clear from the equality (1.1).
The equality (1.2) is verified as follows:
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(f - 9Pely) = [ HU000) ]

—[—(——ww L ren] [eien]
! “(f o (g o
:%E l—p l:ddt"go)} [d t?ﬂso

A A
=/§ SO (el - 949 ([el,) = #gf“"-g“‘")(['P]r)

for every [¢], = TM. Q.E.D.

Let (M) = 27 4M) be the tensor algebra of all tensor fields on M,
where &7 %(M) is the subspace of all tensor fields of type (p,q) on M (p-
contravariant, g-covariant).

Lemma 1.3, Let X, Ve o {(TM). If X(f¥) =Y(f*) for every fC~(M),
y=0,1,+++,7, then X=Y.

Proof. Take an element a =[¢], € YT‘M with nr(a) =1z, Let U be a co-
ordinate neighborhood of z, with coordinate system {x;,---,x,} and let

E;c)ill.Z, --,m; v=0,1, - -,7} be the induced coordinate system (cf. [2]) on
(rvr)"l(U). By Definition 1.1 we have (x) (x;)®. Therefore, we get X,( ))
Y’%Z) for every i =1,2,+++,n; v=0,1,+++,7. Hence we have X, =Y, for
every ae T™. Q.E.D.

For any vector field Xe g7 }(M), we shall define the (2)-lift X® of X.
For that purpose we shall prove the following

LemMma 1.4, For any X 9 §(M) and any 2 =0,1, -+ «,r, there exists one
and only one XWe 7 },(Z;M) satisfying the following equality

(1.3) XD F® = (Xf)are=n

Jor every f=C~(M) and p=0,1,++-,7.

Progf. Take a coordinate neighborhood U in M with coordinate system

(v) r
{24, -+,2,}. Asin [2], let {x;} be the induced coordinate system on (z)~Y(U).
The vector field X can be expressed on U as follows:

Xly = Da50 -,

where a,eC~(U), i =1,2,+ - +,n. Consider the vector field X = X, on (::)“(U)
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defined by
X= v—é——l a(:ﬂ-r) «(ay)
B 0%,
We shall prove
(1.4) X(f(")) —_ (Xf)(v-}-l-r)

for every feC~(U) and » = 0,1, « -,7.

First, we see that X’E;c)z) = g{¢*t1 = (Xx,)***"" and hence (1.4) holds for
f=2; (i=1,2,+++,n), since Ox)i = (x,)® for every i=1,2,+++,n; v=0,1,
«++,7. We denote by A the set of all feC=(U) such that (1.4) holds for
every y = 0,1, ¢+ ,7.

We assert that if f, geA, then f-.-g=A. "For, we calculate, using
Lemma 1.2, as follows:

(7 -0)) = X3 f¥g"

= 2{}?_]’(#) cgtm 4 O X—g(u_,,)}
= ZH(XS)Hmm - g0t 4 f@ - (Xg)**=T=1}

L4 Vvgd—»
= Z (Xf)(l+u-'r—lll)g(l‘l) + 2 : f(#)( X’g)(v-q.)-r_,u)
#=0 #=0

T () rmge 4 (f + Xg)enen

©=0

= (Xf. 9+ f,Xg)(v+2-'r) = (X(f.g))(2+v_r),

and hence f-geA. On the other hand, it is clear that f, g€ A implies
f+9€A and that ceR, f€A imply ¢- f€A. Therefore, every polynomial
of x,,+++,2, is contained in A.

Now, we shall prove (1.4) for every f e C*(U). Take an element
¢l %(U)) = (::)"(U). We have to verify

(1.5) (Xf®) [e1,) = (XN4-"([9"],).

