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REFLEXIVE BIMODULES 
K. R. FULLER, W. K. NICHOLSON AND J. F. WATTERS 

If VK is a finite dimensional vector space over a field K and L is a lattice 
of subspaces of V, then, following Halmos [11], alg L is defined to be (the 
K-algebra of) all ^-endomorphisms of V which leave every subspace in L 
invariant. If R Ç end(l^) is any subalgebra we define lat R to be (the sublattice 
of) all subspaces of VK which are invariant under every transformation in R. 
Then R Ç alg [lat R] and R is called a reflexive algebra when this is equality. 
Every finite dimensional algebra is isomorphic to a reflexive one ([4]) and these 
reflexive algebras have been studied by Azoff [1], Barker and Conklin [3] and 
Habibi and Gustafson [9] among others. 

Our point of departure starts with the following observation. If R Ç end(V^) 
is as above then V = RVK is a bimodule. Moreover alg(lat R) consists of those 
endomorphisms in end(V#) which leave invariant every R- submodule of RV 
and as such is determined by the bimodule RVK- This leads to our notion of 
alglatO^A) for any bimodule RVA (e.g., R an algebra of operators on VK and A 
any subalgebra of the endomorphism ring (or commutant) end(#V)) and to the 
idea of a reflexive bimodule. Moreover, it provides extensions and new proofs 
of earlier results, and it encompasses other situations (for example Hadwin and 
Kerr [10] study the case where R — A is any commutative ring). 

Throughout the paper we will be concerned with bimodules #MA where 
R and A are rings with unity, we will write all ring and module homor-
phisms in the left of their arguments, and /^-modules will generally be left R-
modules. 

1. The ring alglat(#MA). Given a bimodule RMA we define 

alglat(/?MA) = {a G end(MA)|atf Ç K for all RK Ç RM} 

— {a G end(MA)|am G Rm for all m G M} 

and we write this as alglat M when no confusion can result. Clearly alglat(/?MA) 
= end(MA) if RM is simple, and alglat(#/?/?) = R. Hadwin and Kerr [10] 
deals with alglat(#M#) where R is commutative, while Habibi and Gustaf
son [9] considers alglat(A^) where K — A is a field and R a certain 
type of subring of the matrix ring Mn(K). In this section we present general 
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REFLEXIVE BIMODULES 593 

notions and results regarding alglat^M^), and we extend results in [1], [4], [8] 
and [10]. We begin with 

LEMMA 1.1. Let M/ be an R-A-bimodule, 1 <i<k, and let a G alglat (M\ © 
...®Mk). Then there exist ai G alglat M;, 1 < / < k such that 

a(m\,..., ntk) = (cc\m\,..., a^ra*) for all 

(mu...,mk) eMi®...@Mk. 

Furthermore if i ^ j then 

afl = 7<*/ for all R-homomorphisms 7 : Ni —> M^ Nt Ç Mt•. 

Proof. The first statement follows from the fact that, being submodules, the 
canonical images of the Af/ in M\ ©.. .©M* are stable under each a G alglat(Mi © 
.. . © Mk). Moreover if 7 : Ni —» My is any /Miomomorphism with Ni Ç M/, let 
mz G N/ and consider 

k 

x = (0,... ,mh ... ,7mM ... ,0) G 0 M , . 
i=\ 

Then ax = rx for some r G /? so a/m, = rm,- and a/(7m/) = r(7m(). Since 7 is 
^-linear, it follows that ccfl = If ai. 

The map a in Lemma 1.1 will be denoted 

a = (aha2,...,ak). 

Given RM& it is clear that alglat M is a subring of end(MA) which contains 
the image of R under the canonical ring homomorphism 

7M : R —* end(MA). 

Thus 

AM : /? —• alglat M where AM 00 = r-

and r- denotes multiplication by the element r. Then RMA is called a reflexive 
bimodule if 

alglatfo AfA) = AM(/?), 

that is, if the only A-linear maps MA —* MA which leave invariant every R-
submodule of RM are given by multiplication by an element of R. 
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The following two results provide examples of reflexive and non- reflexive 
bimodules, and will prove useful in the sequel. 

PROPOSITION 1.2. Given R = RRA, let 

R = e\A + e2A + • • • + enA + L 

where L = RL& and the et are orthogonal idempotents with 1 G Ee,-A. Then 
L 0 R is reflexive. 

Proof. Let (a,/3) G alglat(L 0 R ) . Then for each / G {l , . . . ,w} there exist 
b[ G R such that (3ei = ft/e,-, so letting 

n 

we have 

bej = 0ej,j= l , . . . ,w. 

