For the first system the triangles are

$$[\overline{2N-1} . (2n-\overline{2N-1})], [2n(n-\overline{2N-1})], [2n(n-\overline{2N-1})+(2N-1)^2],$$
 (iii)

where N is the ordinal number of the set of triangles in question, and n is any number, not necessarily an integer and not necessarily positive.

For formula (i),
$$a = 2N - 1$$
, an odd integer; $b = n - (2N - 1)$.
For formula (ii), $a = (2N - 1) / \sqrt{2}$, $b = \sqrt{2} (n - 2N - 1)$.

For the second system the triangles are

$$[2N(2n-\overline{N-1})], [4n(n-\overline{N-1})-2\overline{N-1}], [4n(n-\overline{N-1})-2\overline{N-1}], [4n(n-\overline{N-1})+2N(N-1)+1].$$
(iv)
For formula (i), $a = \sqrt{2}N$, $b = \{2(n-N)+1\} / \sqrt{2}$.
For formula (ii), $a = N$, an integer ; $b = 2(n-N)+1$.

ALFRED DANIELL.

Note on Isogonal Conjugates.

If T, U are any pair of isogonal conjugates with respect to a triangle ABC (circumcentre O, orthocentre H), then

 $OU = (TH/T\Phi)$. (circumradius);

where Φ is the fourth point of intersection of the circumcircle with the rectangular hyperbola *ABCHT* (whose centre Ω is the middle point of $H\Phi$).

It has been established by the method of isogonal transformation that if T is any point on a fixed rectangular hyperbola $ABCH\Phi$, then the point U (the isogonal conjugate of T) always lies on a fixed circumdiameter EOF.

Now AT, AU are equally inclined to the bisector of the angle A; hence the cross ratio of the pencil formed by joining A to any four positions of T is equal to the cross ratio of the four corresponding positions of U on EOF.

This may be expressed by

The isogonal conjugates of, H, T, Φ , η lying on the rectangular hyperbola are O, U, ϖ , E respectively lying on $EOF(\eta, \varpi$ being points at infinity on the rectangular hyperbola and EOF).

Therefore $A \{HT \Phi \eta\} = \{OU \varpi E\}.$

But $A \{HT \Phi \eta\} = \eta \{HT \Phi \eta\} = \{HL \phi \Omega\}$ estimating on $H\Omega \Phi$ and drawing TL parallel to $\Omega \eta$.

Thus $\{OU \boxdot E\} = \{HL \Phi\Omega\}$ or $OU . \boxdot E : OE . \boxdot U = HL . \Phi\Omega : H\Omega . \Phi L$ $= HL . \Omega\Phi : H\Omega . L\Phi$ and $OU : OE = HL : L\Phi = TH : T\Phi$

since TH, $T\Phi$ being supplemental chords are equally inclined to TL.

78

Corollary.

Draw TW equal and parallel to OU so that UOTW is a parallelogram. Then $OU: TH = OE: T\Phi$, or $TW: TH = \Phi O: \Phi T$.

But *TH*, $T\Phi$ are equally inclined to be asymptotes; also OUE, $O\Phi$ are equally inclined to ΦE , ΦF (parallels to the asymptotes). Thus the angle *WTH* between *TH* and *TW* (*OUE*) is equal to the angle $O\Phi T$ between $T\Phi$, $O\Phi$.

The triangles WTH, $O \Phi T$ are therefore similar,

and $WH: WT(OU) = OT: O\Phi$ or $OT. OU = O\Phi. WH$ $= 2 O\Phi. NZ$

as WH = twice join of middle point of OW (also middle point Z of TU) to middle point of OH (N the Nine Point centre).

This is Ramaswami Aiyar's theorem.

R. F. DAVIS.