DIFFERENTIATION OF n-DIMENSIONAL ADDITIVE PROCESSES

M. A. AKCOGLU AND A. DEL JUNCO

1. Introduction. Let $n \geqq 1$ be an integer and let \mathbf{R}_{n} be the usual n-dimensional real vector space, considered together with all its usual structure. The usual n-dimensional Lebesgue measure on \mathbf{R}_{n} is denoted by λ_{n}. The positive cone of \mathbf{R}_{n} is $\mathbf{R}_{n}{ }^{+}$and the interior of $\mathbf{R}_{n}{ }^{+}$is \mathbf{P}_{n}. Hence \mathbf{P}_{n} is the set of vectors with strictly positive coordinates. A subset of \mathbf{R}_{n} is called an interval if it is the cartesian product of one dimensional bounded intervals. If $a, b \in \mathbf{R}_{n}$ then $[a, b]$ denotes the interval $\{u \mid a \leqq u \leqq b\}$. The closure of any interval I is of the form $[a, b]$; the initial point of I will be defined as the vector a. The class of all intervals contained in $\mathbf{R}_{n}{ }^{+}$is denoted by \mathscr{I}_{n}. Also, for each $u \in \mathbf{P}_{n}$, let $\mathscr{I}_{n}{ }^{u}$ be the set of all intervals that are contained in the interval $[0, u]$ and that have non-empty interiors. Finally let $e_{n} \in \mathbf{P}_{n}$ be the vector with all coordinates equal to 1 .
(1.1) Continuous semigroups. Let (X, \mathscr{F}, μ) be a measure space and let $L_{1}=L_{1}(X, \mathscr{F}, \mu)$ be the usual Banach space of integrable functions $f: X \rightarrow \mathbf{R}$. The positive cone of L_{1} is $L_{1}{ }^{+}$. The main object of this paper is an n-dimensional (strongly) continuous semigroup $\left\{T_{u}\right\}=\left\{T_{u}\right\}_{u \in \mathbf{P}_{n}}$ of positive linear contractions on L_{1}. This means that:
(1.2) If $u \in \mathbf{P}_{n}$ then $T_{u}: L_{1} \rightarrow L_{1}$ is a linear operator with norm not more than 1 , such that $T_{u} L_{1}{ }^{+} \subset L_{1}{ }^{+}$,
(1.3) If $u, v \in \mathbf{P}_{n}$ then $T_{u} T_{v}=T_{u+v}$.
(1.4) If $u \in \mathbf{P}_{n}$ and $f \in L_{1}$, then $\left\|T_{v} f-T_{u} f\right\| \rightarrow 0$ as $v \rightarrow u$ in \mathbf{P}_{n}.

Such a semigroup $\left\{T_{u}\right\}$ is said to be continuous at the origin if it satisfies the following additional condition:
(1.5) There is a positive linear contraction $T_{0}: L_{1} \rightarrow L_{1}$ such that if $f \in L_{1}$ then $\left\|T_{v} f-T_{0} f\right\| \rightarrow 0$ as $v \rightarrow 0$ in \mathbf{P}_{n}.

Note that the continuity of $\left\{T_{u}\right\}$ at the origin, together with the fact that T_{u} 's are contractions, implies the uniform strong continuity of $\left\{T_{u}\right\}$ (i.e. given $\epsilon>0$ and $f \in L_{1}$ there is a $\delta>0$ such that $\left\|T_{u} f-T_{v} f\right\|<\epsilon$ whenever $u, v \in \mathbf{P}_{n}$ and $p(u, v)<\delta, p$ being the euclidean distance in \mathbf{R}_{n}). Hence if $\left\{T_{u}\right\}$ is continuous at the origin then it can be extended to

Received February 14, 1980. This work is supported by an NSERC grant.
the closure of \mathbf{P}_{n}, which is $\mathbf{R}_{n}{ }^{+}$. In this case the properties (1.2), (1.3) and (1.4) are also satisfied if \mathbf{P}_{n} is replaced by $\mathbf{R}_{n}{ }^{+}$.

In Section 2 it will be shown that for the purpose of this paper there is no loss of generality in assuming that $\left\{T_{u}\right\}$ is continuous at the origin and also that $T_{0}=1$ is the identity transformation. Hence, after the remarks in Section 2, these additional hypotheses will be made on the semigroup $\left\{T_{u}\right\}$.
(1.6) Additive processes. A set function $F: \mathscr{I}_{n} \rightarrow L_{1}$ will be called a bounded additive process (with respect to $\left\{T_{u}\right\}$) if it satisfies the following conditions:

$$
\begin{align*}
& \sup \left\{\left.\frac{\|F(I)\|}{\lambda_{n}(I)} \right\rvert\, I \in \mathscr{I}_{n}, \lambda_{n}(I)>0\right\}=K(F)=K<\infty, \tag{1.7}\\
& T_{u} F(I)=F(u+I) \text { for all } u \in \mathbf{P}_{n} \text { and } I \in \mathscr{I}_{n}, \tag{1.8}
\end{align*}
$$

(1.9) If $I_{1}, \ldots, I_{k} \in \mathscr{I}_{n}$ are pairwise disjoint and if $I=\bigcup_{i=1}^{k} I_{i} \in \mathscr{I}_{n}$ then $F(I)=\sum_{i=1}^{k} F\left(I_{i}\right)$.