) )
For that purpose, put x,[¢'],) ==% for ¢=1,.-:+,n; v=0,1,:++,7, and
) ] . RS
y, =, —aF for i =1,+++,n. Itis clear that z, =y, for y=1,2,-+ -, and
0) . . .
that y,([¢%],) =0 for ¢ =1,--,n. Since feC>(U), by considering Taylor
expansion of f, we can find polynomials P, P, of y,, - +,y, and a function

9,€C*(U) (i =1,2,+ * -, k) such that deg P, >r, deg P,<r and that
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k
f= lei'gi+P0
=

on U. Put f,=P-.g,. Since P4, it remains to prove (1.5) for f = f,.
Put P=P, g=g,. Since deg P >r, we have P®([¢"],)=(1/x!)+[d*Po¢/di*],=0.
Now, by Lemma 1.2, we have £ = ZP®g®-» and hence we get

Mt

(1.6) X(ry) = OX'P(ﬂ) cg®m 4 :V_,:)p(#). Xg©¥-»
s p=

é (XP)(2+;«—T) . g(”“‘) + é P®. X'g(”"‘).
un=0

M

1]
=Y

The first term of the right hand side in (1.6) is equal to

(1.7) 31 (XP)Cm) L g = A%(,’V(XP)‘“”"“” -9,
/_L:

w=0

On the other hand, we calculate as follows:

(1.8) (Xf)%+=" = (XP-g + P- Xg)*+"
= (Xp,g)(1+»_r) + (P- Xg)(a+»_r)

Aty —7» Aty —»
=S P g 5 por. (g e on,
a= #=0

From the equalities (1.6), (1.7), (1.8) and the fact that P®(¢°],) =0 for
#=0,1,++-,r, it follows that (1.5) holds for f = f,. Thus (1.4) holds for
every feC*(U) and v =0,1,-+-,7.

Thus, for every coordinate neighborhood U in M, we have a vector
field X, on (:r)“(U) such that

Xy(f®) = (Xf)b+i-7

for every feC*(U) and v =0,1,+--,7. If U and U’ are both coordinate
neighborhood in M such that UNU’ = U"” % ¢, then we have Xy|U" = Xy |U"”
since we can apply Lemma 1.3 for X=Xy, ¥ = Xyv and M=U". There-
fore, we obtain a vector field X*® on M such that X®|U =X, for every
coordinate neighborhood U in M. This vector field X® clearly satisfies the
condition (1.3) for every f€C*(M) and g =0,1,+--,7.

The uniqueness of X® is clear virtue of Lemma 1.3. Q.E.D.

CoroLLARY 1.5. We have the following

( a?ci >m = %ﬁ
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Jor i=1,+n; 2=0,1,-++,7.

Proof. 1In the proof of Lemma 1.4 we have put X= Za&““'")(—ﬁg,)—>

for X=Xgq afo . We have a® =g and ¢® =0 for y=1,+-.,7, if is a
(2

constant. Hence we get (3/ax,)® = /a5 ~>. Q.E.D.
CoRrOLLARY 1.6. Notations being as in the proof of Lemma 1.4, we have,

Jor any feC(U) and 2, £ =0,1, « + «, 7 the following

af(l) _( af G=p)

o 0%,

Proof. Making use of Lemma 1.4 and Corollary 1.5, we calculate as

follows:

_ <_3%£__ (T —ptd=7) _ (-—a_f_ A=-p) Q,E,D,

ax;

DerintTiON 1.7. The vector field X® in Lemma 1.4 will be called the
W)-lift of X to TM.

LemmA 1.8, Let X, Ye 7 §(M). Then we have the following equality
(1.9) [X(l)' Y(#)] — [X, Y](A+#-r)
Jor every 2, £ =0,1,+ - «,7.

Proof. Take a function feC*(M). For any » =0,1, - - -,7, we calculate
as follows:

[X®, YOIfO = XOY® £O _ yu x@ £o
= XO(Y f)@Er-) _ yws=-n
= (XY f)a+eb=tr) _ (XY f)atetv=2r)
= [XY1f)ermemen = [X, Y o0 £,

Since f is arbitrary, we get (1.9) by Lemma 1.3. Q.E.D.

LemMA 1.9. The (A)-lifting X—X® s a linear map of 7 §(M) into
T NTM) Sor every 2=10,1, - -,7.
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Proof. Clear from the uniqueness of X® and the linearity of the (2)-
lifting of functions. Q.E.D.

LEmma 1.10. For any f€C™(M) and X 7 }(M), we have
1
(1.10) (f+ X)® = Eof(;l)X(l—p)
un=

Jor every 2=0,1,---,r.