Ifx G Lthen(a,/3)(x,x) G R(x,x) so ax = /3x.Now, ifx G L then (a,/3)(x, 1) = 
r(x, 1), r G /?, so ax = rx and /3(1) = r. But /3(1) = fc • 1 because 1 G Ee,A so 
r = b and a = fr- on L. Thus /3 = a = fr- on L whence /3 = /?• on R — Ee/A + L. 
Finally then (a,f3) = b- on L 0 /?. 

PROPOSITION 1.3. Lef R be a ring with Jacobson radical J = J(R), and sup
pose that A is a division subring of R such that R = A(&J.IfJ=£0 then RR& 
is not reflexive. 

Proof. By hypothesis R is a local ring, so that every proper left ideal is 
contained in / . Thus the A-projection TT : R& —+ RA onto A with ker7r = J 
belongs to alglat(/?7?A)- Now suppose IT = p- on R for some p G R. Then 
p = p - l = 7rl = l so 7T = 1. Hence A = im 7r = R, contrary to J ^ 0. 

For example, let A be a division ring, let 

and let M — A2 viewed as columns, so RMA =R R& using matrix multiplication. 
Then M 0/(7?) is reflexive, and M is not. In fact, as a subring of M2(A), 

alglat(M) = UTM2(A), 

the full ring of upper triangular matrices, because the (2,l)-entry of any mem
ber of alglat(M) clearly must be zero, and alglat(M) is a A-subspace properly 
containing R. 
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Given bimodules RMA and RNA, and subrings 

AM W Q S Ç end(MA) and XN(R) C T C end(NA), 

a ring homomorphism a : 5 —> T will be called R-compatible in case the diagram 

commutes. If 0 is injective we shal say it is an R-compatible embedding. In 
particular, if 

6 : alglat M —• alglat /V 

is an /^-compatible embedding and N is reflexive then M is too. If 

f :RKA^ RMA and g : #MA —• RLA 

are, respectively, a nionomorphism and an epimorphism of bimodules, then since 
a(im/) Ç i m / and a(kerg) Ç kerg for a G alglat M, it follows tha t / - 1 af and 
gag~l are well defined elements of alglat K and alglat L, respectively. In fact 

a—>f~laf and a—»gag - 1 

define /^-compatible ring homomorphisms 

alglat(M ) —» alglat(/0 and alglat M —• alglat L, 

respectively. We shall refer to these as the canonical ring homomorphisms in
duced by f and g. 

The remaining results in this section concern /^-compatible embeddings. Given 
RMA write Mk for the direct sum of k copies of M. Then Mk is an £-A-bimodule 
where E — end(MA) and so, if k ^ 1, we may define 

alg*lat(M) ={a E end(MA) \aX ÇX for all RX Ç RMk} 

—{a G end(MA) | Given{/rai,..., m^} Ç M there exists 

r G R such that ami = rmt for all / } . 

Thus algilatM = alglatM and these alg^latM are subrings of alglat M such 
that 

AM(/?) Ç • • • Ç algilatM Ç a l g i l a t M Ç • • • Ç alglatM 

(see [8], page 11). 
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LEMMA 1.4. Given RM& and k ^ 1, the map 

0: alglat M -> alglat (M*) 

given by 8(a) = (a, a , . . . , a) w aft R-compatible ring isomorphism. 

Proof. If a G alg^lat M and (mi, . . . , m^) G M* let r G /? satisfy am, = rmi 
for each /. Then 

( a , . . . , a)(mi, . . . , m*) = r(/m , . . . , ^ ) 

and so 0(a) G alglat (M*). It is now clear that 9 is a one-to-one ring homo-
morphism, compatible with R. Finally let (3 G alglat (M*). Then Lemma 1.1 
gives (3 = {« i , . . . , «it} where each a, G alglat M. Moreover taking 7 = lM in 
Lemma 1.1 shows that a, = a, for all / ^j. This completes the proof. 

Lemma 1.4 leads to the following extension of a result of Habibi [8] for finite 
dimensional algebras. 

PROPOSITION 1.5. Let 1 = e\ + £2 + * * • + e* /w /? w/^re f/ze e, are orthogonal 
idempotents. Given RM& assume eiM can be ^-generated by ni elements, 1 ^ 
i ^ k. If n = max{«i, n2, • • • •> n/c} then Mn is reflexive. 

Proof. Let 

ejM = 2_\MijA where eim^ = /?% for each j . 
y=i 

If /3 G alglat (Mn) then Lemma 1.4 gives /3 = (a, a , . . . , a) for some a G 
alg^lat(M). Since «/ ^ « there exists r, G ̂  such that am^ = r^y for each 
7 = 1,2,..., «/. Define 

If 1 ̂  / ^ k and 1 ^ 7 ^ «/ we have 

k 

rmtj = rietmtj) = ^ r ^ ( ^ m / / ) = r/e/m// = r/zw// = arm//. 
*=i 

It follows that a = r- on e/M, and hence on M = He [M. But then /? = 
(a, a, a) = r- on M", as required. 