Note that (1.7) and (1.9) imply that if $\left\{I_{i}\right\}$ is a sequence of intervals converging to an interval I in the sense that $\lambda_{n}\left(I_{i} \Delta I\right) \rightarrow 0$, then $\left\|F\left(I_{i}\right)-F(I)\right\| \rightarrow 0$. In particular, (1.9) remains true for countably many intervals. Also, it is clear that F can be extended (in a unique way) to the class of bounded Borel subsets of $\mathbf{R}_{n}{ }^{+}$. For the extended function we also have that $\left\|F\left(B_{i}\right)-F(B)\right\| \rightarrow 0$ whenever $\lambda_{n}\left(B_{i} \Delta B\right) \rightarrow 0$, where B_{i} and B are bounded Borel subsets of $\mathbf{R}_{n}{ }^{+}$.

Finally we also note that if $\left\{T_{u}\right\}$ is continuous at the origin and if F is a bounded additive process then $T_{u} F(I)=F(u+I), I \in \mathscr{I}_{n}$, is true not only for $u \in \mathbf{P}_{n}$ but for all $u \in \mathbf{R}_{n}{ }^{+}$. Here, if $v \in \mathbf{R}_{n}{ }^{+}-\mathbf{P}_{N}$ then T_{v} of course denotes the value of the extended semigroup at this boundary point.
(1.10) The main result. Our purpose is to show that if F is a bounded additive process then

$$
\frac{F\left[0, \alpha e_{n}\right]}{\lambda_{n}\left[0, \alpha e_{n}\right]}=\alpha^{-n} F\left[0, \alpha e_{n}\right]
$$

converges a.e. as $\alpha \rightarrow 0^{+}$. Since, however, F^{\prime} 's are members of L_{1} and not actual functions, we can let α change only over a countable set. Following the convention in [2], we will consider only rational values of α and write $q-\lim _{\alpha \rightarrow 0}$ to indicate that the limit is taken as α approaches zero over the set of positive rational numbers. The main theorem is then stated as follows.
(1.11) Theorem. If $F: \mathscr{I}_{n} \rightarrow L_{1}$ is a bounded additive process then $q-\lim _{\alpha \rightarrow 0} \alpha^{-n} F\left[0, \alpha e_{n}\right]$ exists a.e.

As in [2], one can also give a version of this theorem that deals with the unrestricted values of α, applied to a fixed representation of $F\left[0, \alpha e_{n}\right]$. This follows directly, however, from (1.11) and from the fact that if $h: \mathbf{R} \rightarrow \mathbf{R}$ is a monotone function then the existence of

$$
q-\lim _{\alpha \rightarrow 0}(1 / \alpha) h(\alpha)
$$

is equivalent to the existence of $\lim _{\alpha \rightarrow 0}(1 / \alpha) h(\alpha)$.
Theorem (1.11) generalizes a theorem of Akcoglu-Krengel [2], [3] on the differentiation of one dimensional additive processes, an n-dimensional local ergodic theorem of Terrell [6] and also the Lebesgue differentiation theorem on \mathbf{R}_{n}.

In fact, let $n=1$ and let $\left\{\widetilde{F}_{u}\right\}, u \in \mathbf{P}_{1}=(0, \infty)$ be a "bounded additive process'" in the sense of [2]. This means that

$$
\widetilde{F}_{u}+T_{u} \widetilde{F}_{v}=\widetilde{F}_{u+v}
$$

and that

$$
\sup \left\{\left.\frac{\left\|\widetilde{F}_{u}\right\|}{u} \right\rvert\, 0<u\right\}<\infty
$$

Then, letting $\widetilde{F}_{0}=0$ and defining $F(I)=\widetilde{F}_{b}-\widetilde{F}_{a}$ for any type of subinterval I of $\mathbf{R}_{1}{ }^{+}=[0, \infty)$, with end points $0 \leqq a \leqq b$, we see that F becomes a bounded additive process in the sense of the present work. Then Theorem (1.11) gives the differentiation theorem of Akcoglu-Krengel.

To obtain Terrell's theorem from (1.11), let $f \in L_{1}$ and define $F: \mathscr{I}_{n} \rightarrow L_{1}$ as

$$
\begin{equation*}
F(I)=\int_{I} T_{u} f d u, I \in \mathscr{I}_{n} \tag{1.12}
\end{equation*}
$$

It is easy to see that F is a bounded additive process. Hence (1.11) gives the existence of

$$
q-\lim _{\alpha \rightarrow 0} \alpha^{-n} \int_{\left[0, \alpha e_{n}\right]} T_{u} f d u \quad \text { a.e. }
$$

This implies the existence of the unrestricted limit, if $f \in L_{1}{ }^{+}$. This is Terrell's local ergodic theorem, actually generalized to semigroups that are not necessarily continuous at the origin.

