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ABSTRACT

Credibility theory is concerned with the problem of forecasting the mean
performance (claim frequency, total losses, etc.) of an individual risk,
selected from a collective of heterogeneous risks, based upon the statistics
of the collective, and upon the individual's experience data. The classic
results, derived by American actuaries in the 1920's, were further streng-
thened by Bailey and Mayerson in 1950 and 1965, who showed that these
results were exact Bayesian for certain risk distributions. Biihlmann, in
1967, then showed that the credibility formulae were the best least-squares
linearized approximation to the exact Bayesian forecast, for general risk
distributions.

This paper extends credibility theory to the problem of forecasting the
distribution of individual risk, based upon collective statistics and individual
experience data. Although the problem is, in principle, solved by finding a
Bayesian conditional distribution, this approach requires a detailed know-
ledge of collective structure. The credible distribution, on the other hand,
requires fewer prior statistics, and is also a best least-squares linearized ap-
proximation to the exact Bayesian distribution.

Following the theoretical development, detailed computational results
are given.

1. INTRODUCTION

Credibility theory is the name given to a method of experience
rating an insurance risk, which was developed by American actu-
aries in the 1920's. In the classic problem, one begins with a pool, a
collective of somewhat heterogeneous insurance contracts which are
grouped together to "spread the risk"; it is assumed that detailed
prior statistics are available from this pool. In particular, the fair
collective premium, E{£}, is the average value of the risk random
variable of interest, such as number of accidents per year, dollar
losses per unit exposure, etc.

Now suppose that a new insurance contract of unknown risk
characteristics is underwritten, and assigned to this pool. At the
beginning, th.e fair individual premium changed would be just the
collective premium E{£}; however, as individual experience data
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238 THE CREDIBLE DISTRIBUTION

xi, ^2, . . . xn is obtained over n years, this data would tend to
reflect more nearly the individual risk characteristics.

Using heuristic reasoning on the pooling of data (and considering
only the number of claims per year), arguments were advanced in
the early literature for a fair experience premium for next year's
risk, ^re+i, based on a formula of the form

+ 1 ! Xl, x 2 , . . . x n ) «a ( 1 — Z ) • E { 5 } + Z - ( i x t l n ) , ( 1 . 1 )

with
n

Z = — — . . (1.2)

Z was called the credibility factor; it provides for a mixing of the
fair collective premium, E{i;}, and the individual sample mean,
2 xt/n, with increasing "credibility" attached to the latter as n
increases. The time constant N was essentially determined by trial
and error.

This credibility formula was successfully used in American
actuarial circles for more than 50 years, with innumerable variation
and elaboration. A full survey, with references, may be found in
Longley-Cook [11]. However, the modern theory of credibility
begins with the resurgence of Bayesian techniques and with the
works of Bailey [2] and Mayerson [12], who showed, under certain
assumptions regarding the structure of the collective of risks, that
(1.1) was an exact formula. Finally, in 1967, Biihlmann [3] showed
that the credibility formula was the best least-squares linearized
approximation to the exact Bayesian forecast, and gave an explicit
formula for N in terms of collective second-order statistics (see
formula (4.6) below). A larger survey of this development is in [19].

Since that time, other research has focused on credibility-type
forecasts of variance [4], the use of auxiliary data in conditional
distributions [5], [6], the "IBNR triangle" of partial data develop-
ment [17], and multi-dimensional risks [19], [20].

The purpose of this paper is to extend the approach of credibility
theory to the problem of estimating the distribution of individual
risk, based upon collective statistics and individual experience data.
Although this problem is, in principle, solved by finding the
Bayesian conditional distribution, Pr{E,n+i < y \ xi, x2, . . . xn],
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this approach requires a detailed knowledge of collective structure
for every y. We shall see that the credibility approach needs fewer
prior statistics for a fixed value of y, and leads to a simplified
prediction of credibility type ( I . I ) ; furthermore, the credible
distribution is unbiased, and is a least-squares linearized fit to the
exact Bayesian distribution.

First, we consider in more detail the nature of the risk collective,
and results of least-squares theory we shall need in the sequel. Fol-
lowing the development of the credible distribution, we consider the
problem of forecasting the density, and show how, in the discrete
case, more complicated estimates can be made. Various theoretical
properties of the credible estimates are presented, followed by
computational results for certain well-known distributions. Finally,
we briefly consider certain problems in moment estimation.

2. THE RISK COLLECTIVE: BAYESIAN RESULTS

Consider a collective of heterogeneous risks, such as an insurance
portfolio, in which each member is characterized by a risk para-
meter, 0. For a given value of 6, the claims experience (number of
claims or total value of claims) for a certain time period or ex-
posure base t is a random variable, \t, with known distribution

Pt(x | 6) = Pr{lt < x | 0} (t = i, 2, . . .)• (2.1)

In what follows, it will be assumed that the ^ are mutually
independent, given 0; the (discrete or continuous) density of (2.1)
will be indicated by pt(x | 0).

If the true value of an individual parameter 0 = 0y were known,
then the fair premium would be:

E{lt I 0T} = J xdPt(x I 6r) (2.2)

for any time period t.

If 0r were not known, it would still be possible to infer a fair
premium for an individual risk, provided that a prior distribution,
U(-), on the collective risk parameter was known, and if experience
data (E,t = xt\ t = 1, 2, . . ., n) were available for this individual.
By the usual Bayesian argument, the forecast distribution of next
year's risk would be the conditional distribution:
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P n + i { y | xi, xz, . . . , x n ) = Pr{E,n+i < y \ x i , x 2 , . . . , x n )

JPw+1(y|0) n pt{xt\

J n j>t(xt | 0) dUQ)
(2-3)

which is known to be the unbiased, least-squares estimate of
Pn+i(y I Sr), given the experience data x = {xi, ^2, . . . xn}.

