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ABSTRACT

Applying modern techniques of time series analysis,the-
re are serious indications that the dynamics of the global
solar activity is a low dimensional chaos. A simple non-1i-
near dynamo model is qualitatively studied exhibiting a rich
dynamical behaviour from steady state via some bifurcation to
a chaotic regime,

1. INTRODUCTION

The energy output of the sun as the main basis of life
on the earth is nearly constant. However, the visible solar
surface, the photosphere, is far from being uniform. It al-
ways consists of a granulation pattern which is produced by
oyancy-driven convection. Furthermore, there occur sunspots
located within active regions of the photosphere. These are
dark regions, in which the luminosity is diminished with re-
spect to the general solar surface. In these regions strong
magnetic fields (1-10 kilogauss) appear, whereas the global
magnetic field of the sun is of the order 1 gauss, only. As
was discovered by the druggist H.Schwabe in 1843, the spat-
ial distribution of sunspots reflects in average a 1ll-year
cycle of solar activity. To quantify the dynamics of the so-~
lar activity R. Wolf introduced the sunspot relative numbers
W which can be regarded as a rough measure of the evolution
of the solar magnetic field (Priest, 1982).

Note that the dynamics of W is far from being periodic(Fig.l)
¥e observe a complicate amplitude-frequency modulation as
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Fig. 1: Yearly sunspot relative numbers W(t) (Wolf numbers)

well as intervals of extremely low solar activity, such as
the Maunder minimum during 1645-1715 (Eddy, 1976). To explain
these peculiar features of the solar cycle a nonlinear theory
is necessary.

The purpose of this contribution is to find out nonlin-
ear interactions generating such dynamics. First, we apply
methods of time series analysis recently developed in the
theory of nonlinear systems to estimate dynamical invariants
from the Wolf numbers. Chapter 3 contains the qualitative an-
alysis of a nonlinear dynamo model. Finally,in Chapter 4 we
compare these findings in order to judge the suitability of
the model.

2. ANALYSIS OF THE SUNSPOT NUMBERS

Dynamical systems theory has provided techniques to an-
alyze seemingly irregular time series. By calculating their
dynamical invariants,such as attractor dimensions or Lyapunov
exponents, they allow to decide whether the underlying system
is low-dimensional and/or chaotic (Ruelle,1989).

In order to extract these quantities from the scalar
¥lf numbers W, a reconstruction of the phase space using the
embedding method by Takens (1980) is necessary. Grassberger
and Procaccia (1983) proposed a simple technique to search
for Hausdorff-like dimensions, the correlation dimensions.
Applying this procedure to the Wolf numbers we find in fact
a low correlation dimension Dg = 2.1 *0.3 (Kurths, 1987).

A study on forecasting the sunspot numbers by means of
learning nonl inear dynamics, as proposed by Farmer and
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Sidorovich (1987), gives further evidence for the chaotic
nature of solar activity (Kurths and Ruzmaikin,1990). We have
shown that this rather simple approach yields relatively good
results for short-term forecasts ( < 11 yr). Note that this
procedure is superior to linear prediction models. On the
other hand, the average prediction error grows considerably
for longer forecasts (Fig. 2). This is a typical property of
chaotic systems which preclude long-term predictions.
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Fig. 2: Average prediction error E(t) of the yearly Wolf
numbers as obtained from fitting o a model learning
nonlinear dynamics, x a global linear model, T is
the forecasting time.

These findings suggest that the dynamics of the global
solar activity is low-dimensional chaos.

3. A SIMPLIFIED NONL INEAR DYNAMO MODEL FOR SOLAR ACTIVITY

Large-scale variations of the solar activity can be ex-
plained in terms of a mean-field dynamo theory. The bhasic
idea of solar dynamo theory is that the magnetic field of
the sun is amplified and maintained by its rotation (Krause
and Radler, 1980). The rotation of a shell, the solar convec-
tion zone, with the angular velocity  in the magnetic field
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B leads to an electric field in radial direction., Due to th-
is field the charged particles move outward and in the cond-
ucting wire a current begins to flow. This current causes a
new magnetic field by itself whose direction is equal to that
of the original magnetic field B.

The only physical mechanism known to produce such mag-
netic variations are hydrodynamic plasma motions, that means
differential rotation and turbulent convection. The changes
of the field B are described by the induction equation. For
convenience, the mean magnetic field is split into two parts,
the poloidal component Bp and the toroidal component Bt

> -+ >

B=Bt+ AxAt )

The poloidal component is expressed as the rotation of a pur-
ely toroidal vector potential At' This way we get equations
for the dynamics of At and Bt

2h, . .
T T (@ Y OB+ My
(2a)
-——aﬁt = DVA, + AB
at t t

including the influence of the mean helicity d. The dynamo
umber D depends directly on the differential rotation and the
eanxheliclty and is inversely proportional to the square of

the coefficient of turbulent diffusivity. Additionally, the
back-action of the magnetic field upon the helicity is inclu-
ded. Eq.(2b) describes the changes of the helicity

