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Animal disease events can lead to international trade restrictions which can vary in
duration, products included, and geographical extent. Accounting for multilateral
resistance between trading partners, a general gravity model of trade is
estimated with a Hausman-Taylor and a Hausman-Taylor seemingly unrelated
estimator to evaluate the trade quantity impact by commodity resulting from
highly pathogenic poultry disease events in 24 exporting markets. Commodity
specific results show that quantity traded and products demanded during a
disease event differ by commodities. Understanding these impacts can better
prepare exporters for potential changes in trade quantity given a disease event.
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Introduction

Global consumer demand for meat has steadily increased over the last half
century and is projected to continue to increase. Total global per capita
consumption for all meat, including beef, pork, poultry, lamb, and mutton, was
73.6 pounds per capita in 2010, 75.2 pounds per capita in 2015, and is
projected to be 76.7 pounds per capita in 2020 according to the Organisation
for Economic Co-operation and Development (OECD) (2016). Poultry products
have been gaining in popularity as an affordable source of protein, globally
surpassing pork consumption in 2007 to be the most-consumed per capita
protein source. Export markets and factors that affect those markets are
important to animal industries, especially if there are processes to mitigate
disruptions in trade or ways to best respond to accommodate changes in trade.
International trade disruptions can cause negative and costly impacts to both

exporting and importing countries. Disease events in animal agriculture can
cause severe disruptions in trade and result in costs along the supply chain,
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including the cost of mitigation or eradication of a disease (Paarlberg et al.
2009; Pendell et al. 2015). Management of highly pathogenic disease events
can contribute to potential trade disruptions or aid in reducing potential
impacts (Marsh, Wahl, and Suyambulingam 2005; Seitzinger and Paarlberg
2016). It is important for animal disease managers to understand the
potential market disruptions and the associated costs that result from an
animal health event as they prepare for future outbreaks.
Highly pathogenic avian influenza (HPAI) and Newcastle disease virus (NDV)

are of particular concern to the poultry industry due to their high mortality
rates and potential economic losses. Some strains have the potential for
zoonosis (being a disease transmissible from animals to humans, from either
direct contact or carried by a vector). An outbreak of HPAI in the United
States (2014–2015) resulted in depopulation of 49.6 million birds and cost
more than $950 million dollars to U.S. taxpayers (Seitzinger and Paarlberg
2016; USDA-APHIS, 2016). Trade restrictions from importing countries and
reduction in bird stocks resulted in declined U.S. poultry exports in 2015, the
first time since 2006 (Seitzinger and Paarlberg 2016; USDA-FAS, 2016).
There were two additional outbreaks of HPAI in 2016 and 2017 in Indiana
and Tennessee, respectively, that were limited in geographic scope and had
minimal affected bird populations and negligible trade implications.
Globally, according to the World Organisation for Animal Health (OIE),

between 2000 and 2015 there were more than 400 distinct HPAI or NDV
disease events in non-endemic regions, or those regions in which a disease is
not regularly found (OIE 2015). Each of these events had implications for
domestic markets and potentially affected the global market. While there were
limited HPAI events in 2016 and 2017, these had negligible international
responses considering there was an international movement toward proactive
regionalized strategies not available in earlier periods of this study. The
objective of this article is to analyze the impact of trade disruptions as a result
of disease events affecting poultry trade at a granular level not found in current
literature. Disaggregated, individual product categories are modeled to
determine the bilateral trade flows impacts during a disease event and whether
these differ by poultry product category, using a series of estimators.

Background

Animal disease events are one of many sudden occurrences that may lead to
trade disruptions in animal agriculture. An importing country’s response to a
highly pathogenic disease event is a complex process but can be decomposed
into two broad questions. First, does the animal disease situation warrant a
limitation on trade of meat or animal products from the affected exporting
country? Second, if a limitation is warranted, what should the scope of that
limitation be? The scope of the limitations can be measured in terms of the
relative risk posed by various product categories, the geographic extent of
the event, and/or the duration of limitations. Each of these decisions
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intensifies or lessens the burden of trade restrictions imposed on exporting
countries.
Trade restriction decisions are complex in terms of affected commodities, and

there is no central repository to record the specific embargoes for historical
disease events. The composition of products traded can change markedly
during a disease event as substitutions can occur between fresh, frozen, and
prepared products depending on the importer preference and risk
acceptance. Products viewed as having minimal risk for disease spread may
be preferential to a risk averse importing country than other products with
greater potential for disease spread. The previous studies discussed, as well
as other commodity trade analyses, typically aggregate commodities to a high
level, which can over or underestimate the effects on individual product
categories. Poultry product categories separate commodities into species,
processing level, and cut. Importer responses to animal health events can
vary by species (e.g., chicken or turkey), cut (e.g., whole or parts), and/or
degree of processing (e.g., fresh or frozen) for meat and egg products based
on trade policies and consumer demand impacts (Mu et al. 2015; Hasiner and
Yu 2018). For example, whole fresh chicken may have a different trade
response than cooked chicken products which have been shown to be safe to
consume if properly handled (Chmielewski and Swayne 2011). For the
poultry industry, the categories of products being exported and the nature of
a disease event, such as whether the disease is limited to wild birds or a
strain that is potentially zoonotic, are important influencing factors of trade.
The dynamic effects of the disease and how long the effects of HPAI and NDV
have on trade, such as with Mu et al. (2015), are not estimated with this
data. The focus of this work is to estimate the magnitudinal effects of HPAI
and NDV in aggregate and across commodities. Future research could expand
this analysis to the dynamic implications of trade restrictions due to a
disease event.
Previous analyses of highly pathogenic avian diseases estimated the time it