The fair experience premium would then be:

x) = J ydPn+1(y I *). (2.4)

The statistical literature emphasizes the behavior of the density
of 6 posterior to x, given by:

n pt{xt I 6) dU(Q)

dUn(Q I *) = ^ (2.5)
J n pt(xt I </>) dU(4)

It is known (see, for example DeGroot [7]), that for fairly ar-
bitrary priors, Un(Q | x) is approximately normal with mean Or,
variance proportional to n'1, for large enough n, and converges to
the degenerate distribution a t0 = 0 T a s w ^ o o . Thus the forecast
distribution (2.3) also converges to P(y | 0T) for almost every y.

These Bayesian calculations are laborious, except for certain well-
known conjugate-prior families of priors and likelihoods, such as
Beta-Binomial, Gamma-Poisson, Normal-Normal, etc. (See for
example [7]). Furthermore, the problem in insurance and other
applications is that, although detailed statistics may be available
from the mixed collective distribution:

Pt{x) = E&Pt(x I 0) = J Pt(x I 0) dU(Q), (2.6)

there is very little information available on the internal structure of
the collective, between different risks. Thus a full Bayesian fore-
casting is impossible without additional distributional assumptions.

In the sequel, we shall deal only with time-invariant collectives,
for which Pt(x j 0) = P(x | 0) (v t), and we shall consider the
problem of providing a credibility-type approximation to (2.3). The
theoretical basis for this approximation is in least-squares theory.
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3. LEAST-SQUARES THEORY

Suppose we have a vector-valued random variable co from whose
observations w we are trying to predict another random variable TJ
through a forecast function/^). Assuming the joint distribution
P(y, w) = Pr{f] < y; co < w} is known, the classical norm to
evaluate the forecast is the mean-square error:

I=l{y~f{w)YdP{y,w). (3.1)

It is known that the integrable function/0 which minimizes (3.1)
at value 1° is the conditional mean:

f°{w) = E{v) I co = w), (3.2)

where E is defined with respect to the measure P. However, in
many cases the exact conditional calculation is too difficult and an
approximate forecast function / is sought. Since completion of the
square shows that

(3.3)

for any / , then the approximate forecast is also a least-squares fit to
the conditional mean, and one may select arbitrary parameters in
the approximation to make the integral in (3.3) as small as pos-
sible, or work directly with (3.1).

A typical choice of an approximate forecast is a linear function

f[w) = a0 + £ a}w}. (3.4)

In this case it is well known that the optimal parameters a^ are
given by solutions of linear equations of the form:

2 qw < , coy} • a* = C{Y); toj (V * ̂  0) (3.5)

with a*0 selected so as to make the average forecast E}/(co)} un-
biased, e.g.,

E{/(co)} = E{v)}; «'o = E{T)} - S «;E{co,.}. (3.6)

The prior variance of the optimal linear forecast is:

V{/(co)} = 2 S <«;C{co,; cô } = S a ^ ; cô } (3.7)
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242 THE CREDIBLE DISTRIBUTION

and the approximation error turns out to be:

l — io = V/»(co) - S a] C{r); coy}. (3.8)

As before, all operators are defined on the measure P = P(y, w).

It is sometimes not realized that the above approximation is a
linearization only in terms of the parameters aj, and not necessarily
in terms of the observables. For, suppose there is an underlying
vector random variable £, with observations x, and there are known
transformations

7) = go(Q; co; = &(|) (j = 1,2, . . .)• (3-9)

Then the above theory applies directly to the prediction of go(Z,)
by a forecast function

f(x) = a0 + S a^x), (3.10)

by making the obvious extension of the operators in (3.5) and (3.6).
In many cases a further simplification results if the gj(-) are func-
tions of only a single component of \.

Another modification of linear least-squares theory occurs when
one constrains the variables:

co«o + 2 Cjdj = Constant. (3-11)

Here one defines a Langrange multiplier \L, adds [i-co to the
definition (3.6) of a*0, and adds \i{ci — c0E{wJ) to the «'th equation
°f (3-5); V- is then adjusted until (3.11) holds.

A special case of the above occurs when a subset of the aj (j =£ 0)
are constrained to be equal to each other. One can show that the
columns in the constraint matrix [C{1;«, 5y}] corresponding to the
common a,j are first added together to form the coefficients of the
common variable ac', then the coefficients of the rows corresponding
to the constrained subset (in both the constraint matrix and the
RHS, [C{T] ; £j}]) of variables are aggregated by addition into a single
equation, thus making the system (3.5) again square. If there were
m equations, and 1 < r < m variables are set equal to each other,
the resulting system is (m — r -j- 1) X (m — r -\- 1), and the coef-
ficient of ae in its own row consists of the sum of r2 old coefficients.
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All of these constraints increase the mean-square error.
Finally, we make the observation that superposition holds, i.e.

suppose we have made a linear forecast of a certain random variable
T)1 by finding parameters {aj} from (3.5) using a RHS of C(y)1; coj.
We then repeat the process, finding other sets of parameters
{af I k = 2, 3, . . .} using a RHS of C{y]fc; w j (k = 2, 3, . . .). Not
only is only one inversion of the constraint matrix of (3.5) required
for all the parameter sets, but any linear combination of predictands,
say of:

V = 2 CfcY)* (3.12)
k

will have optimal values

a] = 2 ckaf {j = 0, 1, 2, . . .)• (3.13)

We now apply these results to the model of the collective.