- -+

28 - - ve + kB, - aer OF (2b)
The parameters y ,p,q control the relaxation of C resp. the
influence of the nonlinear terms. C is the deviation of the
helicity from its value in the absence of the magnetic field.
Thus we get a nonl inear dynamo model. To make it tractable
the equations are truncated using a first order mode ansatz
yielding a system of 7 autonomus differential equations depe-
nding on seven coefficients (Malinetsky et al., 1986)

ay = -oay + (a+ co)bi + 0.5(clb1 + c2b2)
a, = -oa, *+ (a+ co)b2 - 0'5(°1b1 - c2b2)

= - b, - Da

1 2
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|

16

https://doi.org/10.1017/50252921100065878 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100065878

b, = ~b, + Da

2 1
= 2 2
- voco + p(alb1 + azbz)—q((a+ co)(b1 + b2)

O-
1

2 2
+ 0.5 ¢y (by- b2) + czblbz)
2

& = -Vey + plagby - agby) -a((a+ co)(bf - by)
+ g (65+ B3))
¢y = -Vey + plagb, + azbli—q((a+ c,)2b; by, + cz(bf+b§))
(3)
QUAL ITATIVE ANALYSIS OF THE NONL INEAR DYNAMO MODEL

In order to investigate the qualitative behaviour of
the dynamo model (3) in dependence on characteristic para-
meters this 7-dimensional system of ordipary differential
equations has been analyzed by using the software system
CANDYS/QA designed for the qualitative analysis of nonlinear
dynamical systems (Feudel and Jansen,1988 )., This leads to
the construction of a bifurcation diagram.

For the model (3) the dynmamo number D is the crucial
bifurcation parameter. Moreover, the special values D at
which qualitative changes occur mainly depend on the para-
meter q. Hence, our results are shown in a corresponding
D-gq-bifurcation diagram (Fig.3). It exhibits 6 regions with
different kinds of invariant sets. It is obvious that this
system possesses a trivial stationary point where all vari-
ables are equal to a vanishing magnetic field. At a Dy the
system undergoes a Hopf bifurcation: the trivial stationary
point looses its stability and a stable periodic solution
occurs. This stable cycle has been continued with increas-
ing dyamo number. At a critical value Dy this periodic sol-
ution looses its stability too and we find a stable quasi-
periodic motion on a torus which passes to a stable three
frequency torus for higher D. Such stable three frequency
tori have been reported till now for a few systems, only
(Kaneko, 1986,Battelino, 1988, Nicolis, 1990)., As is known
from special maps (Kaneko, 1986) this torus merges in a two
frequency torus if D increases further. For higher D a new
instability sets in leading to a chaotic region.

Since the attractor is somewhat complicated, we cannot
decide from Poincare plots whether the motion is quasiperi-
odic or chaotic. A conclusive way to distinguish between
torus and chaos is to estimate the Lyapunov exponents Ai.
They express this by the exponential convergence or diver-
gence of initially nearby trajectories, i.e. for the dist-
ance of two trajectories holds after an evolution time T
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Fig. 3: Bifurcation diagram for the nonlinear dynamoc model
(3) in dependence on the dynamo number D and parame-
ter q, S - stationary solution, P - periodic solution
H - Hopf bifurcation, 2T - stable two-torus, 3T -
stable three-torus, C - chaos, E - exploding.

d(T) ~ eAT
where A < 0 means stability A > 0 points to unstable beha-
viour. If the maximum Lyapunov exponent Amax is positive

this stage of the system is defined to be chaotic.

The A, of the model (3) are estimated applying the nu-
merical procedure proposed by Shimada and Nagashima (1979).

Between the Xi of a trajectory of a system and the di-
mension of the corrésponding attractor exists a relation fou-
nd by Kaplan and Yorke (1979). If the Ai are ordered descend-

ingly,
k
Dy =k - 2 i/ e 4)
1—
provides a good approximation of the Hausdorff dimension. k
k
is the greatest number with Ai > 0.
i=1
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Calculating the Ai we indeed find a region for D and q
with chaotic motion. In the case of stable tori D y is equal
the number of incommensurate frequencies, but it takes frac-
tal values in the chaotic regime (Fig. 4). The transition
from quasiperiodicity to chaos found for the system (5) is
the typical Newhouse-Ruelle-Takens route to chaos (Newhouse
et. al,, 1978),
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Fig. 4: Kaplan-Yorke dimension D of (3) in dependence on D
KY
for q = -0.075.

The trajectories of the system in the chaotic regime show
a complicate amplitude-frequency modulation as well as epoches
of extremely low activity (Fig.5).Both features have been ob-
served for solar activity, too.
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Fig. 5:Component a of a trajectory of (3) in the chaotic
regime,
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4. CONCLUSIONS

Applying modern techniques of time series analysis we
get serious indications that the dynamics of the global sol-
ar activity is low~dimensional chaos. Thus, a rather simple
nonl inear dynamo model is qualitatively studied exhibiting a
rich dynamical behaviour from steady state via some bifurca-
tions to a chaotic regime. In the chaotic state this system
yields peculiar properties as observed for the solar activity

Finally, we should like to emphasize that the fitness
of this model to describe the global solar activity is not a
well-established fact despite the above indications. The in-
vestigation of such dynamics is still in its infancy and sh-
ould be continued by including other stars with activity cy-
cles and other nonl inear dynamo models.
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