takes for export market revenue to recover after a disease event (Johnson
et al. 2015) and the impact on United States domestic markets (Brown et al.
2007; Djunaidi and Djunaidi 2007; Johnson et al. 2014; Miller and Parent
2012). Disease control measures and uncertainty in trade embargoes have
been shown to exacerbate the effects of a disease disruption (Rich and
Winter-Nelson 2007; Ruhl 2011; Wang and Hennessy 2015). Johnson et al.
(2015) used a zero-inflated negative binomial model to determine recovery
time for exporting countries’ trade value. The authors determined that
several factors, including type of domestic production and origin of exports,
led to extended export revenue recovery times. Thompson (2018)
determined that the geographical scope of trade restrictions impacts the
quantity demanded during the 2014–2015 HPAI outbreak, and these changes
impact disaggregated commodities differently.
This article extends previous literature by analyzing the bilateral trade

implications on quantity of poultry products traded during a highly
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pathogenic disease event for specific product categories as defined by the
Harmonized Commodity Description and Coding Systems (HS) (see Table 1).
Monthly bilateral trade and disaggregated commodity groups were used to
measure the consequences of highly pathogenic disease events on specific
products, both in cut and degree of processing. Results provide timely, policy
relevant information of bilateral trade disruptions during an animal health
event.

Methodology

The gravity model of trade has been widely used in the trade literature to
analyze bilateral trade (Bergstrand 1985; Isard 1954; Tinbergen 1962). The
basic gravity specification, shown in Equation 1, expresses the quantity
traded (Yi,j,t) between countries i and j in time t as a function of a
proportional constant term (C), the mass (M) of both i and j countries
(typically expressed using country gross domestic product [GDP] or
population weighted GDP), and the distance (di,j) from i to j. Finally, β1 is the
trade flow creation parameter, β2 is the trade flow attraction parameter, and
β3 is the trade flow resistance parameter.

Yi,j,t ¼ C
Mβ1

i Mβ2
j

dβ3i,j
(1)

To estimate the gravity model, the natural logarithm of the theoretical model
is taken. The logged form of the basic gravity model is given in Equation 2,
where K is a logged constant term for C and ɛi,j,t represents an error term:

ln Yi,j,t ¼ K þ β1 lnMi þ β2 lnMj þ β3 ln di,j þ εi,j,t(2)

The basic model was later expanded to include additional multiplicative
factors that influence trade, including trade agreements (Grant and Lambert
2008; Martínez-Zarzoso and Nowak-Lehmann 2003).
Despite being an effective model of trade, the gravity model requires an

increasing number of indicator variables to account for nuances in bilateral
trading relationships (Salvatici 2013; Serlenga and Shin 2007). Many factors
may influence bilateral trade, including demographic and macroeconomic
indicators as well as dyadic determinants such as common language,
common colonizing country, and common currency. The size of the importing
and exporting country’s relative spending power measured by gross domestic
product (GDP) and population have been shown to be predictors of bilateral
trade relationships. Distance between trading partners influences
transportation costs between partners creating resistance in trade.
Geographical proximity can be an important factor in negotiating trade
agreements that can be a favorable means to secure export markets and
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Table 1. Poultry Product Categories Used in Bilateral Trade Analyses

Product Short
Name Product Name

HS
Code

HT-SUR
Model

Whole Chicken:
Fresh

Commodity: 020711, Meat and Edible Offal of Chickens, Not Cut in Pieces, Fresh or Chilled 20711 Fresh

Whole Chicken:
Frozen

Commodity: 020712, Meat and Edible Offal of Chickens, Not Cut in Pieces, Frozen 20712 Frozen

Chicken Parts:
Fresh

Commodity: 020713, Chicken Cuts and Edible Offal (Including Livers) Fresh or Chilled 20713 Fresh

Chicken Parts:
Frozen

Commodity: 020714, Chicken Cuts and Edible Offal (Including Livers) Frozen 20714 Frozen

Whole Turkey:
Frozen

Commodity: 020725, Turkeys, Not Cut in Pieces, Frozen 20725 Frozen

Whole Turkey:
Fresh

Commodity: 020726, Turkey Cuts and Edible Offal (Including Livers), Fresh or Chilled 20726 Fresh

Turkey Parts:
Frozen

Commodity: 020727, Turkey Cuts and Edible Offal (Including Liver) Frozen 20727 Frozen

Shell Eggs Commodity: 0407, Birds’ Eggs, In Shell, Fresh, Preserved or Cooked 407 Eggs

Eggs Products Commodity: 0408, Birds’ Eggs, Not in Shell and Egg Yolks, Fresh, Dried, Cooked by Steam
etc., Molded, Frozen or Otherwise Preserved, Sweetened or Not

408 Eggs

Cooked Turkey Commodity: 160231, Meat or Meat Offal of Turkeys, Prepared or Preserved, N.E.S.O.I. 160231 Prepared

Cooked Chicken Commodity: 160232, Prepared or Preserved Chicken Meat, Meat Offal or Blood, N.E.S.O.I. 16032 Prepared

Cooked Other Commodity: 160239, Meat or Meat Offal of Chickens, Ducks, Geese and Guineas, Prepared
or Preserved, N.E.S.O.I.