Finally, to see the relation between (1.11) and the Lebesgue differentiation theorem, let $X=\mathbf{R}_{n}$ and $\mu=\lambda_{n}$. Let ν be a Borel measure on \mathbf{R}_{n} with bounded total variation. For each $I \in \mathscr{I}_{n}$, define $F(I) \in L_{1}$ as

$$
[F(I)](x)=\nu(x+I)
$$

Then $F: \mathscr{I}_{n} \rightarrow L_{1}$ is a bounded additive process with respect to the translation semigroup $\left\{T_{u}\right\}, u \in \mathbf{R}_{n}{ }^{+}$, defined as

$$
\left(T_{u} f\right)(x)=f(x+u), f \in L_{1}, x \in \mathbf{R}_{n}
$$

(Actually it will follow from the remark in (4.12) that in this case any
bounded additive process is of this form.) Then (1.11) gives that $\alpha^{-n} \nu\left(\left[x, x+\alpha e_{n}\right]\right)$ converges $\lambda_{n}-$ a.e. as $\alpha \rightarrow 0^{+}$through the rational numbers. For the unrestricted convergence, one may assume that ν is a positive measure, which makes $\nu\left(\left[x, x+\alpha e_{n}\right]\right)$ a monotone function of α.
(1.13) An outline of the proof of (1.11). Since (1.11) deals with a countable class of L_{1} functions, there is no loss of generality in assuming that μ is σ-finite and that the σ-algebra \mathscr{F} is generated by a countable class of sets \mathscr{A}. We will actually assume that μ is finite. Standard arguments show that this is also not a restriction in the proof of (1.11).

We will then start, in Section 2, by reducing the semigroup $\left\{T_{u}\right\}$ to a semigroup that is continuous at the origin. This will be done by generalizing some results of Akcoglu-Chacon [1] on the decomposition of X into (initially) conservative and dissipative parts, and on some properties of the conservative part.

Section 3 contains several results that are either essentially known or that can be obtained without too much effort. First we show that a bounded additive process is the difference of two positive bounded additive processes. This is done by a routine extension of the corresponding result given by Akcoglu-Krengel [2] in the one-dimensional case. Section 3 also contains an outline of a technique introduced by DunfordSchwartz [5] and further developed by Terrell [6] to reduce the $2 m$ dimensional case to the m-dimensional case. The original technique is slightly extended in order to deal with the additive processes.

In Section 4 it is shown that a positive additive process is the sum of two processes that are called the absolutely continuous and the singular parts. This decomposition is obtained by using an idea of AkcogluSucheston [4], that was used to obtain a similar result for super-additive processes in [4]. The convergence of the absolutely continuous part is covered by Terrell's theorem [6]. Hence it remains to show the convergence for the singular part.

This part of the proof of (1.11) contains the main argument of this work. First we show that the singularity of a process is equivalent to a property, which is called the localization property. Then we note that if a $2 m$-dimensional semigroup has the localization property then the reduced m-dimensional process has also the same property. This makes it possible to apply an induction argument over the number of dimensions, to obtain the convergence of singular processes, starting with the known one-dimensional case. Section 4 is concluded by giving a general form of the additive processes for the translation semigroup in \mathbf{R}_{n}.
2. The conservative and dissipative parts. Let $\left\{T_{u}\right\}$ be a semigroup satisfying (1.2), (1.3) and (1.4) and let F be a bounded additive process with respect to $\left\{T_{u}\right\}$. The continuity of $\left\{T_{u}\right\}$ at the origin is not assumed.

If $u \in \mathbf{P}_{n}$ then $\left\{T_{t u}\right\}, t \in(0, \infty)$ is a one dimensional semigroup. Let C^{u} and D^{u} be the initially conservative and dissipative parts of X with respect to this one dimensional semigroup, as given in [1]. Then $\chi_{D^{u}} T_{t u} f=0$ for any $t>0$ and $f \in L_{1}$, where χ denotes the characteristic function of its subscript.
(2.1) Lemma. C^{u} and D^{u} are independent of $u \in \mathbf{P}_{n}$.

Proof. Given $u, v \in \mathbf{P}_{n}$, there is a real $\alpha>0$ such that $w=\alpha u-v \in \mathbf{P}_{n}$. Hence,

$$
\chi_{D^{v}} T_{t \alpha u} f=\chi_{D^{v}} T_{t v} T_{t w} f=0
$$

for all $t>0$ and $f \in L_{1}$. This means that $D^{u} \supset D^{v}$, so by symmetry, $D^{u}=D^{v}$ and $C^{u}=C^{v}$.

We will now write $D=D^{u}$ and $C=C^{u}$ for some $u \in \mathbf{P}_{n}$ and define D and $C=X-D$ as the initially dissipative and conservative parts of X, with respect to the n dimensional semigroup $\left\{T_{u}\right\}$. Note that $\chi_{D} T_{u} f=0$ for any $u \in \mathbf{P}_{n}$ and $f \in L_{1}$.
(2.2) Lemma. If F is a bounded additive process then $\chi_{D} F(I)=0$ for all $I \in \mathscr{I}_{n}$.