4. THE CREDIBLE MEAN

In the collective model, there are underlying random variables
£1, £2, ...,\n; \n+x which are mutually independent (and, here,
identically distributed), given 0, the risk parameter. To predict the
mean of the next observation, given the n observed values \t = xt
(t = 1, . . ., n), we take the simplest case of (3.9):

Using the fact that

rir. K m { V{l,i 1 6} [t = j) . .
Oy\i\ \j I 0} = > r _L'\ (4-2)

we find

0} (,•=;)
(4-3)

The second case also holds for C{TJ ; «$}.

If the \t are identically distributed (t = 1, 2, . . . n -f- 1), we find
that the optimal aj (j ^ o) are identical, with:

— nai] (4.4)

1 V{£} E6V{£ I 6}
n'+~N N = VoEfsTe} ~~ J = VeE{l~|"6} " ^4'5^
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In other words, we get the classical credibility forecast:

(ixt\
E { W I x = §} «/(*) = (1 - Z) E{^} + Z ^ - j • (4.6)

This result is due to Buhlmann [3].

Where necessary in the sequel, we shall distinguish the above—
given N and Z from others as

8}'

n
(47)

the mean-credible time constant and credibility factor, respectively.
The corresponding forecast function in (4.6) will be referred to as
f[i](x). The forecast of the mean is a priori unbiased,

E/[i](iy = E{5}. (4-^)

It is easy to show that the mean square error is:

6}, (4-9)

so that error starts at V{£} (variance using the collective mean as
forecast), and decreases with increasing n to EeV{£ | 0} (irreducible
variance in sample mean). This error is, of course, a priori; Section 8
examines the forecast behavior when 6 is known.

5. THE CREDIBLE DISTRIBUTION

We now consider the central problem of this paper, which is to
find a credibility approximation to the true distribution of the next
observation:

Pn+x{y I 6T) = Pr{ln+1 < y \ %T}. (5.1)

The analysis is greatly facilitated if we use the generalized least-
squares formulae (3.9) (3.10) and set:

r\ = go{ln+i) = I{j — ln+i) (5-2)

for a fixed value of y, where /(•) is the unit step, unity for non-
negative arguments, zero otherwise.
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The optimal predictor of TJ, in terms of | = x (now referring to the
first n samples only), is by (3.2):

= P{y l = x), (5.3)

the Bayesian conditional distribution! Thus, a credibility forecast
of type (4.5) will approximate the Bayes distribution, if suitable
transformations (3.9) can be chosen. (5.2) above suggests we also
choose

cof = I(y — \t) [t = 1, . - . ,» ) (5-4)

Using the independence and identical distribution properties of
the collective described previously, we find the (prior) moments:

= E{co<} = P(y); (5.5)

\P(y)(i-P(y)) (i=j)
Cov {cos; w;} = (5-6)

(The last case also covers Cov {•/); CH}). These results should be
compared with (4.3). It follows, as for the mean, that the optimal
coefficients aj(i ^ 0) are identical, and we obtain the credible
forecast distribution:

with

Z

= (1 - Z) P(y) + Z (5.7)

n + N V9P(y|6)

Notice how the classical form remains the same; the forecast is a
mixture of the collective estimate of the distribution, P(y), and of
the sample distribution, 2 I(y — Xt) jn. The credibility factor is an
increasing function of n, of classical form, but with a different time-
constant, N, which in this case depends upon the chosen value of
y. And, lim Z = 1.

re—>co

To distinguish the above results from other credibility formulae,
and to emphasize the role of y, we shall henceforth refer to the
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above time-constant as Np(y), the credibility factor as Zp(y), and
the forecast function as F(y | x).

A priori, the mean forecast is unbiased:

E{F{y I I)} = P(y), (5.9)

and the mean-square error is

I = P(y) (1 - P(y)) - V6P(y I 8) . ZP[y). (5.10)

Incidentally, it is easy to see that the credible estimate of the
complementary distribution, Pc{y \ %} = Pr}l,n+i > y \ \ = x) is
the same as (5.7), with the same credibility factor, but with P(y)
replaced by Pc(y), and the complementary sample distribution used.

6. HISTORICAL REMARKS; AN EXACT RESULT

The form of the credible distribution has already been hinted at
in other works. Whitney [18] in 1918 begins with a normal distri-
bution of "class hazard" and, using a mixture of arguments re-
miniscent of later Bayesian and maximum likelihood techniques,
finds a credibility form to mix "the indicated (individual) risk
hazard" with P, "the indicated class hazard". He obtains Z of
form (5.8), with, as one approximation,

P(i — P)N = - ^ H • I6-1)
e2 being the (normal) "variation of hazard within the class". "We
now come to the most difficult question of all, the determination
of s2. It is obviously impossible to determine e2 statistically in each
case. Some general assumptions must be made regarding its form
and value". [18] Whitney goes on to argue for e2 varying as P5/4,
while others argued for N a constant. (See the discussion to [12],
p. 123-4).