160239 Prepared

Source: Global Trade Information System – Global Trade Atlas
HS: Harmonized System.
HT-SUR: Hausman-Taylor Seemingly Unrelated Regression
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increase trade flows between participating countries (Sunge and Mapfumo
2014). However, an exhaustive set of variables might not be available for
every trade relationship, which limits the ability of the model to fully capture
multilateral resistance between partners.
In response to these shortcomings of the gravity model of trade, a general

form was proposed by Anderson and van Wincoop (2003) to account for
multilateral resistance between trading partners. The general form of the
gravity model uses partner binary variables to capture the heterogeneity
between trading partners without explicitly defining the cultural, political,
and economic factors that may influence trade, including binary variables
that account for cultural and economic heterogeneity as well as changes in
price of the imported good over time (Vollrath and Hallahan 2011). By
generalizing the gravity model, the specified nuances from the original model
are reduced to country-specific effects which are tractable and provide a
robust analysis for works focused on the impacts of exogenous trade shocks.
Anderson and van Wincoop use bilateral trade, importer-by-time, and
exporter-by-time binary variables to account for time-specific variation in
trade by partner and stand in for creation, attraction, and resistance
parameters. The general form of the gravity model with time-by-partner
variables is shown in Equation 3:

ln Yi,j,t ¼ K þ β1Pairi,j,t þ β2Pairi,t þ β3Pair j,t þ εi,j,t(3)

where Pairsi,j¼ 1 if exporter i traded with importer j in time t and 0 otherwise;
Pairsi,t¼ 1 if exporter i traded in time t and 0 otherwise; Pairsj,t¼ 1 if exporter j
traded in time t and 0 otherwise. The importer- and exporter-specific variables
incorporate the variation associated with markets that are explicitly modeled in
the gravity model.
This work employs the general gravity model to account for individual

bilateral partnerships to empirically estimate the impacts of an animal
disease event. Simplifying the model to include bilateral pair-specific trade
relationships captures nuances of trade, accounting for unique trade
relationships and their influence on quantity traded while allowing for focus
on the disease event variables. The dependent variable, quantity traded, is
linearized after adjusting for zero trade flows to facilitate estimation, as
presented in Equation 4:

ln qki,j,t ¼ β0 þ β1HPAIi,t þ β2NDVi,t þ β3Pairsi,j,t þ γZ þ εi,j(4)

where: i¼ exporter, j¼ importer, k¼ product category, t¼ time, HPAI is a
binary variable indicating an HPAI disease event in exporter i for time t, NDV
is a binary variable indicating an NDV disease event in exporter i for time t,
Pairs is a binary variable for each distinct trading partnership i to j trading in
time t, Z¼matrix of additional explanatory variables, and ɛ, β, and γ are the
estimated residuals, coefficients, and vector of coefficients, respectively.
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These data can be estimated as cross-sectional using ordinary least squares
(OLS). Although a cross-sectional analysis can provide valuable insights, it
does not incorporate information associated with the time aspects of the
underlying panel data, thus motivating a panel data approach.
A random effect approach is appropriate if no individual effects are present

(Baltagi, Bresson, and Pirotte 2003). If this assumption is rejected, a fixed
effect model can be used. However, fixed effect models have limitations in
simultaneously providing parameters for time invariant variables and
estimations that can be extrapolated to the underlying population. Taking
into account both the within and between variation in a panel, a consistent
and efficient estimator for a robust, multilevel panel is the Hausman-Taylor
(HT) estimator (Hausman and Taylor 1981). The HT estimator assumes the
regressors are correlated with the individual effects, so it separates the
variables into four categories (Equation 5): 1) time variant exogenous (X1); 2)
time variant endogenous (X2); 3) time invariant exogenous (W1); and 4) time
invariant endogenous (W2). Equation 4’s linearized model variables are
separated into respective HT categories (Table 2) and estimated using
Equation 5:

yi,t ¼ β1X1i,t þ β2X2i,t þ δ1W1i,t þ δ2W2i,t þ αi þ εi,t(5)

where: i¼ bilateral trade flows, t¼monthly time period, β and δ are estimated
coefficients for factors that affect trade, y is quantity traded, α are the
individual effects, and ɛ¼ estimated residuals. Matrix dimension of i is N and t
is T such that yi,t is NTx1. The error term becomes a composite term including
both αi and ɛi,t.
The endogenous variables are assumed to be correlated with the individual

effects (αi). The assumption still holds that all variables are uncorrelated with
the error term, E[ɛi,t | Wj,i,t, Xj,i,t]¼ 0, but now the HT estimator expands the
model assumptions such that not all variables are uncorrelated with the
individual effects, E [αi | W2i,t, X2i,t] ≠ 0.
The HT estimator is a multistep process that approximates the time invariant

variables through an instrumental variable approach using the time variant
exogenous variables as instruments for the time invariant endogenous
variables. This approach makes it possible to generate estimates that can be
predictive of the underlying population and include unbiased estimates of
relevant time invariant variables, which are limitations of fixed effects models.
Traditionally, when a dataset is multidimensional such as in this study, a

researcher must choose which dimension(s) to collapse, or averaging over
that dimension, to facilitate estimation, which can reduce the efficiency of the
analysis, or choose to estimate M equations (where M is the number of
unique identifiers in the data’s third dimension). For example, if the third
dimension is product type, k (e.g., whole chicken or frozen turkey), and only
select products have a response to some external factor such as a disease
event, collapsing the data across these commodities might lead to statistically
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Table 2. Descriptive Statistics and Hausman-Taylor (HT) Model Descriptions for Variables Used in Bilateral
Quantity Trade Analyses

Name Variable Description Unit HTb Description Mean Min Max

Quantitya Quantity of Product Exported Pounds TVc, Exogenous 281,484 1 120,000,000

Newcastle Disease
Virus (NDV)