In particular this shows that Mn is reflexive if MA can be generated by n 
elements. 
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Given a left module RM, write E = end(^M)op so that M = RME. We write 
biend(flM) = end(M£), note that \M(R) Ç biend(#M), and recall that RM is 
balanced if equality holds. (The biendomorphism ring biend(#M) corresponds 
to the second commutant in operator theory.) 

PROPOSITION 1.6. Given RMA the map 

<p : alglat(M2) —• biend(/?M) 

given by ip(a, a) — a is an R-compatible ring embedding. In particular, RM\ 
is reflexive whenever RM is balanced. 

Proof. We have 

r 1 :alglat(M2)-»alg2latM 

where 9 is the map in Lemma 1.4, and so it suffices to show 

alg2latM Ç biend(flM). 

If a G alg2latM, let À G end(RM) and m G M. Then there exists r G R such that 
am = rm and a(Xm) = r(Xm). But A is /^-linear so a(Xm) = \(rm) — X(am), 
and hence a G biend(#M) as well. 

This last result was observed for RRK by Brenner and Butler [4], and for RMK 

by Azoff [1, Lemma 4.3] and Habibi [8] when R is a finite dimensional algebra 
over a field K. 

The following notion is useful in obtaining R-compatible embeddings. Given 
bimodules RM& and RN& we say that M controls N if, for all a G end(A^A) and 
all n G N, there exists 

{(nhrm)\i eI}CN xM 

with the following property: 
If n eR,i G / , and r G tf satisfy 

CM; = r//i; and r/AW/ = rm/ 

for all / G / , then an — rn. 
Such a subset {(«/, AW/)|/ G / } Ç N xM will be called a connection for a and 

n. It is easy to verify that if M controls N and M is a subquotient of U, then 
U controls N. 

As in [2, Section 8] a collection of modules £/ generates (cogenerates) N in 
case N is an epimorph of a direct sum (resp. embeds in a direct product) of 
members of U. 
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LEMMA 1.7. A bimodule RM^ controls RN& in either of the following situa
tions: 

(1) RN is generated by submodules of RM ; 
(2) RN is cogenerated by images of RM . 

Proof Suppose a G end(A^A) and n G N are given. In the first case let 

iei 

be /?-epic where M/ Ç M for each /, and let 

iei 

be the canonical maps. If n — Y^^Gimi anc* we write ni — nairni for each /, 
then {(«/,m/)|/ G / } is a connection. Indeed, if ctrii = r/«/ and r^ = rmi for 
all /, then ant — rnt for each / so, since n = Y^niian — rn-

In the second case let 

iei 

be /?-monic where each ipi is an /?-epimorphism, and let 

iei 

be the canonical projections. If 717072 = ^ra/, m; G M, then {(n,/w/)|/ G / } is a 
connection. For if an = r^n and r/m, = rmt for all / then it;cran — -iïicr(rn) for 
each / so oan — o(rri). Hence an — rn because a is one-to-one. 

PROPOSITION 1.8. Let RM& and RN& be bimodule s such that M controls N. If 
RLA is isomorphic to either a submodule or an image of RN&, then the canonical 
ring homomorphism 

alglat(Af 0 M) —> alglat(L 0 M) 

is injective. In particular if R(LÇ&M)& is reflexive then so is R(N 0 M)A. 

Proof Suppose that g : N —-»• L is an 7?-A-epimorphism. Then the canonical 
ring homomorphism 

alglat(N © M ) ^ alglat(L 0 M) 

is given by 

(a,(3)->(gag-\l3). 
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If (a, /?) is in the kernel, then (3 = 0, so (a, 0) G alglat(N © M). Thus, if n G N 
and {(fl/,m/)|/ G / } is a connection for a and « then there exist rz G /? with 

(a,0)(fl/,/n/) = (nn^nmi). 

But then r;/ra/ = 0-m/ for all / G /, so by définition of a connection an = 0-n — 0. 
So in this case the canonical ring homomorphism is an embedding. The other 
case is entirely similar. 

COROLLARY 1.9. If RM& is a reflexive bimodule and RN^ is a bimodule such 
that RN is either generated by submodules or cogenerated by images of RM , 
then N 0 M is reflexive. 