The formula (4.5) for the credible mean of the Beta-Bernoulli
family, as derived by Bailey [2] and Mayerson [12], is also sug-
gestive :

m(i — m)
N = g2 - - 1 (6.2)

where m and cr2 are the mean and variance of "P(H), the prior
probability (one is) willing to assign to H", the hypothesis. [12]
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In fact, after reflection we see that estimating probabilities is a
form of Bernoulli trial, in which we count each sample as a "success"
or "failure", depending on which side of y it falls; the long-run
frequency of success (which is the mean success) must be the
probability sought. Our contribution is thus to point out that (5.7)
and (5.8) are the minimal-variance estimators for an arbitrary
distribution of "class hazard".

Perhaps it is not surprising that the only distributions of P(x | 6)
and £7(0) which the author has been able to find for which (5.7) is
exact Bayesian are the Bernoulli (x | 6) — Beta(6 | a, p) families,
for which:

{ } [ — E{6}]
Np{y) = v { 6 } - 1 = a + p. (y = 0,1) (6.3)

Credibility is already only an approximation for slightly enlarged
families, such as Binomial-Beta, or Bernoulli-Arbitrary U(-).

7. COMPUTATIONAL CONSIDERATIONS

What has been accomplished with (5.7), as compared to the
minimal variance Bayesian prediction (2.3) ? In the first place, the
exact calculation requires knowledge of the structure of the prior
and likelihood for all values of the observables, for all 0. Practically
speaking, this restricts the computations to the conjugate-prior
families of distributions.

The credible forecast (5.7), on the other hand, is a point estimate
of P(y j x), which is practically distribution-free, requiring only
estimates of P(y) = E9P(y | 0) and V&P{y | 0) from the collective at
the desired value(s) of y. Even the experience record-keeping is
simplified; the sample distribution 2 I(y — x£) jn only counts the
number of samples < y, and not their exact values.

On the other hand, the credibility approach is somewhat awkward
for estimating probabilities for many different values of y, unless
there is a simple model for the variation of P{y | 6) over 0. The
mean-square error will be larger than obtainable from Bayesian
techniques, although the limited computational results in Section 9
seem to indicate that most of the variance is due to the samples,
rather than the approximation.
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8. BEHAVIOR OF THE FORECAST FOR KNOWN 0

Additional insight into the nature of credible forecasts can be
gotten by examining the behavior of /(w), assuming that the true
value of 6 = 6y is known. From (3.4), the prior unbiasedness of the
forecast gives

6T} = E{Y)} + S [̂E{co3- I 0r} — E{ <•>,}]. (8.1)

For the credible mean, the results of Section 4 give:

E{/[i]© I 6T} = (1 -Zm) E{^} + ZmE$ I dT} (n = o, i, 2, . ..)
(8.2)

which is itself a "credibility" curve, moving the average estimate
from the collective mean to true mean as n -> 00, with time constant
Nm.

A similar result and interpretation applies to the credible distri-
bution :

E{F(y 11) I %T} = [i-ZP(y)] P(y) + ZP(y) P(y \ 6T),
[n = o, 1, 2, . . . ) (8.3)

and with obvious modification, to the credible discrete density
(10.6).

The variance of the linear estimator (3.4), given 6y, is generally:
I 0T} = S 2 aj«;C{«j; co; | 0T}; (8.4)

however, in the collective models, the transformed random variables
(39) are independent, given 6^. For the credible mean:

' V{/t l ]© I 0T} = V{Z I 0r} • { j ~ , (n = 0, 1, 2.) (8.5)

and for the credible distribution:

1) I M = P(y I 0T) (1 —P{y I 8r)) • —~-L, (» = 0, 1, 2.)

(8.6)
with, of course, zero variance for n = o.

The function

N (1 + [n/N))2
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increases rapidly from zero to its maximum value 1/4JV when
n = N, thereafter decreasing slowly to zero as i/w.

Sometimes direct use of the sample mean as a forecast is ad-
vocated,

fsat® = 2 & /* (8.8)
* = 1

since it is "fully credible" for all n, that is:

nfsM[l) 1 eT} = m 1 eT} • (v n) (8.9)

However, comparison of the efficiency of (8.8) with (8.5) shows that:

In other words, the same credibility form which limits the rate of
change of the estimator also shows its variance-reduction properties.
(8.10) also holds for the credible distribution estimate vis-a-vis the
sample distribution.

If the same random variables are used to forecast the distribution
at more than one value of y, there is, of course, covariance between
the two estimators. Thus:

[P(min (yi, y.) I er) -P& 16r) • P(y210,)] ^ ^ ( ^ + i V p (

(8.11)

Examples of this interrelationship will be seen in the next section.

Finally, it is obvious there is strong dependence between the
forecasts made in successive years, since:

NP{y) + t
F{y ixi,X2, ...,xt;it+i) = j j , , + 7 q r ^ F ( y IXi-X2> •••%t)

= 0 , 1 , 2, . . . ) (8.12)
NP{y) + t + i

It follows that

X\ . . . X(] %,t+i) | F\y | xi, X2, • . . , x^) 0 T }

[NP{y) + t)F{y \ xu Xi, .... xt) + Pjy\QT)
Np(y)+t+\

https://doi.org/10.1017/S0515036100006085 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006085


250 THE CREDIBLE DISTRIBUTION

and

Y{F(y I xi .. . xt; Zt+i) I F{y \ xi, x2, . . ., xt); 6y}

_ p (y 16^) [J — p(y 1 e^)]
(NP(y) +t + i)z

(8.14)

A priori, the covariance between successive forecasts slowly
diminishes in a manner similar to (8.6)

= P(y I 6ri [x -Ply I m

9. COMPUTATIONAL RESULTS-CREDIBLE DISTRIBUTION

Detailed computations were carried out for three conjugate prior
families of distributions for which explicit results are available:

/ . Poisson -\- Gamma = Negative Binomial

p(x I 6) = :— (# = o, 1, 2, . . .)

