The properties of a temperate bacteriophage W isolated from Escherichia coli strain W

By S. W. GLOVER AND G. KERSZMAN*

Medical Research Council, Microbial Genetics Research Unit, Hammersmith Hospital, Ducane Road, London, W.12

(Received 7 December 1966)

1. INTRODUCTION

In the course of experiments in which the growth of phage λ in *Escherichia coli* strain W was being studied (Glover & Aronovitch, 1967), it became apparent that strain W was lysogenic for a hitherto undescribed bacteriophage $W\phi$. This phage plays an important role in the restriction of λ (Kerszman, Glover & Aronovitch, 1967). In this paper we shall describe some of its properties and the behaviour of several different strains of bacteria made lysogenic for $W\phi$.

2. MATERIALS AND METHODS

Bacteria. Escherichia coli strain W (Davis, 1950); E. coli C (Bertani & Weigle, 1953); E. coli B is strain B251 (Arber & Dussoix, 1962); E. coli K is strain C600 (Appleyard, 1954); Kr⁻m⁻ (Colson, Glover, Symonds & Stacey, 1965); Shigella dysenteriae (Lennox, 1955).

Bacteriophages. Phage λ and a virulent mutant λv (Jacob & Wollman, 1954); Phage P1 (Lennox, 1955); Phage P2 kindly supplied by Dr G. Bertani.

Media. (See Glover, 1962.)

Phage techniques. The general phage techniques are as described by Adams (1950). Special techniques relating to λ are those described by Arber (1960).

Density gradient centrifugation. (See Glover & Aronovitch, 1967.)

Anti-sera. Rabbit anti-sera were prepared against λ , P1 and W ϕ . Anti-P2 serum was a generous gift from Dr G. Bertani.

3. RESULTS AND DISCUSSION

(i) Properties of $W\phi$

Log-phase cultures of E. coli W contain a phage $\mathbb{W}\phi$ which forms plaques on E. coli C at an efficiency which we arbitrarily call $1\cdot 0$. Such cultures usually contain about 10^6 plaque forming units (p.f.u.) per millilitre. The ultra-violet sensitivity of $\mathbb{W}\phi$ is like that of λ (see Fig. 1). But ultra-violet radiation of cultures of strain W does not increase the yield of $\mathbb{W}\phi$. Repeated attempts have been made to cure strain W of its phage without success. However it is relatively easy to isolate strains of W which no longer produce the phage but which nevertheless do not plate it. Like the parent strain W these strains still restrict the growth of phage λ and are presumably lysogenic for a defective form of $\mathbb{W}\phi$. For this reason $\mathbb{W}\phi$ was routinely grown on E. coli C on which it forms λ -like plaques 2–3 mm. diameter with turbid centres.

* Permanent address: Department of Microbiology, University of Lodz, Lodz, Nowotki 18, Poland.

The relationship of $W\phi$ to a number of other well-known phages was investigated serologically. Antisera were prepared against $W\phi$, λ , P1 and P2 and used to inactivate each of the phages in turn. Anti- λ serum was completely without effect on $W\phi$ but P1,

Fig. 1. Ultra-violet inactivation of phage λ and W ϕ . Samples of phage suspension were irradiated at a distance of 50 cm. from a Hanovia bacterial lamp for the time intervals shown. The number of surviving phage particles was assayed on $E.\ coli\ C.$

• Phage
$$\lambda$$
.C. • Phage $\mathbf{W}\phi$.C.

P2 and W ϕ appear to be antigenically related. The K values of the sera which are listed in Table 1 indicate that W ϕ is very closely related antigenically to P2 and much less closely related to P1.

Table 1. The K values of anti-sera prepared against phages P1, P2 and $W\phi$

Phage	Rabbit anti-sera			
	$\overbrace{ ext{Anti-W}\phi}$	Anti-P1	Anti-P2	
$W\phi$	634	73	20	
P1	41	593	1	
P2	460	69	29	

Inactivation of the phages was measured at 37°C. in phage buffer. The K values of the antisera were calculated from the relationship:

$$K = 2 \cdot 3 \frac{D}{t} \times \log \frac{p_0}{p}$$

D =final dilution of antiserum.

 p_0 = phage titre at time zero.

p = phage titre at time t min.