We conclude this section by providing a generalization of results of Hadwin 
and Kerr [10] dealing with a commutative ring R and alglat(/?Mfl) where rm = 
mr. In this setting we say M is reflexive if RMR is a reflexive bimodule. (In later 
sections we consider alglat(/jAf#) where R is a AT-algebra.) Recalling that an 
artinian selfinjective ring (e.g. a group algebra) is called QF (or quasi-Frobenius) 
we have 

THEOREM 1.10. The following statements about a commutative artinian ring 
R are equivalent: 

(a) Every faithful 2-generated R-module is reflexive; 
(b) R is QF; 
(c) Every faithful R-module is reflexive. 

Proof Since R is a direct sum of local rings, we may assume that R is in fact 
local. 

(a) => (b). Let R be any commutative local ring and suppose that p and 
q G / = J(R) generate distinct minimal idels of R, so that / = ann(/?) = ann(g), 
and p and q are independent over R/J. Let 

HC:D u,veR\ QRR\ 

and let 

M = R2/K. 

Then, by the independence of p and q we see that RM is faithful. To see that 
M is not reflexive, let 

Then AK C K so 

" = ( ' ^)e *«»• 

( : ) • * - " ( > * 

https://doi.org/10.4153/CJM-1989-026-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-026-x


6 0 0 K. R. FULLER, W. K. NICHOLSON AND J. F. WATTERS 

defines a G end(M^). If s G / , let t\ — 1 — p. Then it is easy to check that 

< ) - < • ( ; ) « • 

If s £ J and t2 = (s~lr — l)q + 1 then 

Thus a G alglat(M). Moreover a simple computation shows that 

*(J)"(i)« 
and 

*(ï)-(î)« 
would violate the independence of p and q, so a £ A M W - Thus if every faithful 
2-generated /^-module is reflexive then R contains at most one minimal ideal. 
Since it is well known that an artinian local ring is QF if and only if its left and 
right socle are simple (see [7], for example), this proves that (a) implies (b). 

(b) => (c) Since RRR is always reflexive, and RR is isomorphic to a direct 
summand of every faithful R-module whenever R is a commutative (hence basic) 
QF-ring, this implication follows from Corollary 1.9. 

The results of Hadwin and Kerr [10, Theorems 9 and 12] are contained in 

COROLLARY 1.11. Let R be a commutative semiprimary ring. Then the follow
ing are equivalent: 

(a) Every 2-generated R-module is reflexive; 
(b) R is uniserial; 
(c) Every R-module is reflexive. 

Proof. A commutative uniserial ring is a direct sum of commutative local 
semiprimary rings Rtli = 1 , . . . , AZ, with radicals // such that jf /Jf+X is simple 
or zero for k = 0,1, On the other hand a ring is uniserial if and only if all 
of its factor rings are QF see [6, pp. 235-238], so this corollary follows. 

Also presented in [6, pp. 235-238] are characterizations of uniserial rings 
among semiprimary rings as principal ideal rings and, when commutative, as 
those whose finitely generated modules are direct sums of cyclic modules. The 
algebra generated by an operator on a finite dimensional space is uniserial, as 
is any proper quotient of a PID. 
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2. Morita invariance. The main aim of this section is to show that the prop
erty of being reflexive over a A'-algebra is preserved under Morita equivalence, 
where K is any commutative ring. This result is a consequence of two lemmas 
and a proposition which hold in greater generality; the proposition being that 
tensoring with a finitely generated projective module PR transfers reflexivity 
from RM& to T(P <8> RM)A where T = QTK1(PR). 

LEMMA 2.1. Let RMA be an R-A-bimodule and A = alglatM. If e — e2 G R 
then eAe = B, where B — alglat^M and eM is regarded as an eRe-A-bimodule. 

Proof Let L be an eRe-submodule of eM and let a G A. Then 

(eae)L C ea(ReL) Ç e(ReL) C L 

and so we have X(eae) G B with 

X(eae) • x = eocex for all x G eM. 

Thus À : eAe —> B is a ring monomorphism. 
Now let /3 G 5 and define //(/}) G A by n(fi)m — fiem. Since /3(em) = erem for 

some r G /? it follows that p(fi)m = erem G /?m. Also ep,{fi)em — e/3em = /few, 
so 

ep,(fi)e • x = fix for all jt G eM. 

Thus \(en(fi)e) = fi and A is an isomorphism. 

LEMMA 2.2. Let M be an R-A-bimodule and write A — alglatM, S = MP(R) 
the p by p matrix ring. Let Mp be the direct sum of p copies of M written as 
column vectors. Then 

alglat(5M£) - MP(A). 

Proof Any S -submodule of Mp is of the form IP for some RL Ç RM so 

MP(A) Ç alglatGMp. 