6} = 0

0)

E{6} = a/b (9.1)

V{6} = a/b*

b \a

= a/b

a I 1

Bayesian Conditional Distributions:
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/ / . Exponential + Gamma = Shifted Pareto

p(x I 6) = %e~»x (* > o)

0} = 0-2

a-1e-w

> r (e-0)

b
} =
J a — 1

(a — i ) « (a — 2 )

a — i

Bayesian Conditional Distributions:

1 - 1

/ / / . Uniform -\- Pareto = (Constant-Pareto)

tt* I 6) = I (o<x<Q)

0} = -

0} = —
' 12

(o < 0 < b)

ab
E{0} =

— 1
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ab2

V{6} = -.- - -
_ I ) 2 {a _ 2 )

a — i

( 9 -3 )

Bayesian Conditional Distributions

a<r- a -\- n; b •*- max (b; xi, x%, . . ., xn).

The time constants for the credible means are:

( b (Poisson-Gamma)

A [̂i] = la — i (Exponential-Gamma) (9.4)

( \ {a — 1)2 (Uniform-Pareto).

The credible mean is exact Bayesian for the first two families:
the correct Bayesian conditional mean for the Uniform-Pareto is:

a -\- n
E{£m+i I x) = \ —• ^ - max (b; xi, x%, . . ., xn). (9.5)

Figures i, 2, and 3 show the time constant NP(y) for the above
three cases, with the hyperparameters (a, b) adjusted so that
E{£} = 1 always, and V{£} = 2, 4, 8. This would result in mean
time constants, for example, of:

1, 1/3, 1/7; (Poisson-Gamma)

3, 5/3, 9/7; (Exponential-Gamma)

0.600, 0.455, 0.391. (Uniform-Pareto) 1

(V® = 2, 4, 8).

Thus, in all these cases, 2V[i] < Np(y) for all y.

In Figure 1, we see that the Np(y) for the Poisson-Gamma have
their largest values and most marked variation over y for small
collective variance. This is consistent with the idea that when the
inter-risk variance is small (Np[y) large), the occurrence of a large
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12

Fig. 1. Credible distribution time constant, Np(y), for different collective
variances. Poisson-Gamma distributions. E{£} = 1 (Straight lines for

clarity only).

- 15-

Fig. 2. Credible distribution time constant, Np(y), for different collective
variances. Exponential-Gamma distributions. E{̂ } = 1.
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Fig. 3. Credible distribution time constant, NP(y), for different collective
variances. Uniform-Pareto distributions. E{̂ } = 1.

sample is not weighted heavily; it is likely due to chance. And since
P(y I 6r) is likely "close to" P(y), it takes many more samples to
accredit the sample distributions. Conversely, for a very hetero-
geneous collective, samples for any value of y are treated more
evenly and with more credibility.

Figure 2, for the Exponential-Gamma shows much the same
behavior as the previous case, except the time constants are larger,
in general. Information close to the origin is practically disregarded,
as all risks have a preponderance of samples there, due to the ex-
ponential form. Tail values are only slightly deemphasized, relative
to middle values. The Uniform-Pareto curves, Figure 3, are prac-
tically indistinguishable from one another, and are constantly
decreasing towards the asymptote Np(y) = a/2 = (1.171, 1.084,
1.042). Since all risks in the collective differ only by their range
[0, 6], it follows that information below the minimum range 0 = b
(= 1.146, 1.077, 1.04) is pretty much disregarded. Thus a good ap-
proximation to the Uniform-Pareto is Np(y) = a/2 (y >b), 00
otherwise.

A variety of simulations were run using these distributions, and
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Fig. 4. Credible distribution forecasts Exponential-Gamma distributions
= 1. V(0 = 2. Or-1 = 3. n = 1, 2, 32.

Fig. 5. Bayesian distribution forecasts Exponential-Gamma distributions
E = 2. Or-1 = 3. w = 1, 2, 32.
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comparisons made with the known Bayesian results. Figures 4 and
5 illustrate typical results, using the Exponential-Gamma distri-
butions, with a collective mean of 1, collective variance of 2, and
samples from an exponential with mean of 3. Complementary
distributions, Pc(-) = 1 — P{'), are used throughout. In Fig. 4,
the dotted line represents the prior collective distribution. The first
sample drawn was 1.549, a n d the credible estimate results in a
mixed distribution with a discontinuity at that point. The next
sample was 0.891, giving the two jumps shown in Fc(y \ Xi, x%).
Thus far, there has not been much prediction, because the random
samples were all low. However, after 32 draws, the sample mean is
3.56, giving the point estimates shown: the actual curve is not

1

drawn because it has 32 lumps, of magnitude • , , , at the
J F 8 32 + NP[y)

values of the random variates. The dramatic drop between the
estimates for y = 6.0 and 6.5 is because 5 of the 32 first samples
fell here.

Fig. 5 contrasts the result when true Bayesian forecasting is used
with the same samples. From (9.2) we see that the conditional
distribution is a Shifted Pareto distribution, with updated para-
meters a + n, b + 2 Xf. This always gives a smooth curve for
Pc[y I x), as shown in Fig. 5. Note that the curves move with the
sample mean—too low at first, overestimating the true curve with
32 samples.

