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ON RHODES EXPANSIONS OF BANDS

by H. SEZINANDO*

(Received 18th May 1994)

We present a direct computation of the Rhodes expansions of the free objects in the varieties of bands, based
in the manipulation of the invariants in introduced by Gerhard and Petrich [4] in the study of bands.

1991 Mathematics subject classification: primary 20M10, secondary 20M17.

1. Introduction

In [8] Reilly studied the Rhodes expansions of completely regular semigroups, using
techniques deriving from the work of Polak [5, 6, 7]. Here we give an alternative and
quite different computation of the Rhodes expansion of S in the special case where S is
a free object in a variety of bands. This is based on manipulation of the invariants /„,
introduced by Gerhard and Petrich [4] and on results obtained by the author [10]
concerning the cardinalities of the free objects in varieties of bands. The work is part
of the author's Ph.D. thesis [9].

2. Preliminaries

We record here the notation to be used throughout the paper and we state some
theorems to be used later.

X: a fixed countably infinite set. Elements of X are called variables.
A: a set, called an alphabet. Elements of A are called letters.
A*: the free monoid on A. Elements of A* are called words. They are finite strings

of elements of A written as a,- • • an, where a,,. ..an e A. The product is concatenation.
The identity of A' is denoted by 1. It is thought of as the empty string.

c(w): the content of w e A' is the set of letters occurring w. By definition, c(l) = <f>.
w: the dual of w is the word obtained from w by reversing the order of the variables.

That is, if w = a, • • • an with a, • • • an e A, then vv = an- • • a,.
V: the dual variety of V.
FA(V): the free object of the variety V, on the set of generators A.
[u = v]: the variety of semigroups defined by the equations u = v, x2 — x.

•This work was partially supported by S.A.L. (JNICT)
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410 H. SEZINANDO

[i, i +j\. the set {i, i + 1,. . . i +j}, where i > 0,; > 1.
<S: the variety of semilattices [xy = yx].
CB: the lattice of varieties of bands.
CB0: the lattice obtained from CB by taking away the varieties of rectangular

bands.
C, J: the Green relations.

Given a function t: A* -*• A*, we denote by t the function from A' into A* defined
by t(w) = t(w).

Let w = uxv, where c(w) — c(ux) and c(w) / c(u). Set

s(w) = u: the longest left cut of w that contains all but one of the variables of w.
<r(w) = x: the last variable to occur in w in order from the left.
e(w) = s(w): the longest right cut of w that contains all but one of the variables of w.
e(w) = ff(vv): the last variable to occur in w in order from the right.

Following Fennemore [3], we define the words Rn, Sn and Qn for n > 2, as follows.

R2 — R2(xu x2,Xj)
R3 = R3(xt, x2,Xj)
Qi = Qifru x2, x3) = x2x3x,,
Qi - Qi(xuX2, x3) = x,x2x3x,x3,
02 ^ " 2 ( X | , X2, X3) = X3X|X2X|,

03
 = O3(X|, X2, X3J = X|X2X3X|X3X2X3,

K = K(xu ...,xn) = Rn_txn, for n = 4, 6 . . .
Rn = Rm(xlt..., xn) = xnRn_u for n = 5, 7 . . .
6n = en(*.> • • •. *„) = Qn-xXnRn, for n = 4 , 6 . . .
Qn = Qn(x , x . ) = Knxn<2n_,, for n - 5 , 7 . . .
S. = S B ( x , , . . . , xB) = Sn_,xn/?n, for n = 4, 6 . . .
Sn = Sn(x,,..., x , ) = /?nxnSn_,, for n = 5, 7 . . .

Set Vi = 5 , V2 = [xyz = xy], V2' = [R2 = Q2], Vn = [Rn = 5J, K = [R. = ft,] for n > 3,
n odd, Vn = [Rn = SB], K,' = [An = QJ for n > 3, n even. Let Vx denote the variety of all
bands. The lattice CB0 is represented in Figure 1.

We call the varieties Vu Vx, Vn and V'n, n>2, left varieties. The duals of these
varieties are called right varieties.

Given a variety of bands V, we denote by K'[Kr] the minimum of the set of left
varieties [right varieties] containing V.

