For the first system the triangles are

$$
\begin{align*}
& {[\overline{2 N-1} \cdot(2 n-\overline{2 N-1})],[2 n(n-\overline{2 N-1})],} \\
& {\left[2 n(n-\overline{2 N-1})+(2 N-1)^{2}\right],} \tag{iii}
\end{align*}
$$

where N is the ordinal number of the set of triangles in question, and n is any number, not necessarily an integer and not necessarily positive.

For formula (i), $a=2 N-1$, an odd integer; $b=n-(2 N-1)$.
For formula (ii), $a=(2 N-1) / \sqrt{2,} b=\sqrt{2}(n-\overline{2 N-1})$.
For the second system the triangles are

$$
\begin{align*}
{[2 N(2 n-\overline{N-1})], } & {[4 n(n-\overline{N-1})-\overline{2 N-1}] } \\
& {[4 n(n-\overline{N-1})+2 N(N-1)+1] . } \tag{iv}
\end{align*}
$$

For formula (i), $a=\sqrt{2} N, b=\{2(n-N)+1\} / \sqrt{2}$.
For formula (ii), $a=N$, an integer ; $b=2(n-N)+1$.
Alpred Danirll.

Note on Isogonal Conjugates.

If T, U are any pair of isogonal conjugates with respect to a triangle $A B C$ (circumcentre O, orthocentre H), then

$$
O U=(T H / T \Phi) . \text { (circumradius) } ;
$$

where Φ is the fourth point of intersection of the circumcircle with the rectangular hyperbola $A B C H T$ (whose centre Ω is the middle point of $H \Phi$).

It has been established by the method of isogonal transforma tion that if T is any point on a fixed rectangular hyperbola $A B C H \Phi$, then the point U (the isogonal conjugate of T) always lies on a fixed circumdiameter EOF.

Now $A T, A U$ are equally inclined to the bisector of the angle A; hence the cross ratio of the pencil formed by joining A to any four positions of T is equal to the cross ratio of the four corresponding positions of U on $E O F$.

This may be expressed by

$$
A\{T\}=\{U\}
$$

The isogonal conjugates of, H, T, Φ, η lying on the rectangular hyperbola are O, U, π, E respectively lying on $E O F$ (η, ϖ being points at infinity on the rectangular hyperbola and EOF).

Therefore $A\left\{H T \Phi_{\eta}\right\}=\{O U \varpi E\}$.
But $A\{H T \Phi \eta\}=\eta\{H T \Phi \eta\}=\{H L \phi \Omega\}$ estimating on $H \Omega \Phi$ and drawing $T L$ parallel to $\Omega \eta$.

Thus $\quad\{O U \varpi E\}=\{H L \Phi \Omega\}$
or $O U . \varpi E: O E . \varpi U=H L . \Phi \Omega: H \Omega . \Phi L$

$$
=H L . \Omega \Phi: H \Omega . L \Phi
$$

and

$$
O U: O E=H L: L \Phi=T H: T \Phi
$$

since $T H, T \Phi$ being supplemental chords are equally inclined to $T L$.

Corollary.
Draw $T W$ equal and parallel to $O U$ so that $U O T W$ is a parallelogram. Then $O U: T H=O E: T \Phi$, or $T W: T H=\Phi O: \Phi T$.

But $T H, T \Phi$ are equally inclined to be asymptotes; also $O U E, O \Phi$ are equally inclined to $\Phi E, \Phi F$ (parallels to the asymptotes). Thus the angle $W T H$ between $T H$ and $T W$ (OUE) is equal to the angle $O \Phi T$ between $T \Phi, O \Phi$.

The triangles $W T H, O \Phi T$ are therefore similar,
and $\quad W H: W T(O U)=O T: O \Phi$
or $\quad O T . O U=O \Phi . W H$

$$
=2 O \Phi . N Z
$$

as $W H=t$ wice join of middle point of $O W$ (also middle point Z of $T U$) to middle point of $O H$ (N the Nine Point centre).

This is Ramaswami Aiyar's theorem.
R. F. Davis.