It is perhaps unfair to compare the curve of Fc[y \ x) with that of
Pc(y I x), since the credible distribution only minimizes variance for
a fixed value of y. The next example is chosen from some Poisson-
Gamma simulations, in which E{£} = 1, V{£} = 2 as before, but
where 6y = 2. In Figs. 6 and 7, we have plotted five simulation
runs for n = 1 to 16, estimating Pc(o | x) and Pc(2 | x). There are,
in fact five sample paths connected by straight line segments, but
they overlap whenever the number of counts > y catches up with
the number in another sequence of draws, which happens often for
an integer-valued random variable. In general, the credible forecast
for a given value of y starts at Pc(y) and "relaxes" towards zero
whenever no counts > y occur, getting boosted up again whenever
a count occurs; this phenomenon is considered further in Section 13.

The Bayesian forecast in Fig. y, however, will only have the same
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values on different simulation runs when the sample means equal
each other—only for small n, if at all. For the same random draws
the sample path is smoother, however it tends to wander more up
and down, instead of following a relaxation curve. Also, there is
obviously more correlation between Pc{y x) for two values of y,
since the sample mean is used as a parameter. One can easily trace
out corresponding sample paths for y = o and 2.

14 16

Fig. 6. Credible distributions Fc(o | xi, xz, . . ., xn) and Fc(2 \ xi, xa
versus n. Five simulations of Poisson-Gamma distributions with

= 2, 6y = 2. (Straight lines for clarity only).

., xn)
= 1 ,

Fig. 7. Bayesian conditional distributions (negative Binomial) Pc(o | xi, x%,
. . ., xn) and Pc(2 I Xi, x%, . . ., xn) versus n. Five simulations of Poisson-
Gamma distributions with E{5} = 1, V{£} = 2, %T = 2. (Straight lines for

clarity only).
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The variance using the credible forecast is not too large compared
with exact Bayesian; only about 70% more for the example shown.
By far the biggest contribution to variance is seen to be the random
deviates themselves. Even in the Bayesian case, there is still a lot
of variance at n = 16.

10. CREDIBLE DENSITIES

It is difficult to see how to get a credible estimate of the density
of a continuous distribution, because of the lack of a natural sample
density to replace S I(y — xt) ]n. Differentiation leads to unit
impulses B(y— xi), and a forecast which is a mixed density at
observation points!

However, one can formally use only -q = S(y — £»+i), and look
for a forecast still in terms of the number of counts < y. The
RHS of (3.5) now becomes

C{7);oH} = C6{/>(y|e); P(y | 6)} (10.1)

and we have the formal result

p(y I x) « p[x) + ^ y ^ ZP(y) •

(10.2)

With a density of a discrete distribution, on the other hand, we
are on much safer ground. One can forecast p(y | x) = P(y | x) —
P(y —1 [ *) by:

(1) A direct credibility approach, counting the number of samples
equal to y;

(2) An approach similar to (10.2), using the number of samples
< y, or

(3) By differencing the credible distribution (5.7).

We consider the three cases in turn.

For the direct approach, we use:

•n = *l+l'»
 w« = *5, (* = 1, ••- .») (io-3)

where S| is the indicator function, equal to unity if i = j , zero
otherwise. The analogues of (5.5) and (5.6) carry through in terms
of discrete densities:

(10.4)
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\p{y)( P(y)) (* = ; ) , ,
Cov{co«; o^} = { 10.5)

The credible discrete density is then of form:

P(y I *) <*/(y I *) = (1 -<z,(y)) #y) + *,(y) [ s »
1 - 1

with new credibility factors:

„ , , ™ , r , , P(y) (1 —

It is easy to see how this might be estimated in collectives with
discrete data, such as automobile claim frequency; only counts of
claims for the desired value of y are used in setting up the predictor.

If we adopt the second approach, we keep TJ = Ŝ  , but use:

<o, = / ( y - y = S 8| (10.8)

and get the same formal result as (10.2) above. In discrete density
notation, this is rewritten.

'I 8); M l 6)}P\y J

Clearly this method uses the internal covariances of all discrete
probabilities < y and the counts of all observations < y.

In the third approach, we simply difference (5.7), and get

p(y I x) ex F(y I x) — F(y — i\x)

+ [ZP(y)-Zp{y-i)]- \l S S 8* - S /»(;)1 • (10.10)

This is certainly simpler than (10.9), even though all counts < y
are used. However, we have not been able to prove that F(y \ |) is
monotone in y for all £, and thus this method might give a negative
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forecast. There is also obvious co variance between F(y | £) and
F[y — i | £), and we expect this forecast to have greater variance
than (10.9).

11. USE OF ALL SAMPLE VALUES FOR DISCRETE DISTRIBUTIONS

An interesting overview of credibility models for discrete distri-
butions can be obtained if we expand our forecast functions to in-
clude all the discrete values of observations.

Suppose E,t attains only discrete values, say \t s R- Define:
n

tOj = 2 S| (*sR); 2 (Ai~=n. I11-1)
i - 1 iSB

This is just the number of samples which attain value i in n
trials.

From (3.5), any least-squares prediction problem using the | R |
n

observed values wt = H8{
x (i s R), requires the inversion of an

1=1

R I X I R I co variance matrix, whose elements can be shown to be:

) (*' = i)
W4> W/ ~ ( -pi t )PU) + ( « - i ) d£p{i IQ);p{j 16)} (* * j)

(11.2)

for the homogeneous collective.