Let S be a semigroup. We define the relations <c and <c by

a <c b O Sla c S'fc and
a <c b <» S'a c S'fe but S'a ^ Slb (a, fc e S).

Remark 2.1. Let S be a band and let s, t e S be such that s <£ t. Then s£t if and
only if sjt. Hence, if u, v e S are such that c(u) — c(v) and u <L v, then uCv.
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ON RHODES EXPANSIONS OF BANDS 411

FIGURE 1 The lattice CB0.

Theorem 2.2. [10] Let us fix a variety of bands V. Given a finite subset B of A, let
XB(V) denote the J-class of FA(V) consisting of the elements of content B. Let cn(V)
denote the cardinality ofXB(V) when \B\ equals n. Then

ck(V2) = k\,

ck(K) = fc

3. The Rhodes expansion

Let S be a semigroup. A finite sequence a = (an,. . . , a,) of elements of S is an

£-chain of

an <n <c a - i <c • • • <c
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412 H. SEZINANDO

and is a reduced £-chain if

« n <C a n - \ <C ••• <C a \ -

The reduction Red(a) of a is the sequence obtained from a by successively deleting
the right most element of any pair of £-equivalent elements until no such pairs
remain.

Definition 3.1. Let S be a semigroup. The Left Rhodes expansion Sc of S is the set
of all reduced £-chains with the multiplication

(an <c ... <c a,)(bm <c ... <cbi) = Red(anbm <c ...<c axbm <cbm<c ... <c />,).

We define a map rjs: S
c -> S by

>7s(A, <c • • • <c Oi) = "n;

ns is a surjective morphism and is called the canonical morphism.
Given a morphism (p : S -*• T, we define a morphism <pc : Sc -*• tc by

<PC(a* <c ••• <c « i )

It is easy to check that we get an expansion.
Dually, we can define the right Rhodes expansion Sn of S.
We refer to [1] for a discussion of the basic properties of the left and right Rhodes

expansions.
We now consider the category SA of semigroups generated by a given set A. Its

objects are the pairs (S,/), where S is a semigroup a n d / : .4 -*• S is a map such that
f(A) generates 5 (in the classical sense). A morphism from (S,/) into (T, g) is a
morphism of semigroups (p:S—*T such that the following diagram is commutative.

Definition 3.2. Let (S,f) be an object of SA. The left Rhodes expansion cutdown to
generators A of S is the pair (Sc

A,fH), where Sf is the subsemigroup of Sc generated by
the set {(/(a)): a € A) and/f : A -> SC

A is defined by

fKa) = (/(a)) (a € A).
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The canonical morphism nSA : SA -*• S is defined simply by

1S.A = 1skc
A-

Finally, if <p is a morphism from (S,/) into (T, g), we define q>c
A from (SA,fA) into

It is easy to check that we still get an expansion.
We refer again to [1] for a discussion of the basic properties of the left and right

Rhodes expansion cutdown to generators.
From now on we work with the left Rhodes expansions cutdown to generators and

we omit the word "left".

Theorem 3.3. [Tilson, 11] Let S be a semigroup. Then the Rhodes expansion cutdown
to A ofSA is isomorphic to SA.

Fact 3.4. If (S,/) and (7̂  g) are objects of SA, there is at most one morphism from
(S,f) to (T, g). Consequently, if (p: (S,/) ->• (T, g) and \j/: (T, g) ->• (S,f) are morphisms,
then (S,f) and (T, g) are isomorphic.

Fact 3.5. [1] If S is a band, then SA is also a band.

L e m m a 3.6 . Let S be a semigroup and let x,ye Sc. Then

xy = y <fr ris(xy) = ris(y).

