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EMBEDDING THEOREMS FOR COUNTABLE GROUPS 

JAMES McCOOL 

1. Introduction. A group P is said to be a CEF-group if, for every 
countable group G, there is a factor group of P which contains a subgroup 
isomorphic to G. It was shown by Higman, Neumann, and Neumann [5] that 
the free group of rank two is a CEF-group. More recently, Levin [6] proved 
that if P is the free product of two cyclic groups, not both of order two, then P 
is a CEF-group. Later, Hall [3] gave an alternative proof of Levin's result. 

In this paper we give a new proof of Levin's result (Theorem 2). The proof 
given yields information about the factor group H of P in which a given 
countable group G is embedded; for example, if G is given by a recursive 
presentation (this concept is denned in [4]), then a recursive presentation is 
obtained for H, and certain decision problems (in particular, the word problem) 
are solvable for the recursive presentation obtained for H if and only if they are 
solvable for the given recursive presentation of G. We also obtain a character
ization of the elements of finite order in H. In Theorem 3 a set of sufficient 
conditions for a factor group of a free product of groups to be a CEF-group is 
obtained. This result is applied in Theorem 4 to give a generalization of Levin's 
result. Theorem 4 includes as a special case the result that if P is a free product 
of cyclic groups as above, and T is a finite subset of P , none of whose elements 
is conjugate to an element of length one, then there is a positive integer m 
such that, if k ^ m and N is the normal closure in P of the set of &th powers of 
elements of T, then P/N is a CEF-group. 

The technique used in the proof of Theorem 2 was suggested by an 
unpublished proof, due to J. L. Britton, of the theorem of Higman, Neumann, 
and Neumann mentioned above. Part (i) and the substance of part (iii) of 
Theorem 2 were also suggested by Britton's work. Miller and Schupp [9] have 
announced a proof of the result that every countable group can be embedded 
in a two-generator, complete, Hopf group H, and that H can be chosen to be a 
factor group of the modular group. Schupp informs me that their proof also 
uses Britton's technique. 

Acknowledgement. I would like to express my thanks to J. L. Britton for a 
number of helpful remarks, and in particular for suggesting that a result of the 
nature of Theorem 4 might be true. 

2. Notation and preliminary results. Let P = Gi * G2 * . . . * Gt be the 
free product of the (non-trivial) groups Gi, G2, . . . , Gt. Every non-identity 
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element u of P has a unique normal form expression u = aia2 . . . am, where 
m^l,l ^ ate Gy{i) (i = 1, 2, . . . , m) and y(i) ^ 7(2' + 1) (* = 1, 2, . . . , 
m — 1). We call m the length, Z(w), of w and define / ( l ) = 0. The elements 
a\a2 . . . ar (r = 1, 2, . . . , w) are called the initial subwords of w. If /(«) > 1 
and 7(1) 7^ y (in), then u is said to be cyclically reduced, and the elements 
aTar+i . . . a,ma,\ • • • dT-i (r = 1, 2, . . . , m) are called the cyclic arrangements 
of u. We say that u is a proper power (in P ) if there exists a non-identity 
element w of P such that u = wq for some integer g > 1. Otherwise w is said 
to be rootless (in P ) . 

Let u and v be non-identity elements of P with normal forms aici2 . . . am 

and bj)2 . . . 6», respectively. We define f (w, v) to be the largest integer r such 
that aia2 . . . aT = 6162 . . . &r- Thus f (w, ») is the length of the "largest" 
element of P which is an initial subword of both u and v. 

Let Q be a subset of P . We put l(Q) = Min{/(w); w € Q}. If 

G = {wi, u2, . . .}, 

then we use l{ui, u2, . . .} as an alternative notation for l(Q). If there is an 
upper bound for the lengths of elements of Q, we say that Q is bounded and 
put L(Q) = Max{l(u);u Ç Q}. For each positive integer fe, the set Qk is 
defined to consist of the fcth powers of elements of Q. If each element of Q is 
cyclically reduced, then we say that Q is cyclically reduced and denote by Q 
the set consisting of all cyclic arrangements of elements of Q and their inverses. 
We say that Q is rootless if each element of Q is rootless. We denote by Qp the 
normal closure of Q in P and write Qk

p for (Qk)
p. 

Let Q and R be cyclically reduced subsets of P . Then the following results 
are easily checked. 