Binary variable indicating if NDV was reported 0,1 TV, Endogenous 0.02 0 1

Highly Pathogenic
Avian Influenza
(HPAI)

Binary variable indicating if HPAI was reported 0,1 TV, Endogenous 0.07 0 1

Recession Binary variable indicating the Great Recession 0,1 TV, Endogenous 0.15 0 1

Share Annual share of world export market % TV, Endogenous 0.05 0.00 0.33

Per Capita Annual global per capita consumption of poultry meat % TV, Exogenous 12.15 10.7 13.74

OutYeart The number of simultaneous disease events in year t Count TV, Exogenous 5.28 0 15

Pairsi,j,t
e Indicator for trading partnerships 0,1 TIVd, Endogenous 0.03 0 1

Asia Binary variable for exporting country 0,1 TIV, Exogenous 0.10 0 1

Europe Binary variable for exporting country 0,1 TIV, Exogenous 0.70 0 1

South America Binary variable for exporting country 0,1 TIV, Exogenous 0.03 0 1

North America Binary variable for exporting country 0,1 TIV, Exogenous 0.06 0 1

Africa Binary variable for exporting country 0,1 TIV, Exogenous 0.06 0 1

Oceania Binary variable for exporting country 0,1 TIV, Exogenous 0.01 0 1

Middle East Binary variable for exporting country 0,1 TIV, Exogenous 0.04 0 1

Source: Authors Calculations
aDependent Variable
bHT Description¼Hausman Taylor variable description
cTV: Time Variant
dTIV: Time Invariant
ei¼ exporter; j¼ importer; t¼ time

A
gricultural

and
R
esource

E
conom

ics
R
eview

5
2
4

D
ecem

ber
2020

https://doi.org/10.1017/age.2019.24 Published online by Cambridge University Press

https://doi.org/10.1017/age.2019.24


insignificant estimates of disease impacts for aggregated data. However, there
may be statistically significant impacts estimated for a specific product had it
been modeled individually. While M individual models can be estimated
consistently, the limitation is that these models do not account for
correlations in the error terms across the models, if present.
A system of Hausman-Taylor estimations (HT-SUR) was first presented by

Egger and Pfaffermayr (2004) to address limitations in panel estimators
across three-dimensional data. While HT-SUR is applicable across many fields
of research, it has been mainly applied in the political economy literature to
assess the political factors influencing trade (Angulo, López, and Mur 2011;
Serlenga and Shin 2007). Very few studies have employed this methodology
in the agricultural trade literature (Slangen, Beugelsdijk, and Hennart 2011).
The HT-SUR creates a system of HT estimations which expand the original

estimation to a system of k models instead of individual models. The key
relevant aspect of this approach is that the variance of the estimator
incorporates not only the combined variance of the within and between
estimators but also includes the variance across the individual HT estimators
to capture efficiency gains in estimation. Equation 6 presents the expansion
of the HT model to k models:

yki,t ¼ X 0
1i,tβ1 þ X 0

2i,tβ2 þW 0
1i,tδ1 þW 0

2i,tδ2 þ αi þ εi,t(6)

where i is the unique identifier, t is time, k is the third dimension (e.g., poultry
product categories), and the other variables are defined above.
The HT-SUR uses the same methodological process as the HT estimator,

except there is a stacking of equations. This implies that the dimensions of y
change from NTx1 to NTKx1, where each NTx1 matrix is stacked by k, or the
third dimension (e.g., poultry product categories). The variance is no longer
σ2I for each individual model, but now implies Σ ⊗ I where diagonal
components are individual model variance covariance matrices and off
diagonal components are the covariance between individual models. To
empirically estimate the impact on quantity traded as a result of a disease
event, a system of models is estimated for poultry product categories and
will be compared to individually estimated models as well as alternative
estimators.

Data

The robust and unique dataset used for this article include HPAI and NDV
poultry disease events. These data include 71 disease events affecting 383
distinct bilateral trade relationships for 12 poultry product categories from
January 2004 to December 2014. Information concerning the disease events
are available on the OIE website, which includes the number of infected
flocks, the number of outbreaks during a disease event, and the nature (e.g.,
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zoonotic or only affecting wildlife) of the disease event (OIE 2015). Using these
categorizations, individual disease events are recorded in geopolitically defined
countries that are non-endemic for HPAI or NDV, where an endemic disease is
one that is persistent in a population without external influences.
Bilateral trade data for this article are compiled from the IHS Markit’s Global

Trade Atlas. Monthly bilateral trade data are used for 24 exporting countries,
which attempts to ensure at least 24 months prior to a disease event and 24
months after the OIE declared the country disease free, are included.1,2

Bilateral trade is limited to trade relationships that accounted for more than
five percent of total exports from each reporting country in 2013, a base year
with relatively fewer global outbreaks compared to any other year in the
dataset. Limiting trade to more than 5 percent of total exports excludes
importing countries that have economically less substantial trading
relationships or variable trade quantities for reasons extending beyond
animal and food health concerns. These intermittent trading partners that are
excluded tended to trade one to two months in any given year, often skipping
years. Additionally, this excludes non-recognized trading partners such as
“High Seas” and “International Waters.”
An incidental benefit of removing the inconsistent and extremely infrequent

trading partners is that this allows for better management of zeros in the
dataset. Zeros in trade data can be problematic. Alternative estimators have
been reviewed to address this issue (Burger, van Oort, and Linders 2009).
Balancing data by including zeros can create trade relationships that do not
exist, creating a mass of observations at the origin, skewing the results, and
creating a substantial mass of very small errors in the disturbance term that
violates the normal distribution assumption (Anderson 2010). Although there
are very few legitimate zero trade flows (i.e., a partner reduces trade to zero)
posted due to reporting lags, transportational lags, or misreporting, for this
study, legitimate zero trade flows were recorded as an arbitrarily small
number (0.0001) so that these would not be excluded from the log
transformed data for estimation and reduce biases created by balancing the
trade data or omitting the zero trade flows.
The trade data spans from 2004 to 2015 for 12 poultry product categories, as

presented in Table 1, based on the HS six-digit level, which is the lowest HS level
consistently reported between all trading partners. The dataset is
multidimensional: (1) bilateral trade flows, (2) monthly periods, and (3)
product categories. For additional information regarding the dataset used in
this article, see Johnson et al. (2015).