Proof. Let x = (xn < £ ••• <c x , ) , y = (ym <c • • • <c y\), x , , . . . , xB, yu...ymeS, be
such that r)s(xy) = rjs(y). This means that

> ? s ( R e d ( x n y m <c • • • <c xxym < c y m < c - - - <c yi)) = 1s(ym < £ • • •

that is,

^ m < £ - • • < £ x,ym < c y m < c - ' - <c ^ i ) ) =

By the definitions of Red and ris we get

Red(x_ym < £ - • • < £ x ,y m <c ym <c • • • <c yt) = (ym <c • • • <c

that is, xy — y.
The converse is trivial.
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4. The Rhodes expansions of the free objects

If S is a rectangular band, then SA is isomorphic to S. This comes from the fact that
all the sequences (sn <£ • • • < £ s,) have length one, since, if s, t e S and s <c t, then
sCt.

From now on we work on CB0.
We start with V -S and show that if S = FA{V), then SA ~ ^(Kj). In order to show

this, we will show that:
(1) If S e S, then Sc e V2.
(2) If S = FA(V), then SC

A = {(sk < £ • • • <c s.):k > 1, s,- e A+, |c(s,)| = i, i e [1, *]} and
^

Proof of (1). Let s,t e Sc, s = (st < £ • • • < £ s,), t = (i, <£ • • • <c i,), where /c, / > 1,
s,., i, € / 1 + , |c(s,)| - i, |c(i")| = ; , i e [l,k],j e [1, q. Then

sts = Red(sti, < £ • • • <c s{i, <c i, <c • • • < £ i,).(sk < £ • • • < £ s,)

= Red(ski,sk <c • • • < £ s,i,sfc < £ i,sk < £ • • • < £ i,st < £ st < £ • • • < £ s,)

= Red(i ,s t < £ - - - < £ i,sfc < £ s t < £ • • • < £ s,)

Proof of (2). Let X = {(st <£ • • • < £ s,): k > 1, s{ e A+, |c(s,)| = i, i e [1, /c]}.
Let s e S ^ . If s — (a), a e A, then s e X. Suppose that any product (an) . . . (a,) ,

n> I, a, e A, i e[\,n] is in X. Let an+, € ^. Then

by the induction hypothesis, where s, e A+, |c(s,)| = i, i e [1, k]. Hence

(a n + 1 ) . . . (a,) = Red(an+1sfe <£ ŝ  <£ • • • < £ s,).

If an+1 ^c(sfc), then 0^,5^ <£ sk and

K + i ) • - • (« i ) = (an+,sfe < £ sk <c • • • <c s,),

with \c(an+tsk)\ =k+l.
If an+i e c(st), then an+lskCsk and

K + i ) • • • ( a i ) = ( a n + i ^ < £ * „ - , < £ - • • < £ s , ) ,

where |c(a^.,st)| = k.
Thus S^ c X.
Conversely, let s — (sk <c • • • <c st) e X and let {a,} = c(s,)\c(Sj_|), i e [ l , / c ] . In S,

s, = a,s,_1, Je[l ,fe] (since c(s,) = c(a,s,_|)). It is then a mere routine to check that
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Finally, if \A\ = N, we have

\SC
A\ = \i(sk <£ • • • <£ s.): fc > 1, s, 6 A\ |c(s,)| = i, i e [1, k]}\

N

= £ \{(sk,..., s,): sf 6 >4\ c(Si) 5 c ^ , ) , |c(st)l = i, i 6 [1, *]}|
k=\

N

- 1).. .(N - k+ I)

(See Theorem 2.2.)

We now state the main theorem. As mentioned in the introduction, this is a special
case of a result due to Reilly [8].

Theorem 4.1. IfVeCBQ and S = FA(V). then SA ~ FA(V).

The next statement shows that it suffices to prove the theorem for the left varieties
of £B0. Moreover, since the remaining cases can be proved similarly, we shall only
consider the cases V — V2 or V = Vk, k odd, k > 3.

Proposition 4.2. Let S,T,U € SA and let <p: S -> T,\p:T-* U be morphisms. Then

uc
A~s=>fA

c~ s.

Proof. Let S,T,U e SA and let cp:S -+T,\li\T ->• U be morphisms. Suppose that
UA ~ S and let x be an isomorphism from 0A into S.

By Theorem 3.3, SA ~ S and by Fact 3.4, the natural morphism nSA: SA ->• S is an
isomorphism. Let ^ be its inverse. Let <pA:SA—>- tA and ijtA:tA—* UA be the
morphisms determined by q> and ^, respectively. Then q>A o ^J1^ o x o \j/c

A is a morphism
from 7]f into itself and so it is the identity morphism. Hence x ° ^ is an isomorphism
from tf into 5.