On the other hand, let a — (cty) G alglat(Mp) and m G M. If ak : M —> Mp is 
the injection then 

ctc7k{m) = SGk{m) 

where s £ S = MP(R). If s = (r^) this means 

(aik(m))T = (rikm)T 

so aik(m) G /?m for all / and /:. This shows a G MP(A) as required. 
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PROPOSITION 2.3. / / PR is a finitely generated projective module, with T = 
end(Pfl), and if RMA is reflexive, then T(P <S>/? A/)A is reflexive. 

Proof If / = IR(M) then P/PI is projective over R/I and 

T(P®M)A^T(P/PI®R/IM)A, 

so we may assume that alglat M = R. There is a natural number p such that 
RP = /> e />'. Let e G end(Rp

R) be the projection onto P. Write 5 = M^tf) = 
end(/?p/e) and 7 = eSe. Then 

r^M^ ^ r r f 05 M77 ^ r ( r f 0 5 R
p) ®RM ^ TeRp ®R M = TP ®R M. 

Now Lemma 2.1 gives 

alglat5M£ - M^alglafoAf A) = M,(fl), 

since RMA is reflexive, and so 

a l g l a t U ^ ) <* ealglat(sAf£)e ^ eSe 

by Lemma 2.2. Hence TP (8)/? MA = T^A^A *s reflexive. 

PROPOSITION 2.4. Lef K be a commutative ring, let R and S be K-algebras, 
and let F : R-Moé —• S -Mod be a Morita equivalence with inverse G, both of 
which are K-linear on morphisms. If RMK is reflexive, then SFMK is reflexive. 

3. Split algebras. If R is a (finite dimensional) algebra over a field K 
then, following [1], [8], and [9], if RM is an /^-module we write alglat M for 
alglat RMK and say that M is reflexive in case RMK is reflexive. The A'-algebra 
R is split in case the endomorphism ring of every simple /^-module consists of 
AT-scalar multiplications by elements of K; equivalently, in case for each simple 
/^-module RS,R/lR(S) is ^-algebra isomorphic to a full matrix ring over K. If 
R is basic with radical J(R), then R is split if and only if 

RK =eiK@...@enK@J(R) 

where e\1... ,en is a basic set of idempotents for R. Of course if K is alge
braically closed then R is automatically split. (See [2, Section 27] for basic 
rings and sets of idempotents; every artinian ring is Monita equivalent to a basic 
ring.) 

PROPOSITION 3.1. A finite dimensional K-algebra R is split if and only if each 
of its simple modules is reflexive. 

Proof. If RS is simple then alglat(S) = Mn(K) where n — \S : K\, so 

tf/**(S)^As(*) = alglat(S) 
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if and only if 

R/tR(S)*Mn(K) 

as A'-algebras. 

It follows from [9, Theorem 2] and is implicit in [5] that if R is a split uniserial 
algebra then R 0/(7?) is reflexive. More generally we have 

PROPOSITION 3.2. If R is any split algebra then R(&J(R) is reflexive. 

Proof. This is just a special case of 1.2 if R is a basic split algebra. But if 
e = e\ + . . . + en is the sum of a basic set of idempotents for a split ^-algebra 
R, then 

RM —• eReeM — eR®RM 

is a Morita equivalence of ^-algebras, and, setting J = J(R),eRe 0 eJe is 
reflexive over eRe. But this <?/te-module corresponds to /?<? 0/<? which must be 
reflexive, a generator and a direct summand of R 0 / , so 7? 0 / is reflexive by 
Corollary 1.9. 

Indecomposable projective modules being reflexive is sufficient (but not nec
essary) to cause an algebra to split, as well shall see using the next lemma. 

LEMMA 3.3. Let R be a finite dimensional K-algebra and suppose that RM 
has a unique maximal R-submodule L. If M is reflexive, then so also is M jL. 

Proof. Let a G alglatM/L and write MK — L 0 C. Define à : M —» M by 
â(£ + c) — ca, where l G L,c G C and a(c + L) = ca+L with ca G C. Then à 
is a well-defined A -̂map. If RN Ç #M and /V Ç L, then âN = 0; if N £ L, then 
N = M, by the uniqueness of L, whence âN Ç N. Therefore a G alglatM and 
since M is reflexive there is r £ R with â(£ + c) = r(£ + c) for ail £ G L, c G C. 
Hence rc — ca = ri £ L and so c« + L = rc + L. Therefore a(c + L) = r(c + L) 
and M/L is reflexive. 

LEMMA 3.4. Let R be a finite dimensional local algebra over afield K. If RR 

is reflexive then R = K. 

Proof. If RR is reflexive then so is R/J(R) by Lemma 3.3. But then R is split 
by Proposition 3.1, so RK = \K ®J(R) and, by Proposition 1.3, J(R) = 0. 