1 The countries included are Austria, Belgium, Brazil, Canada, Chile, China, Denmark, France,
Germany, Greece, Hungary, Italy, Japan, Mexico, Netherlands, Poland, South Korea, Spain,
Sweden, Switzerland, Taiwan, Turkey, the United Kingdom, and the United States.
2 It was possible that a repeat disease event occurred within the 24-month post-disease period
that made it impossible to have the 24-month period disease-free buffer around the first event.
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Additional information included in the analysis are publicly available data.
Summary statistics for the variables used in the analysis are listed in Table 2.
The HT variable designation is provided to indicate whether a variable is
time variant or time invariant, as well as endogenous or exogenous. Summary
statistics are provided for the original data prior to linearization of
appropriate variables for Equation 4, a step that occurs prior to estimation.
These additional variables are included in the analysis through the Z matrix
in Equation 4, which allows for the analysis to extend beyond accounting for
individual trading partnerships to provide meaningful insights into capturing
factors that influence trade. Share is the exporting country’s annual share of
the world market for poultry exports and is used to approximate the relative
global importance of the exporter on the market. An exporting country’s
global share can affect how trading partners make trade restriction decisions.
Per capita is the annual per capita consumption of poultry meat, which
provides a variable to account for the global trend in consumption of poultry
products across time.
The dataset includes the Great Recession, a global recession spanning from

December 2007 to June 2009, according to the National Bureau of Economic
Research (2016). A variable, Recession, is included to account for the changes
in trade associated with these economic contractionary periods rather than
allow the variations in trade to be associated with preferences for specific
poultry products or included in the error term.
The two key disease event variables are NDV and HPAI. NDV is a binary

variable that provides an estimate for the marginal effect an NDV disease
event has on quantity traded. Similarly, HPAI estimates the marginal trade
impacts that occur with an HPAI disease event. Both NDV and HPAI marginal
effects provide information for the change in quantity traded and insights
into the change in composition of trade between bilateral partners due to a
highly pathogenic disease event by product category. The composition of
trade is the complete mix of product categories being imported by a trading
partner and can change as a result of preferences, risk concerns, or trade
response to a disease event. In terms of model specification, disease events
have a twofold effect: the exogenous impacts of disease events on quantity
traded and the endogenous impacts of country-specific decisions made by
animal health authorities which could include regionalization and market
switching, both of which influence the quantity traded (Thompson 2018;
Webb, Gibson, and Strutt 2018). Because of the relationship between the
disease variables and the country’s individual effects, both disease variables
of interest are modeled as time variant and endogenous.
Out Year, a count of simultaneous disease events for the reporting year, is a

global poultry health measure. The number of exporting countries known to be
managing a disease event can influence importing partners’ trading decisions.
To account for multilateral resistance, individual binary variables are

included for each trading partnership, Pairsi,j,t. Pairsi,j,t accounts for variability
around GDP, distance, population, common language, meat consumption
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preferences, risk perceptions, changes in prices, etc. These variables reduce the
need for further multilateral resistance to be modeled.
Finally, there are regional binary variables that account for region-specific

exporter characteristics. While trading partners variation is accounted for
with the variable Pairsi,j,t, there are regional differences in trade agreements,
willingness to accept product from infected exporters, and risk aversion tied
to the decision of when to resume trade, all of which are accounted for by
the regional variables. The seven regional variables include: Asia, Europe,
South America, North America, Africa, Oceania, and the Middle East.

Results and Discussion

The results are broken out into two components. The first component is the
specification of each model and a discussion of each modeling method
implemented in this article. The second component is the resulting parameter
estimates for the impacts a highly pathogenic disease event has on bilateral
trade of disaggregated poultry commodities. The contribution of this article is
not only in estimating the impacts of a disease event but also in evaluating
modeling estimators.

Estimator Specification

An OLS model with robust standard errors is estimated and presented as
Ordinary Least Squares model in Table 3. A random effects model uses all
information across the multilevel panel, and is also estimated (presented as
Random Effects). To determine whether true random effects exist or if OLS
regression is the consistent and efficient estimator, the random effects model
results were tested using a Breusch–Pagan Lagrangian Multiplier (LM) test
(Breusch and Pagan 1980). The presence of random effects was statistically
different from zero, thereby necessitating the panel approach.
A Hausman specification test was performed to determine whether a random

or fixed effects model is more appropriate by testing whether there were
individual effects that are correlated with the error term (Hausman 1978).
The models fail to meet the asymptotic assumptions of the Hausman test,
thus revealing the presence of individual effects consistent with the literature
(Baltagi, Bresson, and Pirotte 2003). A fixed effects model is appropriate for
the data given these individual effects but limits the analysis to between or
within variation estimators. In order to capture both variations, HT and HT-
SUR estimators were used.
Using the HT and HT-SUR estimators, there were two approaches modeled.