Proof. Let $a \in \mathbf{R}_{n}{ }^{+}$be the initial point of I. Hence $I=a+I^{\prime}$ with $I^{\prime} \in \mathscr{I}_{n}$. If $a \in \mathbf{P}_{n}$ then

$$
\chi_{D} F(I)=\chi_{D} F\left(a+I^{\prime}\right)=\chi_{D} T_{a} F\left(I^{\prime}\right)=0
$$

If $a \in \mathbf{R}_{n}{ }^{+}-\mathbf{P}_{n}$ then we can find a sequence of intervals I_{i} with initial points in \mathbf{P}_{n}, such that $\lambda\left(I \Delta I_{i}\right) \rightarrow 0$. This implies that $F\left(I_{i}\right) \rightarrow F(I)$ in L_{1} and hence $\chi_{D} F(I)=0$, since $\chi_{D} F\left(I_{i}\right)=0$ for each i.
(2.3) These considerations show that to prove Theorem (1.11) we may restrict the semigroup $\left\{T_{u}\right\}$ to the conservative part C. Hence from now on we will assume that $C=X$, in addition to the previous assumptions (1.2), (1.3) and (1.4) on $\left\{T_{u}\right\}$.

The following theorem is a generalization of Theorem (4.1) in [1].
(2.4) Theorem. If $C=X$ then $\left\{T_{u}\right\}$ is continuous at the origin.

Proof. We have to show that (1.5) is satisfied; i.e. that there is a positive contraction T_{0} on L_{1} such that if $f \in L_{1}$ then $\left\|T_{u} f-T_{0} f\right\| \rightarrow 0$ as $u \rightarrow 0$ in \mathbf{P}_{n}.

Let $u \in \mathbf{P}_{n}$ be a fixed vector. Then the one dimensional semigroup $\left\{T_{t u}\right\}_{t>0}$ is continuous at the origin, by Theorem (4.1) of [1]. Let $T_{0 u}$ be the initial transformation for $\left\{T_{t u}\right\}_{t>0}$.

Now let v, w be any two vectors in \mathbf{P}_{n} such that $u=\alpha v+\beta w$ with strictly positive scalars α and β. We will show that $T_{0 u}=T_{0 v} T_{0 w}$, which
will obviously imply $T_{0}=T_{0 u}$ is independent of $u \in \mathbf{P}_{n}$. Now if $f \in L_{1}$ then

$$
\begin{aligned}
& \left\|T_{t u} f-T_{0 v} T_{0 w} f\right\|=\left\|T_{t \alpha v} T_{t \beta w} f-T_{0 v} T_{0 w} f\right\| \\
& \leqq\left\|T_{t \alpha v} T_{t \beta w} f-T_{t \alpha v} T_{0 w} f\right\|+\left\|T_{t \alpha v} T_{0 w} f-T_{0 v} T_{0 w} f\right\| \\
& \quad \leqq\left\|T_{t \beta w} f-T_{0 w} f\right\|+\left\|T_{t \alpha v} T_{0 w} f-T_{0 v} T_{0 w} f\right\| \rightarrow 0
\end{aligned}
$$

as $t \rightarrow 0^{+}$. Hence $T_{0 u}=T_{0 v} T_{0 w}=T_{0}$. Note that $T_{0}{ }^{2}=T_{0}$ and that $T_{u} T_{0}=T_{0} T_{u}=T_{u}$ for any $u \in \mathbf{P}_{n}$.

We will now show that if $f \in L_{1}$ then $\left\|T_{v} f-T_{0} f\right\| \rightarrow 0$ as $v \rightarrow 0$ in \mathbf{P}_{n}.
Let $u_{1}, \ldots, u_{n} \in \mathbf{P}_{n}$ be a basis for \mathbf{R}_{n}. Hence any $v \in \mathbf{R}_{n}$ can be written as

$$
v=\sum_{i=1}^{n} \alpha_{i}(v) u_{i}
$$

where α_{i} 's are bounded linear functionals. If $v \in \mathbf{P}_{n}$ is such that $\alpha_{i}=$ $\alpha_{i}(v) \geqq 0$ then it is easy to see that

$$
\left\|T_{v} f-T_{0} f\right\| \leqq \sum_{i=1}^{n}\left\|T_{\alpha_{i} u i} f-T_{0} f\right\|
$$

This shows that if $v \rightarrow 0$ remaining in $\mathbf{Q}_{n}=\left\{\sum_{i=1}^{n} \alpha_{i} u_{i} \mid \alpha_{i} \geqq 0\right\}$ then $\left\|T_{v} f-T_{0} f\right\| \rightarrow 0$. In general, for any $v \in \mathbf{R}_{n}$ we let

$$
v^{+}=\sum_{i=1}^{n} u_{i}\left[0 \vee \alpha_{i}(v)\right] \quad \text { and } \quad v^{-}=v^{+}-v
$$

Then v^{+}and v^{-}are in \mathbf{Q}_{n}. Now if $v \rightarrow 0$ remaining in \mathbf{P}_{n} then both $v^{+} \rightarrow 0$ and $v^{-} \rightarrow 0$, remaining in \mathbf{Q}_{n}. Hence,

$$
\begin{aligned}
&\left\|T_{v} f-T_{0} f\right\| \leqq\left\|T_{v} T_{0} f-T_{v} T_{v^{-}} f\right\|+\left\|T_{v^{+}} f-T_{0} f\right\| \\
& \leqq\left\|T_{v^{-}} f-T_{0} f\right\|+\left\|T_{v^{+}} f-T_{0} f\right\| \rightarrow 0
\end{aligned}
$$