Proof. Take a function geC=(M). By virtue of Lemma 1.3, it suffices
to prove that the values of both hand sides of (1.9) are equal at ¢g® for
every v =0,1,++,7. Now, we calculate as follows:

(fX)Pg? = ((fX)-g)**=" = (f - Xg)**+-"

—_ éf(.u), (Xg)(wl—r—y) — éf(#) . (X(l"‘)g(”))
#n=0

#=0

— ( é f(p)X(l—ﬂ))g(v),
#=0

where we have used, in the third equality, the following fact: For every
g>v+ 2—r, we have (Xg)¢+-"-# =0, Q.E.D.

Remark 1.11. If X is a vector field induced by a one-parameter group
of transformations ¢, on M, then the r-tangent ’.;‘gac is also a one-parameter
group of transformations on TM and hence 77‘% induces a vector field X on
TM. We can verify, by a tedious calculation, that X is identical with X
in Definition 1.7.

In the case of usual tangent bundle T(M), i.e. the case » =1, we can
verify, by a straightforward calculation, that the (0)-lift of X is identical with
the vertical lift of X, while (1)-lift of X is identical with the complete lift
of X (cf. [5]) as mentioned above.

§2. (2)-lifts of 1-forms.

We shall now lift 1-forms on M to 1-forms on 7M. For that purpose,
we prove the following

Lemma 2.1, Let f;, 9,€C(M) (i =1, +,k) be functions on M such that
k
210:df; =0 on M. Then the following equality
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> S1g0d s =0

=1 u=0

holds on YT"Mfor every A=0,1,+++,7

Proof. Take a coordinate neighborhood U with coordinate system

(D) ”
{), - ,2,} and let {x;} be the induced coordinate system on (z)"%(U). It
is sufficient to verify the following

Z Z g(mdf(l—/l)<

) =0

for j=1,-++,n and »=0,1,---,r. Now, by the assumption, we have

axj

239, (dfdus) =0 for every i =1,.--,n. Hence, by using Corrollay 1.6,
we calculate as follows:

A p] A Fl (il—/l)
nerdrie(—3r) = n 8 er L5

axj u=0 9%,
- zznéog(ip) (%Lyl—”_” pa i: (m( 0fs )(z_,,_,)
= 2 (a-3L Y=o Q.E.D.

Lemma 2,2, There exists one and only one lifting L,: 7 M)~ T~ ?(f‘M)
Jor 2=0,1, -+ «, ¥ satisfying the following condition:

(2. 1) Lx(f <dg) = ﬁ_}of(#)dg(x.-/:)

Sor every f, geC*(M).

Proof. Take a 1-form 6 9 {(M). Using a local coordinate system
{y, +++,2,} on a neighborhood U, # can be written as 0=3)a;dx,, a,=C=(U).
Consider the 1-form

a(ﬂ)dx(l—u)

||M»

=5z
on (;r)"(U). By Lemma 2.1, the form 6, is independent of the choice of the

coordinate system on U. Thus, we obtain a 1-form § on TM such that
g (;)‘I(U) =6y. Put L,6) =4. We shall prove (2.1) on (:z)“l(U) as follows:
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v) —pr—v)
=33 5 () g = 31 5 S ()T e
T u=0 y=0 a

=0 y=0

55 5 e (F) e

The uniqueness of L, is now clear. Q.E.D.

DeriNtTION 2.3. We denote 6% =

L(6) for 6= 7 %M) and call 0% the
(N-lift of 6 for 2=0,1, -

COROLLARY 2.4. For feC*(M) and 0= 7 {(M) we have

(2.2) (f-0)® = iﬂ FARRY )
#=0

Jor 2=0,1,+--,r

Proof. Using a coordinate system {zx,, -

«,%,} we can write 0 = Ya,dx;
and hence we calculate as follows:

(FO0 = 37 - adw)® = T3 (F - a)dag

Mx

7

Il

0 y=0

) A
3 fVagdung 0 = 37O (S am)
H= 1

= 3 foge-n, Q.E.D.
#=0

LemMa 2.5, For any 60 9 (M) and Xe= T {(M), we have the following

(2.3) DX ®) = (9(X))@+#="

Sor every 2, p=0,1,+++,r

Proof. Let ¢ =3f,dx, be the local expression of @.