We now state a series of lemmas, whose proofs we shall defer until we prove
Theorem 4.1.

Lemma 4.3. If V is a left variety and S e V, then Sc e V.

Lemma 4.4. Let u, v e A+ be such that c(u) 5 c(v), \c(u)\ = \c(v)\ + 1.
(i) If V = V2, then u <c v in FA(V).

(ii) IfV=Vk odd, k>3, then

Proposition 4.5. Let S = FA(V).
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(i) If V = V2, then

SC
A = {(sn <c • • • <c s , ) : n > 1, s, e A+, |C(s,)| = i, i e [1, »]}.

(ii) / / F = Vk, k odd, k>3, then

SA = {(sn < £ - • • < £ s , ) : n > 1, sf e ^ + , |c(s,)| = i,it_i («(?,-)) = V i (V i )>« e [1. "]

Lemma 4.6. Le? n > 1
(i) F = 72, then

u e / ie 5MC/I //ia? |C(M)| = n.

(« <c V-i < £ - • • < £ s , ) : Si € ^+, |c(s,)| = i, i 6 [1, n - 1]}| = •

(ii) IfV= Vk, k odd, k > 3,

Vi(e(si)) = Vi(s,_i).' e [1,

cn(Vk) '

Lemma 4.7. Ler w < 1
k odd, k > 3. Then

/ ! „ c A b e s u c h t h a t \ A n \ = n . L e t S — F A ( V k ) , k - 2 o r

Proof of Theorem 4.1. Let S = FA(V). If V = Vx, by Fact 3.5, SA e VM. Con-
sequently, there is a morphism ij/:S—> SC

A. Since nSA is a morphism from SA into S,
Fact 3.4 yields that q>, rjSA are isomorphisms and so SA ~ S.

Let S = FA(Vk), k > 2. By Lemma 4.3 there is a surjective morphism (p: FA(Vk+l) -> Ŝ
such that the following diagram is commutative.

(i+l

(4.1.1)

where \\k denotes the canonical epimorphism from A+ into FA(Vk).
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Also the following diagram is commutative.

417

(4.1.2)

We now show that q> is injective. It is enough to show that the restriction of (p to
the ./-classes of FA(Vk+]) is injective. Indeed, if t and t' e FA(Vk+i) are such that
(pit) = (p(f), then there are u,v € A+ such that t = §k+t(u), t' = \\k+](v) and so we get

(pit) = (pit) => <p\\k+l(u) = (pi\k+i(v)

=> 0T*)^(«) = 0T*^(») by (4.1.1)
=• isAfafa) = 1S.A(&)A(V)

=• W«) = W») by (4.1.2)

=» C(M) = C(D)

and therefore t and t' are ̂ /-related in FA(Vk+i).
Let An c A. We have

: c(t) = An\) = [(pit) e SC
A : c(t) =

But if t = tu+,(u), a 6 / we get

Hence

u)) by (4.1.2)

1(M)) by (4.1.1)

= {(pit) e SC
A :

and the injectivity of (p follows from the fact that
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= \{seSc
A:c(r,SA(s))^An)\

= cn{VM) by Lemma 4.7
= \{teFA(VM)-c(t) = An}\.

We now prove 4.3-4.7.

Proof of Lemma 4.3. The proof is based on Lemma 3.6. The case of S will be
omitted since it was already treated.

If S e V^ the result is an immediate consequence of Fact 3.5.
Let S e V2 and let s,,s2, s3 e Sc. Then

Hence Lemma 3.6 yields that s^s^ = sls2SiS}sls2sz, thus Sc e V3, as required.
Now let S eVk, k odd, k > 3. By definition Rk+l = Rkxk+l and Sk+l = SkxMRk+l. We

notice first that if Sk — Sk(xt,...,xk), then

ris(Sk) = St(f/S(x,), • • •, f/s(x*))

= Kk(f7s(x,),..., rjs(xk))

Hence,

]) = ris(Sk)tis(xk+l)ris(Rk+])

Thus Lemma 3.6 yields that Sk+, = RM and so Sc € VM, as required.