This completes the proof.
We conclude this section by observing that there is no loss of generality in assuming that T_{0} is the identity operator 1 . In fact, as shown in (3.8) of [2], by a change of measure μ to an equivalent measure one can assume that T_{0} is a conditional expectation with respect to a sub σ-algebra $\mathscr{F}^{\prime} \subset \mathscr{F}$. As in the proof of Lemma (2.2) one then notes that if F is a bounded additive process then $F(I)$ is measurable with respect to \mathscr{F}^{\prime} for each $I \in \mathscr{I}_{n}$. Since T_{u} maps \mathscr{F}^{\prime}-measurable functions to $\mathscr{F}^{\prime \prime}$-measurable functions, we may then assume that $\mathscr{F}^{\prime}=\mathscr{F}$ and hence $T_{0}=1$.
3. Some properties of F. From now on we assume that $\left\{T_{u}\right\}$ is a strongly continuous semigroup of positive L_{1} contractions, defined for all $u \in \mathbf{R}_{n}{ }^{+}$and that $T_{0}=1$. A bounded additive process $F: \mathscr{I}_{n} \rightarrow L_{1}$ with respect to $\left\{T_{u}\right\}$ will then satisfy $T_{u} F(I)=F(u+I)$ for all $u \in \mathbf{R}_{n}{ }^{+}$
and for all $I \in \mathscr{I}_{n}$. As in (1.7), we let

$$
K=K(F)=\sup \left\{\left.\frac{\|F(I)\|}{\lambda_{n}(I)} \right\rvert\, I \in \mathscr{I}_{n}, \lambda_{n}(I)>0\right\}
$$

Also recall that if $u \in \mathbf{P}_{n}$ then

$$
\mathscr{I}_{n}{ }^{u}=\left\{I \mid I \in \mathscr{I}_{n}, I \subset[0, u], \lambda_{n}(I)>0\right\} .
$$

Note that given any $J \in \mathscr{I}_{n}$ and any $\epsilon>0$ one can find a $u \in \mathbf{P}_{n}$ such that if $I \in \mathscr{I}_{n}{ }^{u}$ then there is an interval I^{\prime}, which is the disjoint union of intervals of the form $\left(a_{i}+I\right), a_{i} \in \mathbf{R}_{n}{ }^{+}$, for which $\lambda_{n}\left(J \Delta I^{\prime}\right)<\epsilon$. This choice of u is the choice of a 'small' vector. We will have the same situation in several other occasions: a certain property is satisfied for all $I \in \mathscr{I}_{n}{ }^{u}$ if u is sufficiently close to the origin.
(3.1) Lemma. For each $\epsilon>0$ there is a $u \in \mathbf{P}_{n}$ such that

$$
\|F(I)\|>(K-\epsilon) \lambda_{n}(I) \text { for all } I \in \mathscr{I}_{n}{ }^{u} \text {. }
$$

Proof. First note that if an interval I^{\prime} is the disjoint union of intervals of the form $\left(a_{i}+I\right)$, where $a_{i} \in \mathbf{R}_{n}{ }^{+}$and I is another fixed interval, then

$$
\left\|F\left(I^{\prime}\right)\right\| / \lambda_{n}\left(I^{\prime}\right) \leqq\|F(I)\| / \lambda_{n}(I)
$$

This follows from the fact that

$$
\left\|F\left(a_{i}+I\right)\right\|=\left\|T_{a i} F(I)\right\| \leqq\|F(I)\|
$$

and from the finite additivity of F.
Now the proof of the lemma is obtained easily, first finding $J \in \mathscr{I}_{n}$ with $\|F(J)\| / \lambda_{n}(J)>K-\epsilon / 2$ and then finding a $u \in \mathbf{P}_{n}$ such that if $I \in \mathscr{I}_{n}{ }^{u}$ then there is an interval I^{\prime}, which is a disjoint union of intervals $\left(a_{i}+I\right), a_{i} \in \mathbf{R}_{n}{ }^{+}$, for which

$$
\left|\frac{\|F(J)\|}{\lambda_{n}(J)}-\frac{\left\|F\left(I^{\prime}\right)\right\|}{\lambda_{n}\left(I^{\prime}\right)}\right|<\frac{\epsilon}{2} .
$$

(3.2) Lemma. Given any $J \in \mathscr{I}_{n}$ and any $\epsilon>0$ there is a $u \in \mathbf{P}_{n}$ such that if $I \in \mathscr{I}_{n}{ }^{u}$ then

$$
\left\|F(J)-\int_{J} T_{v} \frac{F(I)}{\lambda_{n}(I)} d v\right\|<\epsilon .
$$

Proof. As will be discussed in the next paragraph in more detail, the integral above is with respect to the measure λ_{n} and is defined as the L_{1}-limit of the corresponding Riemann sums. Given $J \in \mathscr{I}_{n}$ and $\epsilon>0$, choose $u \in \mathbf{P}_{n}$ such that for any $I \in \mathscr{I}_{n}{ }^{u}$ the following two conditions are satisfied:
(i) $\left\|F(J)-\frac{1}{\lambda_{n}(I)} \int_{I} T_{v} F(J) d v\right\|<\frac{\epsilon}{2}$,
(ii) there is an interval $I^{\prime} \subset J$ such that I^{\prime} is a disjoint union of intervals $a_{i}+I$, with $a_{i} \in \mathbf{R}^{+}{ }^{+}, i=1, \ldots, m$, and such that $\lambda_{n}\left(J-I^{\prime}\right)$ $<\epsilon / 4 K$.