The first approach is to estimate individual HT models, including individual
commodity models (presented as Individual Hausman-Taylor) as well as a
combined HT model (presented as Combined Hausman-Taylor) that uses
disease-commodity interaction variables to determine the commodity-specific
impacts of a disease outbreak in a single model. The second approach is to
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Table 3. Comparison of Disease Coefficient Results for Estimated Quantity Traded of Poultry Products, 2004 to
2015

OLS Random Effects Combined HT1 Individual HT2
Reduced

Individual HT3 HT-SUR4

NDV HPAI NDV HPAI NDV HPAI NDV HPAI NDV HPAI NDV HPAI

Whole Fresh
Chicken

0.15* �0.19*** 0.15* �0.19*** 0.13 �0.24*** 0.15* �0.19*** 0.10 �0.24** 0.17 �0.27*
(0.08) (0.07) (0.08) (0.07) (0.10) (0.08) (0.08) (0.07) (0.06) (0.10) (0.32) (0.16)

Whole Frozen
Chicken

0.10 �0.02 0.10 �0.02 0.23*** 0.09 0.10 �0.02 0.38 0.13 0.38 0.12
(0.07) (0.06) (0.07) (0.06) (0.07) (0.07) (0.07) (0.06) (0.46) (0.30) (0.46) (0.32)

Fresh Chicken
Parts

0.07 �0.18*** 0.07 �0.18*** 0.08 �0.21*** 0.07 �0.18*** 0.13*** 0.08 0.25 0.23**
(0.07) (0.05) (0.07) (0.05) (0.09) (0.07) (0.07) (0.05) (0.05) (0.06) (0.18) (0.09)

Frozen Chicken
Parts

�0.10* �0.15*** �0.10* �0.15*** �0.11 �0.17*** �0.10* �0.15*** 0.19 0.06 0.19 0.02
(0.06) (0.04) (0.06) (0.04) (0.07) (0.05) (0.06) (0.04) (0.18) (0.08) (0.13) (0.09)

Whole Frozen
Turkey

�0.13 0.45*** �0.13 0.45*** 0.04 0.64*** �0.13 0.45*** �0.65 2.84** �0.65 2.83***
(0.17) (0.15) (0.17) (0.15) (0.14) (0.13) (0.17) (0.15) (1.31) (1.13) (1.49) (1.04)

Whole Fresh
Turkey

�0.08 �0.16*** �0.08 �0.16*** �0.05 �0.12* �0.08 �0.16*** 0.19 �0.07 0.19 �0.07
(0.08) (0.05) (0.08) (0.05) (0.11) (0.07) (0.08) (0.05) (0.12) (0.06) (0.20) (0.10)

Frozen Turkey
Parts

0.06 0.13** 0.06 0.13** 0.10 0.18*** 0.06 0.13** �0.17 �0.10 �0.17 �0.12
(0.06) (0.05) (0.06) (0.05) (0.08) (0.06) (0.06) (0.05) (0.44) (0.26) (0.27) (0.19)

Shell Eggs 0.02 0.23** 0.02 0.23** 0.09 0.31*** 0.02 0.23** �0.12 0.36** �0.12 0.37***
(0.15) (0.10) (0.15) (0.10) (0.08) (0.05) (0.15) (0.10) (0.20) (0.16) (0.22) (0.14)

Egg Products 0.11* 0.04 0.11* 0.04 0.08 �0.05 0.11* 0.04 �0.04 0.17*** �0.04 0.17***

(0.07) (0.06) (0.07) (0.06) (0.08) (0.07) (0.07) (0.06) (0.05) (0.04) (0.07) (0.04)

Cooked Turkey 0.12 0.16*** 0.12 0.16*** 0.19** 0.23*** 0.12 0.16*** �0.24*** 0.02 �0.24** 0.02

(0.08) (0.06) (0.08) (0.06) (0.09) (0.07) (0.08) (0.06) (0.09) (0.10) (0.10) (0.09)
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Table 3. Continued

OLS Random Effects Combined HT1 Individual HT2
Reduced

Individual HT3 HT-SUR4

NDV HPAI NDV HPAI NDV HPAI NDV HPAI NDV HPAI NDV HPAI

Cooked Chicken 0.23*** �0.01 0.23*** �0.01 0.09 �0.09* 0.23*** �0.01 0.03 �0.11 0.03 �0.11**

(0.08) (0.05) (0.08) (0.05) (0.09) (0.05) (0.08) (0.05) (0.04) (0.08) (0.06) (0.06)

Cooked Other 0.00 0.10 0.00 0.10 �0.16 �0.01 0.00 0.10 �0.05 0.10 �0.05 0.10

(0.11) (0.07) (0.11) (0.07) (0.11) (0.06) (0.11) (0.07) (0.08) (0.07) (0.09) (0.08)