The buoyant density of $W\phi$ was measured by density gradient centrifugation using phage λ as a reference. It forms a single broad peak in a CsCl gradient lighter than λ and at about the same position as P2 (see Fig. 2).

Figure 2. Titres of phages in the fractions collected after density gradient centrifugation.

- \circ —— \circ Phage $\lambda v.C$ assayed on $E.\ coli\ CW\phi'$.
- \triangle —— \triangle Phage W ϕ .C assayed on E. coli C λ '.
- Phage P2.K assayed on E. coli K.

In spite of these similarities between $W\phi$ and P2 they are clearly not co-immune since $W\phi$ plates on C(P2) and the P2 plates on $C(W\phi)$ and on strain W which carries the $W\phi$. Similar tests have also shown that $W\phi$ and P1 are not co-immune. The plating efficiency of $W\phi$ on a number of indicator strains is shown in Table 2. These results clearly indicate the difference between λ , P1, P2 and $W\phi$.

Table 2. The approximate plating efficiencies of λ , P1, P2 and W ϕ on different strains of E. coli

Plating bacteria

Phage*						
	C	C(P1)	C(P2)	$C(W\phi)$	CWφ'	Shigella
$\mathbf{W}\boldsymbol{\phi}.\mathbf{C}$	1.0	1.0	1.0	Immune	Resistant	1.0
λ.Ć	1.0	10-4	< 10-8	See Table 4	1.0	< 10-8
P1.C	1.0	Immune	1.0	1.0	1.0	1.0
P2.C	1.0	10-4	Immune	1.0	Resistant	1.0

^{*} Following the notation of Arber & Dussoix (1962) the host specificity of a phage is represented by the name of the phage followed by the name of the host strain in which it was last grown.

A point of some interest is that P2 does not plate on a strain of E. coli C made resistant to $W\phi$. In fact, simple tests show that P2 and $W\phi$ do not adsorb to C $W\phi$ so that these phages appear to share a common receptor.

Preliminary electron micrographs show that $W\phi$ is a tadpole-like phage rather like T1 and P2 (Bertani, 1958). It has a head approximately $65 \times 65 \text{ m}\mu$ and a tail approximately $140 \text{ m}\mu$ long with a contractile sheath.

(ii) The properties of $W\phi$ lysogens

Suspensions of $W\phi$ were prepared by spontaneous lysis of strain W and from a single plaque of $W\phi$ on E. coli C and plated on C, K and Kr^-m^- . The e.o.p. of these suspensions on K and Kr^-m^- was about 10^{-6} compared to $1\cdot 0$ on C. A suspension of phage was prepared from a single plaque on K and replated on C, K and Kr^-m^- . Table 3 shows that the e.o.p. of this suspension was $1\cdot 0$ on all three strains. However, this change in the e.o.p. of $W\phi$ after growth in K was not due to host modification because after several cycles of growth in C this phage retains its ability to plate on K, rather it is a mutant $W\phi k$. In fact the only plaques obtained when suspensions of $W\phi$ were plated on K were produced by $W\phi k$ mutants. The reason why $W\phi$ isolated either directly from strain W or from plaques on C does not plate on K has not been investigated.

Table 3. The approximate e.o.p. of $W\phi$ and its mutant $W\phi$ k on E. coli K and C

	Plating bacteria		
Phage	К	C	Kr^-m^-
$W\phi.C$	$< 10^{-6}$	1.0	< 10−€
$\dot{\psi}_{\phi k}$.K	1.0	1.0	1.0
$\dot{W\phi}k.C$	1.0	1.0	1.0

Table 4. The approximate e.o.p. of phage λ on strains of E. coli lysogenic for $W\phi$

Phage	Plating bacteria				
	K	$K(W\phi k)$	C	$C(W\phi k)$	$C(W\phi)$
λ.Κ	1.0	1.0	1.0	1.0	< 10-8