Then, for any given $I \in \mathscr{I}_{n}{ }^{u}$ we have

$$
\left\|\int_{J} T_{v} \frac{F(I)}{\lambda_{n}(I)} d v-\int_{I^{\prime}} T_{v} \frac{F(I)}{\lambda_{n}(I)} d v\right\|=\left\|\int_{J-I^{\prime}} T_{v} \frac{F(I)}{\lambda_{n}(I)} d v\right\|<\frac{\epsilon}{4},
$$

and also that

$$
\begin{gathered}
\int_{I^{\prime}} T_{v} \frac{F(I)}{\lambda_{n}(I)} d v=\sum_{i=1}^{m} \int_{a_{i}+I} T_{v} \frac{F(I)}{\lambda_{n}(I)} d v=\sum_{i=1}^{m} \int_{I} T_{a_{i}+v} \frac{F(I)}{\lambda_{n}(I)} d v \\
=\frac{-1}{\lambda_{n}(I)} \int_{I} T_{v} \sum_{i=1}^{m} F\left(a_{i}+I\right) d v=\frac{1}{\lambda_{n}(I)} \int_{I} T_{v} F\left(I^{\prime}\right) d v .
\end{gathered}
$$

But $\left\|F(J)-F\left(I^{\prime}\right)\right\| \leqq K \lambda_{n}\left(J-I^{\prime}\right)<\epsilon / 4$, which implies that

$$
\left\|\frac{1}{\lambda_{n}(I)} \int_{I} T_{v} F\left(I^{\prime}\right) d v-\frac{1}{\lambda_{n}(I)} \int_{I} T_{v} F(J) d v\right\|<\epsilon / 4 .
$$

Hence

$$
\left\|\int_{J} T_{v} \frac{F(I)}{\lambda_{n}(I)} d v-\frac{1}{\lambda_{n}(I)} \int_{I} T_{v} F(J) d v\right\|<\epsilon / 2,
$$

which, together with the condition (i) above, completes the proof.
(3.3) Some L_{1}-valued integrals. Let $g: \mathbf{R}_{n} \rightarrow L_{1}$ and $\phi: \mathbf{R}_{n} \rightarrow \mathbf{R}$ be continuous functions, where L_{1} is considered with its norm topology. If $I \subset \mathbf{R}_{n}$ and $J \subset \mathbf{R}_{n}{ }^{+}$are (bounded) intervals then

$$
\int_{I} g(u) d u
$$

and

$$
\int_{J} \phi(v) F(d v)
$$

are defined, in the usual manner, as the L_{1}-limits of Riemann sums $\sum_{i} g\left(u_{i}\right) \lambda_{n}\left(I_{i}\right)$ and $\sum_{j} \phi\left(v_{j}\right) F\left(J_{j}\right)$, respectively. Here $\left\{I_{i}\right\}$ and $\left\{J_{j}\right\}$ are finite partitions of I and J into intervals, respectively, and $u_{i} \in I_{i}$, $v_{j} \in J_{j}$. If

$$
\int_{\mathbf{R}_{n}}\|g(u)\| d u<\infty \quad \text { and } \quad \int_{\mathbf{R}_{n}+}|\phi(v)| d v<\infty
$$

then

$$
\int_{\mathbf{R}_{n}} g(u) d u \text { and } \int_{\mathbf{R}_{n}+} \phi(v) F(d v)
$$

are also well defined, in the usual way, since

$$
\left\|\int_{I} g(u) d u\right\| \leqq \int_{I}\|g(u)\| d u
$$

and

$$
\left\|\int_{J} \phi(v) F(d v)\right\| \leqq K \int_{J}|\phi(v)| d v
$$

In our applications ϕ will always vanish on $\mathbf{R}_{n}-\mathbf{R}_{n}{ }^{+}$and we will write

$$
\int_{\mathbf{R}_{n}} \phi(v) F(d v)
$$

instead of

$$
\int_{\mathbf{R}_{n}+} \phi(v) F(d v) .
$$

Note that

$$
T_{u} \int_{\mathbf{R}_{n}} \phi(v) F(d v)=\int_{\mathbf{R}_{n}} \phi(v-u) F(d v) \quad \text { for all } u \in \mathbf{R}_{n}^{+} .
$$