We calculate as
follows:
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IP(X®) = (2 fodw)P(X)®

FOdad™) (X®)

M~

= 33 Pl XO) = 3]

=0 v

FPAXD2P) = 333 FPd( X))

1 v=0

<
i~
(=3

5

I

FP(AXa )"

it~

=

v

A —r

S8 FP@Xe e

=0

+

©

2 (fee day (X)) = (0(X) =", Q.E.D.

§3. (a2)-lifts of tensor fields.

Let (M) = Z}l (M) be the (r 4+ )-times direct sum of the tensor
algebra .7~ (TM)=351 7 3(TM), where F3M) = 7 4TM) ®- - -® 7 UTM)
(r+1 factors). Take two elements T = (T, Ty, -+, T) E %Q(M) and
S=(Sy Sy -+, S,)eF%M). Define the multiplication U= T®S = (U,
U, .- ~,U7)efé)'§:t§£(M) as follows:

A
(3.1) U= 2 T,® Si-,
#=0

(r)
for 2=0,1,---,7. We can readily see that 7 (M) is a graded associative

algebra with this multiplication.

In §1 and 2 we have define a linear map L,: 72(M)—>y‘g(fM) for
(p,9) = (0,0), (p,q) =(1,0) and (p,q) =(0,1). We denote by L: 7 4M)—

L= (LO'LU M '9Lr)

for the above (p,q). Now, Lemma 1.2, Lemma 1.10 and Corollary 2.4 show
that the following

L(f-g) = L(f)® L(g),
(3.2) L(f-X)=L(f)® L(X),
L(f-0) = L(f)® L(0) .
hold for f,9e 77 y(M), Xe 7 {M) and 6= 7 UM).
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In order to lift tensor fields on M to tensor fields on Yr‘M we shall
prove the following

- (r)
THEOREM 3.1.  There exists one and only one linear map L : 7 (M) — 7 (M)
such that

(3.3) LS®U)=LS)® LW)

Jor S, Ue 77 (M), i.e. L is an algebra homomorphism and that L\ 7 %M) = L for
p+g=1.

Proof. Consider the map LE of T §{M)X ++ + X T YM)X T UM)X + + + X
(r
T UM) (p factors of 7 (M) and q factors of 7 {(M)) into j)'g(M) defined
by
Lg(le tee 9Xp9 01y = - ’0q):L(X1) ®' ‘ '® L(Xp)® L(01)®L(01) ®' * ’®L(0q)
for X,e 77 (M), i=1,++-,p and ;& 7 (M), j=1,-++,q. Clearly the
map L? is multilinear. Therefore, using (3.2), we see that there exists one

and only one linear map L of 7 %M) into }2 2(M) such that
LX®  RX,R0,Q:+-®0,) =LX)®- -+ Q@ LX,) ®LWO,) R+ - - ® L(d,),

from which it follows that L(SQU)= L(S)® LU) for S, Us g 3(M) with
»>0 or ¢>0, while I satisfies (3.3) for all (p,q) with p + ¢=<1. Therefore,
L satisfies (3.3) for every S, Ue & (M). On the other hand, the uniqueness
of L is clear. Q.E.D.

DeriniTION 3.2, Take a tensor field Ke 9 3M) on M. Then
LK) = (K®, K¢ «.. K% with K(‘)efg(f‘M) for 2=0,1, .+ -,7. We shall
call K% the (2)-lift of K to TM. The equality (3.3) shows that for any
K, Se 7 (M) we have

(K® S)(l) = ﬁ] K®® S@-m
#=0
for every 2=0,1,+--,7.

For the sake of convenience, we put K® =0 for every negative integer

Remark 3.3. In the case of usual tangent bundle, ie. »=1, K® is
identical with the vertical lift of K, while K® is identical with the complete
lift of K due to Yano-Kobayashi [5].
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Let X be a vector field on M and let &% : 77 (M)— < (M) be the Lie
derivation with respect to X. We shall prove the following

LeMMA 3.4. Let K€ 9 (M) and Xe 7 {(M). Then, we have
3.4) FHOK® = (KK
Jor any 2, p=0,1,+¢,7.