PROPOSITION 3.5. Let R be a finite dimensional algebra. If every indecompos
able projective R-module is reflexive then R is a split algebra and eJ(R)e = 0 
for every primitive idempotent e G R. 

Proof. If RRe is reflexive then so is eReeRe by Lemma 2.1. But then, being 
local, eRe = eK by Lemma 3.4, and the proposition follows. 
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4. Reflexive projective modules. This section contains results which show 
that all projective modules are reflexive over split hereditary algebras and inci
dence algebras; two important classes of algebras that satisfy the conclusion of 
Proposition 3.5. 

A ring is hereditary in case submodules of projective modules are projective. 
If R is artinian this occures if J(R) is projective (see [15]). 

THEOREM 4.1. IfRis a finite dimensional split hereditary algebra over afield 
K then every projective R-module is reflexive. 

Proof. Since we have seen in Proposition 2.4 that "reflexive" (as well as "pro
jective") is a Morita invariant, we may assume that R is a split basic hereditary 
algebra. Let e\,..., en be a basic set of idempotents for R, and suppose that RP 
is finitely generated and projective. Then 

KP = eiP®...®enP, 

so P has a A'-basis 

x = x{ù...ùxn 

such that 

x = eix for all x G Xi 

(where some of the X/ may be empty). If 0 ^ *LxeXikxX € /X/, with kx G K we 
would have ejeîy ^ 0 for some y G X/. But this is impossible because, since R 
is artinian and hereditary, ejet — 0. Since R is basic and split, this means 

RXi =RetXi =KXi®JXi 

as ^-spaces and RXi/JXi has a projective cover consisting of 

composition length (RXi/JXt) = \RXi/JXi : K\ = cardX, 

copies of Rei/Jei. But RXi is projective so, by uniqueness of projective covers 
(see [2, 17.17 and 27.13]), we must have 

RXi = 0 / t e / j t . 
xeXj 

Now let a G alglat(P), and choose JCZ- G Xt for each X/ ^ </>. Then, since 
re/ —-> re/*/ is an isomorphism of /te/ onto /te/*/, there is a unique element 
r/e/ G /te/ such that 

<*(*/) = naxi. 
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If i ( / x E Xt then for some s E R 

rtetXi + a(x) = a(xi + x) = seiXi + seix 

so, since the sum RetXi +RetX is direct, set = r,-e/ and 

a(x) — rieix for all x £ X/. 

Now letting 

'tet 
= 1 

we have for any x G X/,y = 1, . . . , n, 

a(x) = ryfiyjc = rx. 

Hence a = \p(r) because X = UX/ is a £-basis for P. Finally, since any 
projective module RQ is a direct sum P 0 P ' where P is finitely generated and 
P ' is a direct sum of copies of direct summands of P, an application of Corollary 
1.9 completes the proof. 

If X = {jti,... ,xn} is a finite set of cardinality « pre-ordered by a reflexive, 
transitive relation a then the incidence ring /(X, A) is the subring of the matrix 
ring Mn(A) defined by 

/(X, A) = {(dtj) G Mn(A)\dij = 0 unless xt a Xj} 

= Z{eijA\xl axj} 

where e^ / j G J l , . . . , «}, are the matrix units in Mn(A). Such a ring is called a 
tic-tac-toe ring by Mitchell in [12]; the notion appears to have been introduced 
by Rota in [14]. 

An upper triangular matrix ring over a division ring is both hereditary and 

an incidence ring, but if dim(VA:) ^ 2 then the ring of mairies is 
K V 

K 
hereditary but not an incidence ring. If a is a non-trivial partial order and A is 
a division ring, then /(X, A) is hereditary if and only if the interval [x^Xj] is a 
chain wheneverxt axj (see [12, Theorem IX. 10.9]). We write et — en to obtain 
a complete set of orthogonal idempotents e\,..., en for /(X, A), and note that 

eiI(X,A)ei ^ A for / = 1,. . . ,n. 

If K is a field then /(X, K) is called an incidence algebra, and is clearly a split 
#-algebra. We shall employ the following lemma to prove a result showing that 
every projective module over an incidence algebra is reflexive. 
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LEMMA 4.2. Let R be a subring of Mn(A) and let K = RK& Ç Mn(A) and 
N = RN& Ç Mn(A) be bimodules of the following form: 

K = Yj{eljA\(iJ)eX} and N = J ] { ^ A | ( / J ) G Y} 

where X and Y are nonempty sets of pairs of indices (/, j) with 1 ̂  ij ^ n. If 
both RK& and RN& are reflexive then R(K (&N)& is reflexive. 