(1) Q is cyclically reduced, Qk is cyclically reduced, l(Q) = l(Q), and 
/ (&) =kl(Q)._ 

(2) ((?)* = (&) (this set will be denoted by ft). 
(3) Q is rootless if and only if Q is rootless. 
(4) Qr = Q". 
(5) If L(Q) is defined, then L{Q) = L(Q) and L{Qk) = *L(Ç). 
(6)<2Wi? = ( 3 U ^ . 

r/?e X-condition. Let Q be a cyclically reduced subset of P and X a positive 
integer. Q is said to satisfy the X-condition if 

f («, 0) + 1 < (1/X)Z{«, »} 

whenever M and v are non-equal elements of Q. 

The following theorem is part of the result proved by Britton [2]. 

THEOREM 1. Let Q be a subset of P which satisfies the ^-condition. Then 
Qpr\Gt= {1} (1 £i£t). 

https://doi.org/10.4153/CJM-1970-093-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-093-9


EMBEDDING THEOREMS 829 

Thus, if Q satisfies the 6-condition and p is the natural homomorphism from 
P to P/Qp, then the restriction of p to d is an isomorphism of Gx into 
P/QP (1 g i â 0. 

The following elementary result is essential for what follows. 

LEMMA 1. Let ube a cyclically reduced element of P. Then we have the following: 
(1) There is a unique rootless element v of P such that u = vm for some positive 

integer m. The element v, which is cyclically reduced, is called the least root of u; 
(2) There are exactly n distinct cyclic arrangements of u, where n — l{v); 
(3) If u — wq, for some positive integer q, then w is a positive power of v. 

Proof. Let u have normal form aia2. . . ar and put Q = {u}. For each integer 
5 we define a permutation as of Q by 

(r8(bib2 . . . bT) = bt+xbt+2 . . . brbi . . .bt, 

where bj)2 . . . bT G Q, 5 = t (mod r) and 0 ^ t < r. It is easy to see that the 
set of all such permutations is a cyclic group of order n, where n is the least 
positive integer such that crn(u) = u. It is then easy to check that the lemma 
holds with v = aia2. . . an. 

Note. If w — vk{u), where k ^ 0 and r does not divide k, then we say that w 
is a non-trivial cyclic arrangement of u. It follows from the lemma that if u 
is rootless, then u is not equal to any of its non-trivial cyclic arrangements. 

LEMMA 2. Let Qbe a cyclically reduced, rootless, and bounded subset of P, with 
L(Q) = m say. If k and X are positive integers such that k ^ \m + 1, then Qk 

satisfies the \-condition. 

Proof. Let u and v be non-equal elements of Q, with l(u) = r and l(v) = s. 
Then l(us) = l(vT) = rs, and us ^ vr, since otherwise the least roots of us 

and vr would be equal; but clearly u and v are the least roots of us and vr, 
respectively, since both u and v are rootless. Therefore, if k ^ \m + 1, we have 

f {u\ vk) + l^rs^ ml{u, v] ^ ( ^ ~ X) l{u, v] < f l{u\ / } . 
A A 

This proves the lemma. 

The following is the key result for our embedding technique. 

LEMMA 3. Let P = G\ * G2 * . . . * Gt and Pi = Gi * G2 * . . . * Gt-i (t ^ 3). 

Let Q be a finite or countably infinite subset of Pi with ui, u2, . . . an enumeration 
of the distinct elements of Q. Let d be a map from Q to Gt, with 6ut = gt say 
(i = 1 ,2 , . . .). If the subset R of P consists of the elements gi~lui, g2~

lu2, . . . , 
and S is a subset of Pi, then the subset RKJ S of P satisfies the \-condition provided 
that the following conditions are satisfied: 

(i) Q\J S satisfies the \-condition and Q C\ S = 0; 
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(ii) Q satisfies the (X + 1)-condition; 
(iii) Q is rootless; 
(iv) l(Q) ^ X 2 - 1; 
(v) No Ut is a cyclic arrangement of any Uj±l (other than the trivial cyclic 

arrangement of itself). 

Proof. Suppose that the above conditions are satisfied. Let v, w be non-equal 
elements of R W 5 such that 

(2.i) • r(»,«/) + l ^ (i/\)i{v,w}. 