Proof. Since the Lie derivation is a derivation of the tensor algebra, it
suffices to prove (3.4) for the special cases: K= fe€ 7 }M), K=df or

K=Ye 7 (M) and to prove that if Se€ 7 §M) (resp Te 7 4 (M)) satisfies
(3.4), then

(3.5) FHSQ TP = F%(S® 1))+
holds for A, =0,1,--.,r. First, if K= f, we have
GG f® = XPf® = (Xf)0n=" = (L f)d=n,
Second, if K=df, we have
GG@(df)¥) = LadfP) = dXPf)
= d(Xf)07 = (d(Xf)*+*7) = (Fad e+,

Third, if K=Y, we have

GD(YP) = [XP, Y¥] = [X, Y7

= (Y )4+-1,

where we have used Lemma 1.8. Finally, if K=S® 7, we calculate as
follows:

DS Q) T)(") = GWw fl‘ S ® Te=»
y=0

12

= DAV Q T + SV Q LT}

14

]

= é_oa%s)(lw-r) ® T(p—-v) + %S(v) ® %T)(Hy—l'—r)

Adp—r
= /éo("%s)(“[‘-w ) ® TN + u_zo S® ® (.CZYT)(””-”'”

Atu—r

= go (,%’S)(Hﬂ-v-.r) ® T + ngfs(v) ® (ZYT)(Z.H;_,_,)
= (S ® T)***" + (S ® &T)*+*"
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=(ABSRO T+ SR FAT)**" = (A4S R T))@+=", Q.E.D.
COROLLARY 3.5. Let Xe 7 {M) and K& 7 (M). Then we have

(3.6) Ky K = (GK)D
(8.7 G K® = GGK)®
(3.8) G oK = (KO
(3.9) G wK® =0,

Progof. Apply (3.4) for 2,7 =0 or r.

Remark 3.6. In Lemma 3.4 and Corollary 3.5 we have unified and
generalized the formulas (1) of Prop. 4.1 and (1), (2), (3) of Prop. 5.1 [5] (cf.
Remark 3.3.)

We now fix a positive integer k. Then, for s=#%, every vector field X
defines a linear map ey = % of Z72(M) into 7 %_,(M) such that

(SR Q0@ Q) =SSR Q-+ Qe X) D+ + - sy
where S 77%(M) and w;€. 7 )(M) for i =1,2,+ - +,s.

Lemma 3.7. For Ke 7 YM) and X 7 ((M), we have the following
(3.10) ab WK™ = (aﬁK)(2+y_r)

Proof. It 1is sufficient to verify (3.10) for K= T® o,Q@U, where
Te 7 5.,(M) and Ue 9 ) (M). Making use of the equality (2.3), we
calculate as follows:

dED(TR o, RU)P =aby X TOR P QUP
ot+B+r=n

— G+B§=ﬂ T(a) ® w%h(X(l)) ® U(r)

= N T@ ® (mk(X))(ﬂH—r) ® ym
et+B+r=n

— 3 T@ ® (a)k(X))(ﬁ') ® Uw
ot/ tr=ptd—r

(T® (X)) ® V)7 = (ak(T® 0, ® U))* =",
Q.E.D.

i

CoOROLLARY 3.8. For K& 7 2(M) and k<s we have the following
(3.11) aboy (KM = (e K)™
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(3.12) a’ o (K® = (b K)®
(3.13) ab (K™ = (e, K)©
(3.14) ak o (KO®) = 0,

Proof. Apply (3.10) for 2, £=0 ro r.

Remark 3.9. In Corollary 3.8 and Lemma 3.7 we have unified and
generalized the formulas (3) of Prop. 4.1 and (5), (6), (7) of Prop. 5.1 [5].

CoroLLARY 3.10. If Ke 9 %(M), then

(3.15) KO(XE0, « oo, X) = (K(X,, » + +, X)) 0470

Jor X,e 77(M), where p = _}isjlm-

Proof. Apply the formula (3.10) s times. Q.E.D.

CoroLLARY 3.11. If Ke 93M), X,€. 9 §M), then we have
(3.16) KXo, X0) = (KX, » + , X))
Jor every 2=0,1,- - «,7.
Proof. Put p; =r in (3.15), then we get (3.16). Q.E.D.

§4. Prolongations of almost complex structures.