If I R I is finite, the inversion of (11.2) may be carried out by
digital computer; for semi-infinite ranges, such as the Poisson, one
may deliberately truncate the distribution, or hope for analytic
simplifications. (Some special multi-dimensional credibility models
are discussed in [20]). In any case it should be noted that because of
the constraint (11.1), the matrix is not of full rank; S

cô } = o (v«). Thus the rank will be < | R | — 1. In addition,
certain points of mass may not have any across-the-collective
variances, and these values of y cannot be predicted beyond p(y);
counts at these values may still be useful, however. In the sequel,
we shall assume that the range R has been diminished appropriately
to the collective structure and predictand and will continue to use
notation R.
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The RHS to be used depends on the objective. Suppose we are
trying to forecast p(y | 6^) for fixed y. Then:

•n = &1+1: COV{T); to,} = nC%{p{i \ Q);p(y | 6)}. (11.3)

The coefficients {a%; a^(j z R)} are found from:

«? = p{y) - s

2 C{<v to,.} • «/ = nCQ{p(i I 6); p(y | 0)}. (t s R) (11.5)

and used in a forecast form:

P(y I QT) *f(x) = off + 2 «/ ( S S^). (11.6)

We shall refer to this set of coefficients as the full multi-dimen-
sional solution to the discrete density, for fixed y. In a certain sense,
it is the best possible solution to the prediction problem, using only
a linear function of the individual counts at each value in R.

Now, suppose that the above analyses have been repeated many
different times, finding the sets of coefficients {a%; a^(jsR)} for
every value of y s R. This requires changing only the RHS of (11.5),
and no further inversions of CjtoiJ to/}. Assuming all these sets of
coefficients have been found, we can now show the interrelationship
between many of the previous models.

First, because of superposition, it is clear that the full multi-
dimensional solution to the discrete cumulative distribution has the
form:

P(y I 6r) *,AZ+ 2 Af( i 81) (11.7)

with coefficients:
Af = S «* (j = 0)

111 or ( j sR) . (11.8)

In other words, we just cumulate the coefficients from (11.4) and
(11.5). Alternately, we can solve the system (11.5) with an RHS of
nC9{p(i\Q); P{y\Q)}.

To obtain the simpler forms given earlier, we merely constrain or
eliminate certain of the coefficients {aj} using the remarks in Sec-
tion 3. The price of these simplifications is, of course, an increase in
forecast variance.

17
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For example, when predicting discrete densities, if we set

af^o (jsR-{y}). ( I I .9)

then from (n.4) and (n.5), we get

nYe{p{y I 0}
av = p^ZIfiWT'^i) Ve{̂ (yT9} ; 4 = Hy) [ l ~ " ^

(11.10)

This is exactly the credible discrete density (10.6) and (10.7),
which uses only counts of observations equal to y.

If, on the other hand, we set

aj = o (j>y;je.R), I11-11)

and further constrain the nonzero coefficients to be identical:

af = a» {j<y,jzR), (11.12)

a simple calculation will give the second formula for the density

(10.9).

Similar remarks apply to estimates of the complete distribution,
via the formulas (11.7) and (11.8). For instance, if we set:

Af = o (j >y;jsR);Af = A * ( ; < y ; j s R ) (11.13)

then we get our basic credible distribution formulas (5.7) and (5.8).

To summarize briefly, we see that in the discrete case, the most
general way to predict the density, cumulative distribution, or other
function of %n+i is to solve a multi-dimensional credibility problem,
using the counts of observations at all values of y. However, this
leads to a requirement for estimating many covariances from the
collective and a matrix inversion problem of high order. Simplified
formulae and data requirements are obtained by further constrain-
ing these least-squares solutions, at the price of increased variance,
the results coinciding with those obtained by direct argument.

12. COMPUTATIONAL RESULTS-CREDIBLE DISCRETE DENSITY

Computations were carried out for the Poisson-Gamma distri-
butions of (9.1). The density was computed using (10.2), the dif-
ferences of the credible distribution, and the exact Bayesian
forecast.
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Typical results are shown in Fig. 8. Generally, the results using
(10.2) are farther away from the exact Bayesian forecasts, versus
differencing the credible distribution, except for estimates of
p (01 x) — 1 — P(o\x), when the results are identical. This performance
is due to the limited information used from the samples (counts equal
to y), and to the larger time constants, shown below in Table 1.

TABLE I
Credibility time constants for distribution and
discrete-density forecasts. Poisson-Gamma-

distribution with E{!;} = 1, V{i;} = 2.

y NP{y) NP(y)

0

I

2

3
4
5
6
7
8

2.000

1-793
1.969
2.300

2.748
3-3°7
3-979
4-773
5.698

2.000
15.200

11.064
10.185

io-735
12.052

13-949
16.377
I9-338

Fig. 8. Discrete probability forecasts for selected values of n. Single simula-
tion of Poisson-Gamma distributions with E{$} = 1, V{^} = 2, By = 2.

(Straight lines for clarity only).
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13. RARE COUNTS

To illustrate a limitation of the credible distribution, consider
estimating Pc(y \ QT) for a large value of y, writing the formula:

NP{y) Pc(y) + (# of \ > y)
~ n~+ NP{y) ' ^ 3 ' 1 '-F(y

Possible sample paths are illustrated on Fig. 9, assuming n is
continuous

Fig. 9. Sample paths for credibility estimate of 1 — P(y | 9y) . N = Np(y).