Proof of Lemma 4.4. Let u, v e A+ be such that c(u) 2 c(v), \c(u)\ = \c(v)\ + 1.

(i) Let V = V2. Then

« <c v -O- i2{uv) = i2(u).
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But c(u) 5 c(v) implies c(uv) — c(u), i2(uv) = i'2(u). Hence u <c v. If v <c u, we would
get c{vu) — c{v) and this contradicts the fact that c(u) / c(v). Therefore u <c v.

(ii) Let V = Vk, k odd, k > 3. Then

" <£ v -O- ik(uv) = ik(u)
ik(s{uv)) = ik(s(u))

o(uv) = a(u)

e(uv) = e(w)

lk_t(e(uv)) — 7t_,(e(M)), since c(u) 5 c(v)

h-\(e(u)v) = 7k_,(e(w)), since c(u) / c(p)

since c(e(w)) = c(u). (See Remark 2.1.)

Proof of Proposition 4.5. (i) Let V —V2 and let

X = {(5n <£ • • <£ 5.): n > 1, 5, e /!+, |c(s,) | = ,-, / g [1, „]}.

The proof of the inclusion SC
A c X is analogous with the proof made for V = S. We

now prove the converse inclusion.
Let seX.
If s = (s,), |c(s,)| = 1, then st e A and s e SC

A.
Let n > 1 and suppose that all sequences (sn <c • • • <c s,) of A' are in SC

A. Let
s = (sn+, < £ • • • < £ s,) e X and let c(sn+i)\c{sn) — [an+l}. It is easy to see that

h(s«+\) = h(s(sn+iMsn+l)an+lsn).

N o w let s(sn+]) = b,...br, fc, e A,ie[l, r]. W e wil l s ee t h a t

s = (b])...(br)(a(sn+l))(an+l)(sn <c • •• <c s,).

Indeed,

l ) ) ( a n + 1 ) ( s n < £ - • • < £ s , )

(4.5.1)

. . bra(s^.,)sn+]sn <cb2... b,o(sn+])an+lsn <c sn <c • • • <c s , )

= ( b , . . . bra(sn+])an+isn <c sn <c • •• <c s , )

since c(ct... bra{s^)an+^sn) - cia^sj. Thus
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(bl)...(br)(o(sn+l))(an+l)(sn<c ... <c s,) = (s(sn+])o(sn+l)an+]sn <c sn <c . . . <c s,)

= (Vn <csn <c ••• < £ s , ) by (4.5.1).

Hence the inclusion hypothesis yields that s e S j .
(ii) Let V =Vk,k odd, fc > 3. Let

Y = {(sn < £ - • • < £ s,): n > 1, s, e A\ |c(s,)| = i,7t_,(e(s,)) = info. , ) ,» e [1, «]}.

We prove first the inclusion S^ c Y.
If a e A, then (a) e Y. Suppose that n > 1 and that any product (a n ) . . . (a,), a, e

j e [1, n], is in 7. Let s - (an + 1)(an). . .(a,), a, e A, i e [1, M + 1]. Then

« = («Wi )[(*„). . •(«•)]

by the induction hypothesis, where /c > 1, s, e /i+, |c(s,)| = i, /fc_i(e(s,)) = it_,(s,_|), i e [1, fe].
Hence

s = Red(an+,st <csk<c--- <c s,).

If an+i e 0(5^), then an+xskCsk (see Remark 2.1) and

S = («n+lSfc < £ S * - l < £ S / c < £ " " < £ S , )

where |c(an+,st)| = k. Moreover in this case

Vi(eK+iS*)) = h-i(.e(sk))

= i*-i(sit_i), by the induction hypothesis

and so s e Y.