Lemma 4.1. Let A, Be 9 (M) and consider them as fields of linear endo-

morphisms of tangent spaces of M. Let I, be the field of identity transformations of
tangent spaces of M. Then,

(4.1) (Ao B)" = A™ o B™,
(4.2) I)" =1, .
In particular, if P is a polynomial of one variable, then we have
(4.3) P(A7) = P(A)".
Proof. By Corollary 3.10, we have, for any Xe g }{(M) and 1=0,1, « - -,7,

(A(') OB(’)) (X(‘)) = AMPB" (X(z))) — A(’)(B(X)m
= (A(B(X)))® = (A B) (X))® = (Ao B)"(X®).
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Therefore, we get A™ o B = (Ao B)™, Next, I, can be written locally as
follows:

IMZ ,,Z aaxi ®dxl.

Making use of Corollary 1.5 and Lemma 2.2, we have

i axi
14 0 (r=2)
= E Z (r=4) ® d Xy
i A=0 ) *;
r 0 )
=N Qda =1, . Q.E.D.
i A=0 a xi ™

Using the same arguments as in the proof of Proposition 6.7 and 6.12
[5], we obtain the following theorems:

THEOREM 4.2. If Je 7 {(M) defines an almost complex structure on M, so
does J7 on TM. If N, denotes the Nijenhuis tensor of J, (N,)” is the Nijenhuis
tensor of J.

THEOREM 4.3. If Mis a homogeneous (almost) complex manifold with almost

complex structure J, so is TM with (almost) complex structure J©.

§5. Prolongations of affine connections.

Let V be the covariant differentiation defined by an affine connection
of M. We shall prove the following

THEOREM 5.1,  There exists one and only one affine connection of TM whose
covariant differentiation V satisfies the jfollowing condition :

(5. 1) vxu)y(ﬂ) — (VXY)(I-H;_r)
Sor every X,Ye 7 NM) and 2, g =0, -+ -,r.

Proof. Take a coordinate neighborhood U with coordinate system
{2y, - -,2,} and let I'¥; be the connection components of V with respect
to {x, +--,2,}, le.

(5.2) i (

o

O N shpe 9
axj>~k§1rij axk
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for i,j=1,-++,n. Let {y, -++,y,} be another coordinate system on U
and let I'/% be the connection components of V with respect to {y;, * * ,%,}.
Then, we have the following equalities:

axb axc 3?/;: 0 xa ayk
it 0y 0y; 0%, +Z 0y;0Y; 0%,

(6.3) ry=

(v )
for i,7,k=1,2,+++,n. Let {xz} (resp. {y;}) be the induced coordinate
system on (z,)" (U). Define

-4 P = (T1)00

for 4, j,k=1,2,+++,n; 4 ¢, v=0,1, - -, 7. We shall prove that there exists
a connection V whose connection components with respect to the coordinate

€D
system {x,} are given by (5.4). To prove this we have to prove the follow-
ing equalities similar to (5.3):

(B) €2 )

~ ox, dx, dY G
(5'5) F w)‘“ %‘l Eb (V)b (ﬂ)c (af ébﬁ)(c o)
GRT &5 Gy, dy; 0%,
az(a) a(l)
Lo yk
+2 2oy @
* % 0y 0y; 0%,

for i, j,k=1,2,+--,m; 2 g, v=0,1,« - +,r, where (D, ; denote the con-
. . . )

nection components of V with respect to the coordinate system {y;}. To

prove (5.5), we consider the (21— z—y)-lift of I'/% in the equality (5.3).

Then by putting p = 2— ¢z —v and by using Corollary 1.6, we calculate as
follows:

(F{’j)(") - a'%c G+B§+a:p< gzz >(ﬁ> o2 >(r>< axa) (I¢,)®

Pz, (a) ()
+ Za“ a§=9< 0Y:0Y; < axa

n [ axb (Br=v) 5900 (r1=u) ayk (2=ar) o \@r=pr=t1)
a,b,21:=1 a’—B’ZEr'=0 ayz ) a?/j > ( axa. > (FbC)

n v 3233,,, )(a—/z-») ay >(1_u)
+Z a§+y 0Y:0Y; 0%,

z"] Z’} 0( 0%y >(ﬂ—v) oz, >(r—ﬂ)< axu (1-a) (%) e=p-1)

a,bc=1qa,B,7= ayz

]

Il
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+§é( o, >(a:;v)< Y (1-a)

a=0 ayzay.f e\ 0%
a(B) a(r) e
X X "(a a)
- 5l (g
a,bca,fP,r ay ayj axa
a2(«») a(/1)
X
+ Ny e,
@ 0y 0y, 02,

where we have used, in the third equality, the following fact: if
a—pB—7>p=21—p—y, then at least one of the three numbers g—,
T — p, 2— a is negative. Thus, we have proved that (5.5) holds.