Then not both v and w can belong to 5, since (i) holds. 
We first suppose that v Ç R and w G S. We then have v = Xigx2 say, where 

g £ Gt and #ix2 G Q- Now f (u, w) ^ f (xix2, w), since the normal form of z£; 
does not involve any element of Gt. Hence, by (i), 

f(»,w) + 1 g f(xix2,w) + 1 < (l/X)Z{*i*2> w} ^ (l/X)Z{z/,™{, 

since XiX2,w £ QVJ S. This contradicts (2.1). In the same way a contradiction 
is obtained iî w £ R and v £ 3. 

Thus we can assume that v, w £ R. We then have v = %igx2 and w = yihy2 

say, where h, g G G* and XiX2, y&2 £ y. Since the normal forms of v and w each 
contain exactly one occurrence of an element of Gt (namely g and h, respectively) 
it is clear that f (v, w) ^ f (xix2y 3>i3>2) + 1. Now if xix2 ^ 3>r3>2, then 

?(*i#2, 3'i3'2) + 1 < x , -, l{xix2, 3,i3;2Î, 

since (ii) holds. Making use of (iv), we have 

f («;, ?£;) + 1 < /{xix2, 3/1̂ 2} + 1 

= x/{*i*2, 3/13/2} - x ^ x 1 , Z{* 1*2, 3^2} + 1 

. 1 , , 1 (X2 - 1) , . 

= xl{v>w]-x~xô^FÏ) + 1 

= -l{v,w], 

and again (2.1) is contradicted. Thus we can assume that X\X2 = 3>i3>2, so that 
x2X\ is a cyclic arrangement of y2yi. Now gx2xh hy2yi £ R, and so x2xh y2yi 6 Q. 
Since (v) holds, it follows that x2X\ = 3^1 and g — h. Now if x2 j* 3/2, then 
3/23̂ 1 is a non-trivial cyclic arrangement of x2X\ (since X\X2 — yiy2) ; but then, 
by the note to Lemma 1, we could not have x2Xi = y2yi, since x2X\ is rootless. 
Hence x2 = y2, x± = yi, and g = h,i.e.v — w. This contradicts our assumption 
that v and w are non-equal, and so the lemma has been proved. 
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3. The main results. We can now reprove Levin's result as follows. We 
take Gi and G2 to be groups with presentations {a\ ar = 1} and {b\ bs = 1}, 
respectively, where r and 5 are non-negative integers with r 9^ 1 and s 9^ 1,2. 
We put P i = G\ * G2, so that P i has presentation 

(3.1) {a,b\ ar = bs = 1}. 

Let G = Gz be a countable group given by the presentation 

(3.2) {gl, g2, . . .\R1(g1, g2, . . .) = 1, R2(gl, g2, . . .) = 1, . . .}. 

We put P = Gi * G2 * £3. The subset Q of Pi is defined to consist of the elements 
U\, #2, • • • of Pi , where 

(3.3) uk = a&(a&2)100fc+1a6(a62)100fc+2. . . ab(ab2)100^» (k = 1, 2, . . .). 

The subset P of P is to consist of the elements gjT1^ of P (& = 1, 2, . . .) . 
Then it is easy to see that the conditions of Lemma 3 are satisfied with X = 6 
and 5 the empty set. Thus the subset R of P satisfies the 6-condition. From 
Theorem 1 it follows that P/Rp contains an isomorphic copy of G3. 

Now, 

(3.4) {a, b; gl, g2, ...\a* = bs = 1; R1(g1, g2, . . .) = 1, 

P 2 ( g l , g2, • • •) = 1, • • .J gl = «1 , g2 = «2, . • •} 

is a presentation of P / P p , so that 

(3.5) {a, 6| ar = bs = l;Ri(uh u2, . . .) = 1, P2(^i, u2, . . .) = 1, . . .} 

is also a presentation of P/Rp. Since (3.5) is a presentation of a factor group of 
the group Pi , we have the following result. 

THEOREM 2. Let P i be the group with presentation (3.1). Then P i is a 
CEF-group. In fact, if G is a countable group with presentation (3.2), then the 

factor group P/Rp of Fi with presentation (3.5), where the uK are given by (3.3), 
contains an isomorphic copy of G as a subgroup. Moreover, the following results 
hold: 

(i) / / (3.2) has a finite number m of defining relations, then (3.5) has m + 2 
defining relations; 

(ii) If an element w of P/Rp has finite order n, then there is an element v of P 
of order n such that p(v) = w, where p is the natural homomorphism from 
P to P/Rp; 

(iii) If (3.2) is a recursive presentation, then (3.5) is a recursive presentation, 
and then each of the word problem, the order problem, and the power 
problem is solvable for the presentation (3.5) of P/Rp if and only if it is 
solvable for the presentation (3.2) of G (the order problem is said to be 
solvable for G if given any element of G we can determine its order; the 
power problem is solvable for G if given any pair h, g of elements of G 
we can determine whether or not h belongs to the cyclic subgroup of G 
generated by g); 
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(iv) If (3.2) is a recursive presentation with solvable word problem, then there 
exists an effective process to determine, given a word in the generators of 
(3.5), whether or not this word represents an element of the copy of G 
embedded in the group with presentation (3.5). 