If an+1 £ c (s j then an+lsk <c sk and

« = (On+lS/i < £ St < £ • • • < £ S,)

where |c(cn+,st)| = fc+ 1. Moreover

since in this case e(an+lsk) = an+l and e(an+lsk) = sk.
Hence S^ c Y.
Conversely, let s e Y. If s = (s}), with |c(s,)| = 1, then s, e / I and s e S^. Let

« > 1 and suppose that all sequences (sn <c • • • <c s,) of y are in SC
A. Let

s = ( V M < C S» <£ • • • <c Si) e Y.
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Since ik-t(e(sn+])) = 7t_,(sn), then c(e(sn+])) = c(sn) and we deduce that

Again, it is easy t check that

»*(«„+>) = h(s(sn+iMsn+i)E(sn+])sn). ( 4 . 5 . 2 )

N o w , l e t s ( s n + , ) = b t . . . b r , b , e A , i e [ l , r]. W e s h o w t h a t

s = ( b , ) . . . ( b r ) ( ( x ( s n + 1 ) ) ( £ ( s n + , ) ) ( s n < £ ' • • < £ s , ) .

I n d e e d ,

( b , ) . . . ( b r ) ( < 7 ( s n + 1 ) ) ( e ( s n + , ) ) ( s B < £ • • • < £ « , )

i K <£ £(sn+i)sn < £ sB < £ • • • <c s,)

= (b, . . . brff(sn+,)E(sn+l)sn <c sn <c • • • <c s , )

by Remark 2.1, since

c(b , . . . br<r(sn+l)£(sn+1)sn) = c(£(sn+l)sn).

Hence

+i)£(sn+l)sn < £ sB < £ • • • < £

<c ••• < £ « i ) by (4.5.2)

Therefore, by the induction hypothesis, s e S^.

Proof of Lemma 4.6. (i) Let V = V2. If |c(u)| = 1, then the statement is trivially true,
since |c,(K)| = 1, for all V e CB. Suppose the statement holds for n > 1 and let
u e A+ be such that |c(u)| = n + 1.

Fix z e A+ such that |c(z)| = n. Then we have

l(« <c s. <£ " • • <£ s,): s, g ^+, |c(s,)| = i, i 6 [1, n]}|

= |{v g ^ + : u <c v, \c(v)\ = n)\. \[(z <c s_, <c • • • <c s,): s, g A+, |c(s,)| = i,

Now
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and the induction hypothesis yields that

H(z <c s.-i < £ - < £ si):«i e /I4, |c(s,)| = i, i e [1, n - 1]}| =

Hence

l(« <£ ^ <r • • • <£ «,): s, 6 ,4+, |c(s,)| = i, i € [1, n])\ = ^

(ii) Let V = Vk,k odd, fc > 3.
If |c(w)| = 1, the statement is trivially true. Suppose the statement holds for n > 1

and let u e A+ be such that |C(M)| = n + 1. Fix z e A+ such that \c(z)\ = n. Then we
have

l(" <£ sn < £ • • • < £ s,): s, 6 ^+, |c(s,)| = i, 7t_,(e(w)) = 7t_,(i>),

it-i(«(s<)) = Vi(Si_i) , i e [1, n]}|

= |{f: w < £ », |c(u)| = n, 7t_,(e(«)) = 7t_,(u)}|.

|{(z <r s»-i < £ - • • < £ «i): s, e ^+,

Again, the result follows from the next two computations. (See Theorem 2.2.)

\{v:u <c v, \c(v)\ = n,7,_,(e(u)) = 7,_,(i;)}|

= \{v :7t_,(e(M))£7t_,(t;), 7t_,(e(u)) = ik_,(t>)}| by Lemma 4.6

= |{»:7t_,(e(M)) = !*_,(»)} I

since there are cn(Vk) words ik(v) with \c(v)\ = n and there are cn(K-i) words ik_i(w) with
|c(w)| = «.

|{(z <£ sn_, < £ - • • < £ s , ) : s, € A\ |c(s,)| = i,7t_,(e(s,)) = i»_,(s,_,),

i e [1, n - l],7*_,(e(z)) = it_i(sB_,)}|

by the induction hypothesis.

Proof of Lemma 4.7. The proof results immediately from Lemma 4.6. Indeed, if
s = (sn < £ sn_, < £ • • • < £ s,) e S^, then //S/4(s) = sn and the number of elements sn such
that c{sn) = An is cn(Vk) it V=Vk.
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