Next, to prove (5.1), we first prove the following

(5.6) V(‘:T>< aij >(#) _ (V%j__ azj )(1+,u-r)

The left hand side of (5.6) is equal to

& bij 0
V s 7_ Er(z DG T T (Y
5T 9 u, 0%y

)(f—v)
>(W)

= EIH—A ['Ic (p42=7 =) < 6 )0)
k

B O

-3 S

= 5 S )55

Q)

which proves (5.6).
Next, we shall prove the following

(6.7) V(f )‘“( 0 ; >(#) <Vf— 05 >(1+“—T)

for any fec), i, j=1,2,+,n; 2, £ =0,1,+«,7. The left hand side
of (5.7) is equal to

- 0 \@® e
V”éof(”)< 6»)(1—\:)( axj > Zf V< o )(A v)( axj >

0x;

()
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(v )T

l+xz -7 Pl @+pmv=1)
)
o, 0wy VE= A\ 0 0y )
_ 0 Q+p-7) _ Fl A+p=-T1)
—<f.vaaxt 690,) - f‘aaT, 0w, ’
which proves (5.7)

From (5.7), it follows that
5. 8)

qu)( 8?0, >(,,) = (Vx 0

@p=7)
Bx,)
holds for every Xe 7 U), j=1,~++,n; 7, g =0,1,+ ¢, 7.

Finally, take Ye 7 {(U) such that ¥ =3} f,
late as follows:

aa Then we can calcu-
Ty

VyoY® = ZVX<1><f j
J

Pl (#) u » P

) = T0o( G )
& [ e - 0
Z fl' )VXU) ax > _,_X(x)fsl_x Do (

V= { ox; >(V)}
{

f"'”’(Vx 2 )(1+v-—7‘) (Xf;)‘“’"”—r)(

o

Il
<M
zm

ia) |
oy s
=2 ( (i, N = (wapyenn

Thus, we have proved the existence of a connection V on TM satisfying the

. @
condition (5.1). The uniqueness of such V is clear since {( ai > li=1,2, 000,
%
s A=

n; 2=0,1,0¢¢ r] is a basis of ﬂ"(;"(U))

DEFINITION 5.2

Q.E.D.
The unique connection V in Theorem 5.1 will be
called the prolongation (or complete lift) of V to TM and will be denoted by
(r
¥ =
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@ . . . .
We note that, in the case » =1, V is identical with the complete lift
V° due to Yano-Kobayashi [5].

ProrositioN 5.3. If T and R are the torsion and the curvature tensor fields

. (r)
Jor V¥, then T and R are the torsion and the curvature tensor fields for V.

Proof. Let T and R be the torsion and the curvature tensor fields for
()
V. Making use of Corollary 3.10, we have

T(T)(X(“, Y(")) = (T(X, Y))(Z+,u—'r)

= (ViY — Vp X — [X, Y])@+e-7)
=(6>X<1)Y(") —(e)ym X® 1 Xo, Y(")]
= T(X®, y®)

for every X, Ye 7 §(M) and 2, £=0,1,+++, 7. Hence we get T =T.
Similarly, we have

RM(XW, Y Z® = (R(X, Y)Z)d+#+-2m)
= ([VX’ VY]Z - V[X'y]Z)(l'*'”“'v—Zr)

(€9) ( " ) Tt (9] )
= VXu)(VYZ) pv=T) Vy(l‘)(VXZ)( =T V[X'Y](Rﬂt—r)z("

(r) (€D) ) (€D)
=[Vzw, Vyw]Z® — Vixw yenZ®

= E(X(l)’ Y®)z®,

Therefore, we obtain R = R. Q.E.D.
ProposiTiON 5.4.  For any tensor field K on M and any vector field X on
M, we have
2
(5.9) Vr@(K®) = (VoK)r"
@
(5.10) VK® = (VK)®

Sor every A, pr=0,1,¢+-,7.

Proof. 1t is sufficient to prove these formulas in the special cases, where
K=fe 7 %M), K=06=.9 M) and K =Ye.7 }(M).