Observations 1,872–11,063 1,872–11,063 82,380 1,872–11,063 478–3,981 478–3,981

1Combined Hausman-Taylor model, including fixed effect variables for specified commodities.
2Individual Hausman-Taylor models estimated for each of the commodities. (12 models)
3Inidvidual Hausman-Taylor models using reduced data for consistent comparison to HT-SUR models. (12 models)
4Hausman-Taylor seemingly unrelated regression for the fresh, frozen, eggs, and prepared models. (4 systems of 12 total models)
Note: Standard errors in parentheses. ***, **, and * indicate p< 0.01, p< 0.05, and p< 0.1, respectively.
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capture potential efficiency gains in estimation using the HT-SUR applied over
groupings of product categories (see Table 1) and are presented as Hausman-
Taylor Seemingly Unrelated Regression model (Table 3). Each system of
equations was tested for independent equations using the Breusch-Pagan LM
test. For every system presented—Fresh, Frozen, Eggs, and Prepared—the
null hypothesis of independent equations was rejected, allowing for modeling
efficiency with the HT-SUR approach.
There are limitations of the second approach that lie with an unbalanced

panel, which limits the data that can be used. Given the HT-SUR requires a
balanced panel to estimate, observations, or partnerships that do not trade
every product category in a system, were excluded. This translates into a
change from 52 trading partners on average for all 12 categories for the
individual models to 13 trading partners for the HT-SUR. Without creating
trading partnerships that do not exist for specific products and creating a
substantial mass of very small errors in the disturbance term that violates
the normal distribution assumption (Anderson 2010), the bilateral trading
pairs that were used in the HT-SUR estimation are limited. In order for a
comparison of potential efficiency gains, individual models were re-estimated
only including the observations that were used in the HT-SUR estimation and
presented as Reduced Individual Hausman-Taylor model (Table 3).
Consistently, the results show little to no efficiency gains (in terms of reduced
standard errors) in using the HT-SUR model over comparable individual
modeling, with the trade-off being usable data. Due to limitations in selection
criteria for HT modeling, there are no advanced methods for selecting the
optimal model. The best alternative is to use the adjusted R2 value as the
indicator for superior model selection, given the same independent variables
are included in all models. The HT model adjusted R2 values ranged from
0.616–0.922, whereas the HT-SUR models ranged from 0.616–0.948, indicating
slight value in estimating the system over the individual models.

Estimated Disease Impact Results and Discussion

Estimates for the impact an HPAI or NDV disease event has on quantity traded
are presented in Table 3 for models discussed above: Ordinary Least Squares,
Random Effects, Individual Hausman-Taylor Models (HT), Combined Hausman-
Taylor Model, Reduced Hausman-Taylor Models, and the Hausman-Taylor
Seemingly Unrelated Regression (HT-SUR). Full results are available upon
request to the authors.
Using the Individual Hausman-Taylor Model estimations, NDV events tend to

significantly impact select chicken products. Of the five chicken products,
NDV events significantly impact whole fresh, frozen parts, and cooked
chicken products. The response across these products vastly differs from a
23 percent increase in cooked chicken quantity traded during an outbreak to
a decrease in quantity traded by 10 percent for frozen chicken parts.
Additionally, egg products show a significant increase (11 percent) in exports
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during an NDV event. These results indicate a change in composition of trade.
The composition, or mix of products, being traded is also an important aspect
of bilateral trade. While total quantity across all poultry products may
decrease during a disease event, these results decompose trade into product-
specific changes. Changes in product trade during an outbreak can be
attributed to many factors, including preferences of trading partners for
further processed products or increases in advantageous trade as a result of
more affordable products that some importing partners are willing to accept.
Advantageous product category pricing could explain the estimated increase
in whole fresh chicken trade, as it becomes relatively less expensive.
Neighboring partners, where further processing occurs after shipment, could
also increase import demand for fresh products. For example, the United
States ships the majority (77 percent during the 2013 base year) of whole
fresh chicken exports to Mexico, providing for reduced transportation costs
and flexibility in composition of products exported.
The NDV results are similar in nature when comparing the HT individual

models to the combined model. While the coefficients change in significance
from one model to the next, when determining whether the coefficients are
statistically different across the models, we fail to reject the hypothesis that
they were the same. While trading partners can use these estimates to
understand the effect an NDV event has on quantity traded, NDV events
comprise a relatively small portion of the panel data. Although NDV events
account for 45 percent of all disease events in the data, they affect less than
2 percent of the bilateral trade observations. This small portion of affected
trade was driven by the duration of an NDV event from the first reported
outbreak until the last reported outbreak. NDV events affect less than 3
percent of the reported trade lasting more than a year, whereas this is closer
to 18 percent of trade for HPAI events. Importing counties can have a trade
response to any animal health or food safety event, but an explanation for
why NDV does not significantly contribute to changes in trade might be tied
to the relative short disease durations and possible zoonotic capability.
In comparison to NDV events, HPAI events were estimated to be a significant

factor of quantity traded for most of the poultry product categories in the HT
individual models. For all individual models other than whole frozen chicken,
cooked chicken, and cooked other, the HPAI variable is significant at the 95
percent significance level. This implies that in terms of trade quantity
impacts, HPAI is a disease of greater importance across all poultry product
categories than NDV.
Results show statistically significant decreases in quantity traded due to an

HPAI event for chicken categories. For example, an HPAI event leads to a 19
percent decrease in whole fresh chicken exports and an 18 percent decrease
in fresh chicken parts. This is consistent with expectations around chicken
exports reductions due to shortage of exporter supply and importer
responses. Cooked chicken was not significantly impacted due to an HPAI
event. This could imply that while there may be reductions in exporter
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supply of cooked chicken, there might be an increase in demand for these
further processed products to mitigate some risk of disease spread.
Contrarily, turkey product category exports were estimated to have varying

trade responses which can represent changes in composition of turkey trade.
Whole fresh turkey exports are estimated to decrease by 16 percent during
an outbreak, while whole frozen turkey, frozen turkey parts, and cooked
turkey are expected to increase by 45 percent, 13 percent, and 16 percent,
respectively. Countries that import poultry meat typically import frozen
products (61 percent of meat products exported in 2013 were frozen
products), possibly due to their hardiness to withstand transportation.
During an outbreak, there may be a change in importers’ share of exports to
those who prefer frozen turkey over fresh turkey meat. Similar results were
found in the combined model. The values vary in magnitude, but just as in
chicken poultry product categories, the two model coefficients were not
statistically different.
Shell eggs have a significant increase in quantity traded on average, 23 percent,