Proof Let (a, fi) G alglat(£ © N). Since N is reflexive, there exists b G R 
such that P — b- on N. But then a — b- — a- on K (because K is reflexive) and 

(a-, 0) = (a, 0) - (ft-, ft.) G alglat(£ 0 W). 

Hence it suffices to show that (a-,0) = c- on K (& N for some c € R, that is 
(a — c)^ = 0 and cN = 0. If we write 

a = (dty) = y^jj-ejj, 

the key observation is 

(1) If (p,s) £ X and (p, 0 G Y for some /?, 5-, r, then a//7 = 0 for all /. 

Here we have 

(a, 0)(eps, ept) = r(eps, ept) for some r = (nj) G R 

so aeps — reps and 0 = rept. These give 

i i i 

so dip = rip = 0 for all /. 
Now define the element c as follows: 

c = ^ { ^ | ( £ , y ) 0 F for all 7 = 1,2,...,*} 

where we take c = 0 if, for all k,(kj) G F for some y. Then we have 

(2) dV = 0. 

This is clear if c = 0. Otherwise, if (&,/) ^ 7 for all j we must show ^ N = 0, 
that is ekeij = 0 for all (ij) G Y. But £ ̂  / because (kj) £ Y. 

(3) (a - c)tf = 0. 
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To verify (3) and thus complete the proof, if (p,s) G X, we must show 
aeps = ceps. We have 

^2{aekeps\(kJ) g Y for all j} 

_ j 0 if (/?, j) G Y for some j 
~ \aeps if (pJ)£Y for ally'. 

Thus it suffices to show aeps = 0 if (pj) G Y for some j . But 

so this follows from (1). 

THEOREM 4.3. Let R = I(X, A) with idempotents a — eu(i — 1 , . . . , n). Let P 
be a direct sum of copies of bimodules of the form RRCÏA with i G { 1 , . . . , n}. 
Then RP& is reflexive. 

Proof. Since 

XjOOCj XjOOCj 

it follows from Proposition 1.5 that each Re} is reflexive. Thus by Lemma 4.2, 
if / i , . . . , i/c G { 1 , . . . , n} then the R-A bimodule ®k

i=xReik is reflexive, so even 
if the direct sum is infinité, an application of Corollary 1.9 shows that RPA is 
reflexive. 

If A is a local ring and R = /(X, A), then, since eiRei = A, R is semiperfect 
and every projective left /^-module is a direct sum of copies of the Ret (see [2, 
Section 27]). Thus we have 

COROLLARY 4.4. If A is a local ring then every projective 1(X, A)-module is 
a reflexive R-A-bimodule. 

COROLLARY 4.5. IfK is afield then every projective module over the incidence 
algebra I(X,K) is reflexive. 

5. Serial algebras. In this final section, we examine the results of Habibi and 
Gustafson [9]. In view of Proposition 2.3 showing that reflexivity is a Monta 
invariant, the Habibi-Gustafson results can be stated for arbitrary (rather than 
basic) split serial algebras: Let R be a split indecomposable serial algebra with 
/ = J(R). Then [9, Theorem 1] every faithful /^-module is reflexive, provided 
that R has more than one isomorphism class of indecomposable injective projec
tive modules; and [9, Theorem 2] ifR has, up to isomorphism, n indecomposable 
projective modules and P is the only one of these that is injective, then P (&JnP 
is reflexive, and it is a subquotient of every reflexive ^-module. 
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An artinian ring is called QF-2 (see [16], [7]) in case its left and right indecom
posable projective modules all have simple socles (so both serial and QF rings 
are QF-2). A QF-2 ring R has a unique module RU that is minimal faithful in 
the sense that it is a direct summand of every faithful module; U is a direct sum 
of (one copy of each of) the indecomposable injective projective left /^-modules. 
Habibi and Gustafson proved [9, Theorem 1] by first showing that under its hy
pothesis RU is reflexive, and then observing that a similar proof works for any 
finitely generated faithful 7?-module M because M — U ®h 0 . • • 0/* where the 
Ij are subquotients of the indecomposable components of U. In this connection 
we have. 

PROPOSITION 5.1. Let R be a QF-2 algebra with minimal faithful module RU . 
If RU is reflexive then so is every faithful R-module. 

Proof Since U is faithful and each indecomposable projective has simple 
socle, U must contain a copy of each Ret, where e\,...,en is a basic set of 
idempotents. But then very faithful module is of the form M = U (BN where 
N is generated by submodules of U, so Corollary 1.9 applies. 