 $W\phi$ and its mutant $W\phi k$ were used to prepare the following lysogenic strains, $C(W\phi)$, $C(W\phi k)$ and $K(W\phi k)$. Phage λ does not form plaques on strain W which carries the $W\phi$ prophage so it was of obvious interest to test the e.o.p. of λ on these new $W\phi$ lysogenic strains. The results of these tests which are summarized in Table 4 indicate that strains lysogenic for the mutant $W\phi k$ do not restrict the growth of λ but that bacteria lysogenic for $W\phi$ may do so. It has been shown that the DNA of phage λ is degraded in $W(W\phi)$ (Kerszman, Glover & Aronovitch, 1967). Therefore $W\phi k$ could be regarded as a mutant of $W\phi$ which has lost the ability to direct the degradation of λ DNA. However not all $C(W\phi)$ isolates behave in the same way, some strains of C when made lysogenic for $W\phi$ plate λ almost as efficiently as non-lysogenic strains, others display intermediate patterns of behaviour. In respect of the biological properties listed in section (i) and in serological tests and by density gradient centrifugation $W\phi$ and $W\phi k$ do not differ. The reason for the differences in behaviour among different $C(W\phi)$ isolates is under investigation.

SUMMARY

Escherichia coli strain W was found to be lysogenic for a temperate phage $W\phi$. This phage, which plates on E. coli C, forms λ -like plaques 2–3 mm. diameter with turbid centres. It is serologically unrelated to λ but is closely related to P2 which it resembles in the electron microscope. Its buoyant density in CsCl has been measured and it is different from λ but similar to P2. E. coli C made lysogenic for $W\phi$ restricts the growth of λ , and elsewhere (Kerszman, Glover & Aronovitch, 1967) it has been shown that the DNA of phage λ is degraded shortly after infection of bacteria lysogenic for $W\phi$. A mutant of $W\phi$ has been isolated which has lost the property of restricting the growth of λ .

We wish to thank Dr D. E. Bradley who kindly took the electron-micrographs of $W\phi$. One of us (G. K.) is grateful to the British Council for a scholarship during the academic year 1965–66.

During the course of this work we learned that a similar phage had been isolated by Dr Lewis Pizer and we are grateful to him for a copy of a manuscript prior to publication (Pizer, Miovic & Pylkas, 1967).

REFERENCES

- Adams, M. H. (1950). Methods for the study of bacterial viruses. In *Methods in Medical Research* (J. H. Comroe, ed.), vol. 2, pp. 1-73. Chicago: The Year Book Publishers, Inc.
- APPLEYARD, R. K. (1954). Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from *Escherichia coli* K12. *Genetics*, **39**, 440-452.
- Arber, W. (1960). Polylysogeny for bacteriophage lambda. Virology, 11, 250-272.
- Arber, W. & Dussoix, D. (1962). Host specificity of DNA produced by *Escherichia coli*. I. Host controlled modification of bacteriophage λ. J. molec. Biol. 5, 18-36.
- Bertani, G. (1958). Lysogeny. Adv. Virus Res. 5, 151-193.
- BERTANI, G. & WEIGLE, J. J. (1953). Host controlled variation in bacterial viruses. J. Bact. 65, 113-121.
- Colson, C., Glover, S. W., Symonds, N. D. & Stacey, K. A. (1965). The location of the genes for host controlled modification and restriction in *Escherichia coli* K12. *Genetics*, 52, 1043-1050.
- DAVIS, B. D. (1950). Studies on nutritionally deficient bacterial mutants isolated by means of penicillin. *Experientia*, **6**, **41**–50.
- GLOVER, S. W. (1962). Valine resistant mutants of Escherichia coli K-12. Genet. Res. 3, 448-460.
- GLOVER, S. W. & ARNOVITCH, J. (1967). Mutants of bacteriophage lambda able to grow on the restricting host *Escherichia coli* strain W. *Genet. Res.* 9, 129-133.
- JACOB, F. & WOLLMAN, E. L. (1954). Etude génétique d'un bactériophage tempéré d'Escherichia coli. I. Le système génétique du bactériophage λ. Annls Inst. Pasteur, Paris, 87, 653-673.
- KERSZMAN, G., GLOVER, S. W. & ARNOVITCH, J. (1967). The restriction of phage λ in *Escherichia coli* strain W. (in press).
- LENNOX, E. S. (1955). Transduction of linked genetic characters of the host by bacteriophage P1. Virology, 1, 190-206.
- Pizer, L. I., Miovic, M. & Pylkas, L. (1967). The effects of prophage W on the propagation of T2 and T4. J. Bact. (in press).