If K= f, then (G)mew = KW = f® = (Xf)%#=" = (Vp f)0+-", If K=Y,
then (5.9) is nothing but the formula (5.1).

https://doi.org/10.1017/5002776300001388X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001388X

118 AKIHIKO MORIMOTO

If K=46, then, using Lemma 2.5, we have

(€9 ) =
( VX(Da(p)) (Y(v)) = VX(“(ﬁ(")(Y("))) . ‘9(;:)( VXU)Y(”))
D)
= V(7)) #+=7) — (¥ )@=
= (VX(a(Y)))(1+#+u—2'r) _ (49(VXY))(““+"‘27)
= ((ng)y)(lulﬂ—zr) — (VXB)(A-H‘_?‘)(Y(,,))
@)
for every Ye 7 §(M) and v = 0,1, » +,7, and hence we get Vyw® =(Vzf)*+*-",
Next, to prove (5.10), using Lemma 3.7, we have
@) )
aX(z)VK(#) = VXU)K("‘) — (VXK)(1+,1—7‘)
= ((XXVK)(“""J) = aX(z)(VK)(ll)
fore very Xe 7 4(M) and 2=0,1,++.,7, and hence we get (5.10).
Q.E.D.

CoOROLLARY 5.5. For any tensor field K on M and any vector field X on M,
we have

(€9)

(5.11) VKT = (VxK)™
(D)

(5.12) VKO = (VK)®
(€D

(5.13) VoK™ = (VoK)©
)

(5.14) VxoK® =0
(r)

(5.15) VK™ = (VK)™

(G)K(o) = (VK)©,
Proof. Apply Lemma 5.4 for 2, =0 or r.

Remark 5.6. In Proposition 5.4 and Corollary 5.5 we have unified and

generalized the formulas (1) ~ (6) of Prop. 7.2 [5], where we should correct
6) as V&v(K") = 0.

ProrosiTION 5.7. Let X be an infinitesimal affine transformation of an affine

. . . L. . CP)
connection V. on M.  Then X® is an- infinitesimal affine transformation of V for
every 2=10,1,%¢9,7.
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Proof. A necessary and sufficient condition for X to be an infinitesimal
affine transformation of M is that

G oVy—Vyo = V[X,Y]

for every Ye 77 {(M). Take K. 7 (M). Using Lemma 3.4 and Proposition
5.4, we calculate as follows:

() @
GG o VywK® — Yy o GGWmK®

()
= Go(VpK) = — Ty GGK)E"
= GAVPK)) A — (7, GZK )G

— @tpty=27) _<r) ey 40
= (Vix.r1K) , = Vi, ypte-nK

) )
= Vpx® pun K¢
for every v =0,1,+++,7, and hence we get

) @) @)
G oVy — Vy o W = Ve ¢

for every Ye g 3(YV‘M), which proves that X® is an infinitesimal affine
transformation of (Vr). Q.E.D.
CoroLLARY 5.8. If the group of affine transformations of M with V is
transitive on M, then the group of affine transformations of T™ with (? is transitive
on 71:M.
From Proposition 5.3 and 5.4 we obtain

THEOREM 5.9. Let T and R be the torsion and the curvature tensor fields of

an affine connection V of M. According as T=0, VT =0, R=0 or VR=0, we
9] ) . . .

have T =0, VT =0, R =0 or VR =0. In particular, if M is locally

. . .2 . )
symmetric with respect to V, so is TM with respect to V .

§6. Final Remarks.

In [5], Yano and Kobayashi considered the complete lifts of special
tensor fields such as pseudo-Riemannian metrics, almost symplectic structures
and others. We can also prove the similar results to those in [5] for our
tangent bundles of higher order. We shall enumerate some of them, without
proof, as follows:
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PropPOSITION 6.1. If M is a homogeneous pseudo-Riemannian manifold with

metric g, so is TM with metric ™.

ProrosiTioN 6.2, If M is a pseudo-Riemannian symmetric space with metric
g, then Yr‘M is also a pseudo-Riemannian symmetric space with metric g .

On the other hand, by the same arguments as in [5] we have the
following

ProrostTioN 6.3. If M is an affine symmetric space with connection V, then
o)

TM is also an affine symmetric space with connection V .
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