We see the familiar "relaxation" of the forecast from the initial
estimate of Pc(y) following the curve Pc(y)/(i + (nJN)), until the
first count > y causes the estimate to jump up to a curve of similar
form which starts at Pc[y) + (i/Af). The curve then relaxes again
towards zero until the next count occurs. In other words, a given
sample path never really converges, but must continually jump up
to the neighboring path to stay in the neighborhood of Pc(y | QT).

If Pc(y I 6-r) is sufficiently small, then for fixed n not too large,
the first jump may not occur with high probability. To a good ap-
proximation, then, the credible forecast is a Bernoulli distribution,
i.e.:.

Pc(y)

(njN)
with probability 1 — nPc(y

{njN)
with probability nP°{y j QT).

The mean of this distribution, given 0^, is just the complement of
(8.3), but the variance slightly underestimates the true result (8.6),
having instead a leading coefficient Pc(y \ 6T) [1 — nPc(y
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This type of behavior may not be sufficiently accurate for ex-
tremely rare events, and suggests estimating more covariances from
the collective, and using more complex formulae to obtain more
continuously correcting estimates.

The ultimate would be a complete Bayesian analysis which uses
the value of every sample at every step to adjust the forecast.
However, this requires drastic assumptions about P{y 6) for all
values of y.

14. CREDIBLE MOMENTS

We conclude with some remarks concerning the problem of
estimating various moments of £»+i.

First, for the forecast of the mean value, there is the classic for-
mula (4.6), which is known to be exact for most of the well-known
conjugate prior distributions such as Beta-Binomial, Gamma-
Poisson, Normal-Normal, etc. [8] and [12]; a more general result is
shown in [21]. It is easily shown to be incorrect for the Uniform-
Pareto and for other families for which the sample mean is not a
sufficient statistic [15].

One could also estimate the mean by using the credible distri-
bution or density formulae, (5.7) and (10.6), etc.; numerical in-
tegration is necessary in the continuous case because of the awkward
dependence of Z upon y.

As an example, Fig. 10, shows the mean for the Gamma-Poisson
{E{E,} = 1; V{Q = 2; E{£ I 0r} = 2) calculated four ways:

(1) mean-credible forecast (4.6) (Exact Bayesian);
(2) credible distribution (5.7);
(3) credible density (10.6);
(4) sample mean.

The initial samples in this simulation were quite large, so there
are some over-corrections at first; however the response in general is
much smoother than that of the distribution forecasts. The Bayesian
estimate is, generally the most sensitive to respond to the samples,
followed by estimates from the distribution and density. This is
obvious from consideration of the magnitudes of the various N.

In his book [4], Biihlmann develops credibility formulae for the
conditional variance, V{^M+i | x], based upon separation into a
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"variance" part, ~E^x^{%n+i I 9}> a n d a "fluctuation" part, V ^
E{£»+i | 8}. The first part is estimated using the sample variance;
the second uses the sample mean. On the other hand, Salmond [15]
examines the exact form of the variance for several tractable
families, and finds the variance either as a linear or quadratic
function of the sample mean only, when the sample mean is a suf-
ficient statistic. Thus the sufficient statistic appears to play the
major role in exact results for the variance, but the functional
dependence is more complicated.

i I 1 ! 1 1
D -a SAMPLE MEAN
• • CREDIBLE MEAN = EXACTBAYESIAN
o o FROM CREOIBLE DISTRIBUTION
X X FROM CREDIBLE DENSITY

FOR SELECTED VALUES OF n

I I I I
8 10 12 14 16

Fig. 10. Forecasts of E{£«+i | x) using four different methods. Gamma-
Poisson families. E{^} = 1; V{^} = 2; 6y = 2.

One can also estimate the variance by estimating E{(^m+i)2 | x},
and subtracting the square of any estimate of the mean.

If we are trying to estimate the &th moment (k > 2) then the
direct approach via (3.5) and (3.9) is clear. First we set vj = (^n+i)k,
and select an appropriate predicting function wi = gi(Q of the
observables.

If the sample mean is known to be a sufficient statistic, one is
tempted to set

1 «
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obtaining the result

Cove{E{l; ] 8}; E{i-* | 9}}
+

X n

n ,_x

Thus the fluctuations of the sample mean about the collective
mean cause the estimate of the &th moment to change.

Without this foreknowledge, the most natural choice is to take
the sample kth moment:

i »
ui = - 2 (£«)*, (I4-3)

obtaining an ordinary credibility formula:

E{(£«+i)fc j x) & (i — Zm) . E{lk} + Zm . - 2 (*()*, (14.4)

but with a new time constant:

^[fc] = v.ir/5it A\ I ~ -\r. Trr jfc 1 fii • lI4-5)

Of course the variances of £fc are in fact moments of order zk, for
which estimates must be found from the collective.

Furthermore, there is no good prior reason why the predictors
could not only include both (14.1) and (14.3), but all sample lt\\
moments, / == 1, 2, . . ., k. Following this approach necessitates
estimating all the means of the different moments, as well as
covariances of the form:

C { ^ ; ^ | 6 } (*,; = 1,2, . . . , k). (14.6)

The problem then becomes a multi-dimensional one.

Finally, one can imagine forming the ftth moment numerically
from the credible distribution.

Regretfully, we must conclude with the observation that there
are still many unanswered questions on the efficiency of different
approaches. Credibility theory frees us from the distributional as-
sumptions of Bayesian solutions; however, we must now consider
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in more detail the form of the approximation, and the availability
of statistics from the collective. We must also keep in mind that
these estimates are usually made for some decision model in a larger
insurance context, and it may be more efficient to examine first the
approximations needed at that level.
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