Let $\psi: \mathbf{R}_{n} \times \mathbf{R}_{n} \rightarrow \mathbf{R}$ be a continuous function that vanishes on $\mathbf{R}_{n} \times\left(\mathbf{R}_{n}-\mathbf{R}_{n}{ }^{+}\right)$and let I and J be intervals in \mathbf{R}_{n}. Then the iterated integrals

$$
\int_{I}\left(\int_{J} \psi(u, v) F(d v)\right) d u \text { and } \int_{J}\left(\int_{I} \psi(u, v) d u\right) F(d v)
$$

are both well defined and equal to each other. Also, the norm of the resulting L_{1} function is bounded by

$$
K \int_{I \times J}|\psi(u, v)| d u d v .
$$

Hence, if

$$
\int_{\mathbf{R}_{n} \times \mathbf{R}_{n}}|\psi(u, v)| d u d v<\infty
$$

and if both

$$
g(u)=\int_{\mathbf{R}_{n}} \psi(u, v) F(d v) \text { and } \phi(v)=\int_{\mathbf{R}_{n}} \psi(u, v) d u
$$

define continuous functions $g: \mathbf{R}_{n} \rightarrow L_{1}$ and $\phi: \mathbf{R}_{n} \rightarrow \mathbf{R}$, then we will also have that

$$
\int_{\mathbf{R}_{n}}\left(\int_{\mathbf{R}_{n}} \psi(u, v) F(d v)\right) d u=\int_{\mathbf{R}_{n}}\left(\int_{\mathbf{R}_{n}} \psi(u, v) d u\right) F(d v) .
$$

We note that the restriction of these definitions to continuous functions
is not necessary and, as it is well known, can be removed easily. We omit this, however, as we will deal only with continuous functions.

Finally, as already mentioned in the introduction, if $f \in L_{1}$ then

$$
F(I)=\int_{I} T_{u} f d u, \quad I \in \mathscr{I}_{n}
$$

defines a bounded additive process $F: \mathscr{I}_{n} \rightarrow L_{1}$. More generally let g. : $\mathbf{P}_{n} \rightarrow L_{1}$ be a function such that $\|g\|:. \mathbf{P}_{n} \rightarrow \mathbf{R}$ is a bounded function and such that $T_{v} g_{u}=g_{u+v}$ for all $v \in \mathbf{R}_{n}{ }^{+}$and for all $u \in \mathbf{P}_{n}$. It is clear that this function is continuous on \mathbf{P}_{n}, but not necessarily on $\mathbf{R}_{n}{ }^{+}$. From the boundedness of the norm function it follows easily, however, that

$$
G(I)=\int_{I} g_{u} d u
$$

is well defined for all $I \in \mathscr{I}_{n}$ and that $G: \mathscr{I}_{n} \rightarrow L_{1}$ is a bounded additive process.
(3.4) Reduction of the dimension. We will now assume that the dimension n of the semigroup is an even integer $n=2 m$. This is no loss of generality for the following reason. If n is an odd integer than starting with the n-dimensional semigroup $\left\{T_{u}\right\}, u \in \mathbf{R}_{n}{ }^{+}$, and the additive process $F: \mathscr{I}_{n} \rightarrow L_{1}$ we define an $n^{\prime}=n+1$ dimensional semigroup $\left\{T_{(u, \alpha)}^{\prime}\right\}, \quad(u, \alpha) \in \mathbf{R}_{n}{ }^{+} \times \mathbf{R}_{1}{ }^{+}=\mathbf{R}_{n+1}{ }^{+}$and a corresponding additive process $F^{\prime}: \mathscr{I}_{n} \times \mathscr{I}_{1}=\mathscr{I}_{n+1} \rightarrow L_{1}$, as

$$
T_{(u, \alpha)}^{\prime}=T_{u}, F^{\prime}(I, J)=F(I) \lambda_{1}(J)
$$

If the main theorem, Theorem (1.11), could be proved for F^{\prime} then it would also follow for F. Hence we may assume that $n=2 m$ is an even integer.

Starting with the $2 m$-dimensional semigroup $\left\{T_{u}\right\}, u \in \mathbf{R}_{2 m}{ }^{+}$and an additive process $F: \mathscr{I}_{2 m} \rightarrow L_{1}$ we will define an m-dimensional semigroup $\left\{S_{t}\right\}, t \in \mathbf{R}_{m}{ }^{+}$, and an additive process $G: \mathscr{I}_{m} \rightarrow L_{1}$. For the definition of $\left\{S_{t}\right\}$ we will follow exactly the technique introduced by DunfordSchwartz [5] and further developed by Terrell [6]; hence we omit the details. For the definition of G we will use a slight variation of the same technique.

For each $\alpha>0$ and $\beta \in \mathbf{R}$, let

$$
\begin{gathered}
\eta_{\alpha}(\beta)= \begin{cases}\frac{\alpha}{2 \sqrt{\pi \beta^{3}}} e^{-\alpha^{2} / 4 \beta} & \text { if } \beta>0 \\
0 & \text { if } \beta \leqq 0 .\end{cases} \\
\text { If } t=\left(t_{1}, \ldots, t_{m}\right) \in \mathbf{P}_{m} \text { and } u=\left(u_{1}, \ldots, u_{2 m}\right) \in \mathbf{R}_{2 m} \text { then let } \\
\phi_{t}(u)=\prod_{i=1}^{m} \eta_{t i}\left(u_{2 i-1}\right) \eta_{t i}\left(u_{2 i}\right) .
\end{gathered}
$$