during an HPAI outbreak, while egg products were not significantly impacted. An
a priori expectation would anticipate a decrease in the trade of these sensitive
products, as shown during the 2014–2015 HPAI event in U.S. egg layers.
However, the counterintuitive results lie with the estimation and the bilateral
trading partners’ relationships in the data. That is, the estimated results
show the average response between bilateral pairs, but this does not imply
that every partnership increases trade for shell eggs during an HPAI event.
Additionally, shell egg trade is generally driven between contiguous partners
such as Belgium and Netherlands, Canada and the United States, or Iraq and
Turkey. Of the top ten exporters for shell eggs, seven exporters are part of the
European Union and account for 52 percent of shell egg trade. During an
outbreak, where the importing partner might also be infected or processing
facilities are across national borders, such as within the European Union, the
increases in trade could be due to reduction in importer domestic supply.
Until this point, the discussion has focused on the HT models but has not

accounted for factors that affect multiple categories simultaneously or
correlation across error terms. To address these correlations, the HT-SUR
models were estimated, capturing the relationships across the models.
However, due to estimation limitations, observations were dropped for the
HT-SUR models. The models are tested for independent equations using the
Breusch-Pagan LM statistic, and results reject the hypothesis of
independence. Thus, the HT-SUR results can be compared to the Reduced
Hausman-Taylor Models (Table 3). Coefficients were consistent across both
reduced observation estimators, and there were negligible differences in
standard errors. While there might be theoretical gains in choosing to
estimate a system of equations rather than individual models, the trade-off is
a reduction in usable bilateral partners.
To understand the impacts of that trade-off, the HT-SUR results can be

compared to the HT models. Directionally, the coefficients have similar results
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for all categories except cooked turkey between the HT and HT-SUR methods.
The magnitude of the impact of a highly pathogenic disease event tend to be
greater in the reduced models than for the HT models, where the complete
data were used. For example, the HT-SUR estimates a 283 percent increase in
whole frozen turkey trade during an HPAI event compared to a 45 percent
increase in the HT models. This large discrepancy is due to the bilateral
partners used in the HT-SUR, where the bilateral partners tended to be
European partners which might have a disproportionate trade response not
applicable to all exporters. Cooked turkey trade quantity changes as a result of
a disease impact was the only category in which the sign changes between the
HT models and HT-SUR models, driven by the remaining pairs sample specific
responses. With the unbalanced nature of the available data, analyzing product
categories instead of aggregated commodities, the HT models provide a better
representation of the effects across exporters than the HT-SUR estimator.

Conclusion

Many factors affect global poultry trade, including proximity, product and
country reputation, demand preferences, and available trade supplies. Highly
pathogenic poultry disease events can cause disruptions in trade flows
through changes in supplies and through importer trade restrictions leading
to changes in quantity traded, composition of products traded, and sources of
imports. This study estimates the impacts HPAI and NDV events have on
quantity traded by comparing a series of estimators. The results provide a
deeper understanding of disease events’ trade impacts. These impacts can be
used to anticipate potential changes in poultry product category quantity
traded during periods of disease planning and response and, consequently,
enable an exporter to adapt more quickly to changes in importers’ trade
composition based on preferences and the price of exports.
The individual product category model results suggest that HPAI events tend

to have a greater impact across all poultry product categories when compared
to NDV events and indicate a greater vulnerability of poultry meat and poultry
product export markets during HPAI disease events. While NDV does have an
impact on trade, particularly for cooked chicken, HPAI has a significant
impact on bilateral trade across most poultry product categories. This could
be due to the short duration of NDV events, the highly prolific nature of
HPAI, or the more numerous strains of HPAI with zoonotic potential.
However, this information does reveal differing trade responses and risk
perceptions associated with specific poultry diseases. The results reinforce
the importance of disease mitigation strategies domestically for highly
pathogenic poultry diseases and the importance of biosecurity for reducing
potential disease pathways.
Analyzing trade flows by product category allows for product category-

specific changes to be estimated and provides valuable insights for
production decisions in the face of a disease event. For aggregated analyses,
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the actual change in composition is not parsed out, and estimations can over or
underestimate the impact of the factors affecting trade with no understanding of
the nuances in changes to trade composition. By understanding the trade
implications of disease event, pre-event contingency planning might both
alleviate some of the economic strain that the events pose and aid in market
recovery. Future research could focus on one commodity and further explore
the temporal and dynamic nature of disease impacts.
Using the Hausman-Taylor Seemingly Unrelated Regression (HT-SUR)

estimator, this article bridges the gap from the political economy literature to
agricultural trade in showing a consistent and efficient estimator for
multidimensional data. The use of the HT-SUR allows researchers to maintain
data dimensionality, not typical of panel data analyses in the agricultural
economics literature, where some form of aggregation across one of the
dimensions can smooth out potential effects of explanatory variables. By
using the HT-SUR, aggregation is not necessary, providing a framework for a
three-dimensional analysis. While there are limitations with the HT-SUR, this
does not discount the method’s potential use across disciplines and data.
Using this methodology, future work could include other agricultural sectors
to estimate the effects of major trade-distorting events to improve the
available information to exporting and importing countries. Future research
with balanced panels could benefit from using this methodology to estimate
three-dimensional datasets where the limitations would not be an issue with
a balanced panel.
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