Proof. Part (i) is obvious. Part (ii) follows from [7, Corollary 1]. If the 
presentation (3.2) is recursive, then it is clear, from the way in which the uk are 
defined, that the presentation (3.5) is also recursive. The "if" part of (iii) 
follows from [8, Theorems 3 and 4]. The converse follows from the fact that the 
mapping gk —» uk (k = 1 ,2 , . . . ) , extends to an isomorphism of G into the group 
given by the presentation (3.5). 

To prove (iv) it is clearly sufficient to prove that such a process exists for the 
presentation (3.4). Let w be a word in the generators of (3.4). Then, in the 
notation of [8] (with R = 12), we can find a word w! such that w' ~ w and wf is 
either fi-reduced or is the identity. Now if w represents an element of G, then 
w ~ g, where g is a word in the generators of G. Hence w' ~ g, and, from 
[8, Corollary 1], we must have wf = g; that is, wr must be a word in the 
generators of G which represents the same element of G as the word g. This is 
enough to prove (iv), since the word problem is solvable for G. 

Higman [4] has shown that there exists a finitely presented group H which 
contains a copy of every recursively presented group; embedding H in a factor 
group of the group with presentation {a, b\ ar = bs = 1} as above, we have the 
following result. 

COROLLARY 1. Let r, s be non-negative integers with r ^ 1 and s ^ 1,2. Let 
Pi be the group with presentation {a, b\ ar = bs = 1}. Then there exists a finitely 
presented factor group of Pi which contains a copy of every recursively presented 
group. 

Lemma 3 and Theorem 2 combine to give the following general result. 

THEOREM 3. Let Pi = G±* . . . * Gt-i (t ^ 3), and let S be a subset of Pi which 
satisfies the ^-condition. Then the factor group Pi/SPl is a CE F- group if there 
exists a subset Q = {ui, u2\ of Pi, such that Q and S satisfy the conditions of 
Lemma 3, with \ = 6. 

Proof. Suppose that such a subset Q exists. Let ^ b e a given countable group 
and let Gt be a 2-generator group containing an isomorphic copy of H. We 
prove the theorem by showing that some factor group of Pi/SPl is a CEF-group. 

Let Gt be generated by the elements gi, g2. We p u t P = Gi * G2 * . . . * Gt and 
define the subset R of P by R = {gi~xUi, g2~

lu2] W S. Then by Lemma 3, 
R satisfies the 6-condition. From Theorem 1 it follows that P/Rp contains an 
isomorphic copy of Gt. Now it is easy to see, using an argument involving 
presentations as in the proof of Theorem 2, that P/Rp is isomorphic to a factor 
group of Pi/SPl. This proves the theorem. 

We now give an application of Theorem 3. 
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T H E O R E M 4. Let P± = Gi* G2, where G2 is not the cyclic group of order 2. 
/ / T is a cyclically reduced and bounded subset of P i , then there is a positive 
integer m such that P\/Tk

Pl is a CEF-group whenever k ^ m. 

Proof. Let 5 be the set of least roots of elements of T. Then 5 is a cyclically 
reduced, rootless, and bounded subset of P i , and L{T) ^ L(S). I t follows from 
Lemma 2 t h a t Sk satisfies the 6-condition if k ^ 6L(5) + 1. We note t h a t 
PjcPl C Sk

Pl for all positive integers k. 
Let #i be a non-identi ty element of Gi, and b\, C\ non-identi ty elements of G2 

with èi 7^ Ci. W e define the elements uni vn (n = 27, 28, . . .) of P i by 

un = ai5i(aici)ai&i(aici)3 . . . ai&iCaiCi)2*-1 

and 
vn = aibtiaxdYaxbtiatfi)4 . . . aib^a^)271. 