Concluding this section, we reprove results of Habibi [8] and Habibi and 
Gustafson [9] on basic indecomposable serial algebras over an algebraically 
closed field K. In such an algebra /?, 

n 

where {e\,e2,.. -,en} is a set of primitive orthogonal idempotents, and the 
e/'s can be ordered so that if dim(/te;) = c/, then c\ is minimal, cf- ^ 2 for 
/ > l,c/+i =̂  1 + ct for 1 =W < n, and ci == 1 + cn. Thse conditions arise out 
of epimorphisms Ret —» Je^\ for 1 =W < n, and Ren —> Je\ —• 0, where 7 is 
the Jacobson radical of R. Also every /^-module is isomorphic to a direct sum 
of the modules Rei/Jkei. The modules Ret for which a+\ ^ 1 + C( are called 
chain ends; they are the indecomposable injective projective /^-modules [13]. In 
the case when R has only one chain end, Q+I = 1 + C/ for 1 =W < H. We shall 
provide simple proofs that Ren (BJnen is a subquotient of every faithful reflexive 
/^-module (stated without proof in [9]), and that every R-module which contains 
Ren (&Jnen as a subquotient is reflexive (implicit in [8, Corollary 3.3.2]). In this 
discussion K has been algebraically closed, but it is sufficient for the algebra R 
to be split. Also Proposition 2.4 allows us to drop "basic" from the hypothesis. 

PROPOSITION 5.2. [9, Theorem 2]. Let R be a split serial K-algebra over a 
field K with only one chain end Ren. Then Ren (&Jnen, where J = J(R), is a 
subquotient of every faithful reflexive R-module. 

Proof Let c = cn, the composition length of Ren. The composition series for 
Ren is then 

RenDJenD...D Jc~xen D Jcen = 0 
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with simple factors S„, Sn-\,..., S\, Sni... where 5/ = Ret /Jet, \ û i ^ n. 
Suppose that RMK is a faithful reflexive bimodule. Then Ren is a factor of M 

since M is faithful, so write M — Ren 0 1 . Now suppose that X does not have 
Jnen as a subquotient; this means, in particular, that c > n. The module Jnen has 
composition length c-n with factors, in order, Sn,Sn-\,...,S\, Sn, Therefore 
the indecomposable modules which do not have Jnen as a subquotient are just 
the subquotients of Jen/J

c~len. 
For convenience identify Ren with Kc. Then as Habibi and Gustafson pointed 

out in [9], using the n letters <z, /?,. . . ,#, /? has a lower triangular representation 

P1 1 
\ ai b\ 0 

\-ac bc-\ . . . xc-n+\ cic-n . . . -• 

on /?£„ where en has <?i = 1 and all other entries 0, etc. Let t E MC(K) with 
tCin+i and all other ttj = 0. Then 

t-Jen/J
c-len = 0, 

so / annihilates every subquotient of Jen/J
c~len. If v E A^ then there exists 

r E £R(Jen/J
c-len) 

such that tv = rv. Indeed, if vi = 0 choose r E R with ac-n = 1 and all other 
entries 0, and if vi ^ 0 let r E /? have tfc = vw+ivf* and all other entries 0. 

Since tc,n+\ ^ 0 = tc-n,\,t $ R, and furthermore, for all v 0 7ten, there is 
r E /̂?(X) with tv — rv. Therefore 

(f,0)E alglat (/te„©X) 

since 

(f,0)(v,*) - (rv,0) = (rv,rx) = r(v,x), 

but r 0 R, so /?£„ © X is not reflexive. 

It is worth noting that, in the setting of 5.2, alglat (Ren) is the full ring of c x c 
lower triangular matrices over K. Indeed it is clear that any a E alglat (Ren) Ç 
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MC(K) must be lower triangular, and that each matrix unit e^i = 1,2, . . . , c 
belongs to alglat (Ren), so 

alglat(fo„) = Y^Reu = LTMC(K) 
/=i 

The converse of Proposition 5.2 follows easily from Proposition 1.8. 

PROPOSITION 5.3. If R is a split serial algebra with only one chain end Ren, 
and RM has Ren(BJnen as a subquotient, then M is a reflexive faithful R-module. 

Proof. According to [9, Theorem 2], Ren (BJnen is reflexive. If K ^ RM and 
h : K —• Ren (&Jnen is an epimorphism, then, since Ren is projective, K = P 0 L 
with P ^ /te„ and 

g = h\L :L-+Jnen 

is an epimorphism. Then, since P is injective, M — N 0 P with L isomorphic 
to a submodule of N via a monomorphism / : L —> N. Since each /te/ embeds 
in Ren = P,P controls every /^-module by Lemma 1.7. Thus by Proposition 1.8 
the canonical ring homomorphisms 

alglat(M) = alglat(iV©F)-^ alglat(L 0 P ) —• alglat(/"^ 0 / ? ^ ) 

are /^-compatible injections so, since Jnen (&Ren is reflexive, so is M. 
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