We pu t Q(n) = {un, vn}. Let w be an element of P i of maximum length such 

t h a t w is an initial subword of two non-equal elements of <2(»).Then, from the 

normal forms of un and vn, we have 

w±i = (aici)2 n-3aiôi(aici)2 , l-1ai, 

so t ha t l(w) = 8n — 5. Since Z{(?(w)} = Z(ww) = 2»(?z + 1), it follows t h a t 
Q(n) satisfies the 7-condition, since n ^ 27 and so 

8» - 4 1 
2n(n+l)K7' 

W e wish to choose k and w so t h a t Sk U Q(w) satisfies the 6-condition. Firs t 
of all we impose the condition k è 6L(5) + 1 to ensure t ha t 5^ satisfies the 
6-condition. W e note t h a t if z is a cyclically reduced and rootless element of P i 
such t ha t zq (q > 2) is an initial subword of an element of Q(n), then it is easy 
to see, from the normal forms of un and vn, t h a t z must be a cyclic ar rangement 
of (alCl)±\ 

Suppose t ha t a,\C\ Ç S. Let w be an initial subword of both a cyclic arrange
ment x of {a\Ci)±lc and an element y of Q(n). We have /(x) = 2k and 
/(3O ^ 2»(» + 1). Now if x and y are chosen so t h a t w has maximum length, 
thenw^ = (aiCi)2wai, provided t ha t fe > 2w. Thus , in any case, l(w) ^ 4» + 1. 
Hence, if k > Yin + 6, then f (x, y) + 1 < J/{x, 3/}. 

W e now choose » to be the least positive integer such t h a t n ^ 27 and 

(3.6) 2w(» + 1) > 18L(5) . 

Wi th this choice of w we choose & to be any positive integer such t ha t 

(3.7) k > Max{6L(5) + 1, 12» + 6} 

if aiCi G S, or 

(3.8) k > Max{6L(5) + 1, 19} 

otherwise. 
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We now show that Q(n) U Sk satisfies the 6-condition. In view of the choices 
of n and k, it is sufficient to show that if w is an initial subword of both x and y, 
where x Ç Sk and y G Q(n), then l(w) + 1 < \l{x,y). We have x = zk say, 
where z 6 S. 

We first suppose that l(w) + 1 è | / (#) . Then 

so that zs is an initial subword of w. Hence zz is an initial subword of both 
x and y, and so z must be a cyclic arrangement of (aiCi)*1. Thus aiCi 6 5, 
and so k > 12w + 6. This contradicts the result we obtained previously under 
the supposition that a\C\ £ S. 

We now suppose that l(w) + 1 ^ i/(3>). Now /(y) ^ 2»(« + 1), so that, 
from our choice of n, 

l(w) + l>fL(S) £3Z(s). 

This yields a contradiction as above. Thus we have shown that Q(n) U 5fc 

satisfies the 6-condition. 
It follows from Theorem 3 that Pi/Sk

Pl is a CEF-group. Since this group is 
a factor group of Pi/Tk

Pl, we have therefore shown that Pi/Tk
Pl is a CEF-group. 

Notes, (i) The above proof gives an upper bound for the value of the integer 
m, and this upper bound can be computed if L(S) is known. 

(ii) The condition that T be cyclically reduced and bounded can be replaced 
by the condition that T is bounded and does not contain a conjugate of an 
element of length one. This follows easily from the fact that any non-identity 
element of P i which is not conjugate to an element of length one is conjugate 
to a cyclically reduced element of P±. 

Examples, (i) The group {x, y\ x2 = y* = {xy)k = 1} is a CEF-group if 
k > 330. To show this we take G\ = {x\ x2 = 1}, G2 = {y\ yz = 1}, and 
T — {xy\ = S. We choose, in the notation of the theorem, a,\ = x, bi = y, 
and C\ = y2. Then 5 = {aj?if 6iai, aiCi, C\a\}. Since a^c\ 6 5 we have to use 
(3.7). We can take n = 27 and k > 12.27 + 6. 

(ii) The group {x,y\ x2 = yT = (xy)k = 1} is a CEF-group if r > 3 and 
k > 19. Here we take d = {x\ x2 = 1}, G2 = {y\ yT = 1} and T = {xy} = S. 
We choose a\ = x, bi = y, and C\ = y2, so that S = {aj?!, b±ai} br~~lai, a\0ir~l). 
Since a\C\ d S we can use (3.8). We can take n = 27 and k > 19. 
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