For each fixed $t \in \mathbf{P}_{m}, \boldsymbol{\phi}_{t}: \mathbf{R}_{2 m} \rightarrow \mathbf{R}$ is a non-negative continuous function that vanishes on $\mathbf{R}_{2 m}-\mathbf{R}_{2 m}{ }^{+}$. Also

$$
\begin{array}{r}
\int_{\mathbf{R}_{2 m}} \phi_{t}(u) d u=1 \text { and } \int_{\mathbf{R}_{2 m}} \phi_{t}(v-u) \phi_{s}(u) d u=\phi_{t+s}(v) \\
\text { for each } t, s \in \mathbf{P}_{m} \text { and } v \in \mathbf{R}_{2 m} .
\end{array}
$$

Finally, for any $v \in \mathbf{P}_{2 m}$ and for any $\epsilon>0$ there is a $t^{0} \in \mathbf{P}_{m}$ such that

$$
\int_{[0, v]} \phi_{t}(u) d u>1-\epsilon
$$

for all $t \in \mathbf{P}_{m}$ with $t \leqq t^{0}$.
For $f \in L_{1}$ and $t \in \mathbf{P}_{m}$ we now define

$$
S_{t} f=\int_{\mathbf{R}_{2 m}} \phi_{t}(u) T_{u} f d u
$$

Then $\left\{S_{t}\right\}, t \in \mathbf{P}_{m}$, is a (strongly) continuous m-dimensional semigroup of positive linear contractions of L_{1}. It is also continuous at the origin, with $S_{0}=1$. Hence it can be extended to $\mathbf{R}_{m}{ }^{+}$to obtain the semigroup $\left\{S_{t}\right\}, t \in \mathbf{R}_{m}{ }^{+}$.

For $s \in \mathbf{P}_{m}$ we now define

$$
g_{s}=\int_{\mathbf{R}_{2 m}} \phi_{s}(v) F(d v)
$$

From the remarks in (3.3) it follows that

$$
\begin{aligned}
S_{t} g_{s} & =\int_{\mathbf{R}_{2 m}} \phi_{t}(u) T_{u}\left[\int_{\mathbf{R}_{2 m}} \phi_{s}(v) F(d v)\right] d u \\
& =\int_{\mathbf{R}_{2 m}} \phi_{t}(u)\left[\int_{\mathbf{R}_{2 m}} \phi_{s}(v-u) F(d v)\right] d u \\
& =\int_{\mathbf{R}_{2 m}}\left[\int_{\mathbf{R}_{2 m}} \phi_{t}(u) \phi_{s}(v-u) d u\right] F(d v) \\
& =\int_{\mathbf{R}_{2 m}} \phi_{t+s}(v) F(d v)=g_{t+s}
\end{aligned}
$$

for all $t \in \mathbf{R}_{m}{ }^{+}$and $s \in \mathbf{P}_{m}$. It is also clear that

$$
\left\|g_{s}\right\| \leqq K \int_{\mathbf{R}_{2 m}} \phi_{s}(v) d v=K
$$

Hence

$$
G(I)=\int_{I} g_{s} d s
$$

$I \in \mathscr{I}_{m}$ defines a bounded additive process $G: \mathscr{I}_{m} \rightarrow L_{1}$ with respect to
$\left\{S_{t}\right\}, t \in \mathbf{R}_{m}{ }^{+}$. Note that if F is a positive process, i.e. if $F(I) \in L_{1}{ }^{+}$for all $I \in \mathscr{I}_{2 m}$, then G is also a positive process.
(3.5) Lemma. There exists a constant $d>0$, depending only on the dimension m, such that if F is a positive process then

$$
d \epsilon^{-2 m} F\left[0, \epsilon e_{2 m}\right] \leqq \sqrt{\epsilon}-m G\left[0, \sqrt{\epsilon} e_{m}\right]
$$

for all $\epsilon>0$.
Proof. This essentially follows from Lemma (2.3) in [6]. There it was shown that there is a constant $\delta>0$, such that if $\epsilon>0$ then

$$
\frac{1}{\sqrt{\epsilon}} \int_{0}^{\sqrt{\epsilon}} \eta_{\alpha}\left(\beta_{1}\right) \eta_{\alpha}\left(\beta_{2}\right) d \alpha>\frac{\delta}{\epsilon^{2}} \quad \text { whenever } 0<\beta_{1}, \beta_{2}<\epsilon
$$

Hence, if $\epsilon>0$ then

$$
\frac{1}{\sqrt{\epsilon^{m}}} \int_{[0, \sqrt{\epsilon} e m]} \phi_{s}(u) d s>\frac{\delta^{m}}{\epsilon^{2 m}}
$$

whenever $u \in \mathbf{P}_{2_{m}}$ and $u<\epsilon e_{2_{m}}$.
Now,

$$
\begin{aligned}
\frac{1}{\sqrt{\epsilon^{m}}} & G\left[0, \sqrt{\epsilon} e_{m}\right]=\frac{1}{\sqrt{ } e^{m}} \int_{\left[0, \sqrt{ } \epsilon e_{m}\right]} g_{s} d s \\
& =\frac{1}{\sqrt{\epsilon^{m}}} \int_{\left[0, \sqrt{\epsilon} e_{m}\right]}\left[\int_{\mathbf{R}_{2 m}} \phi_{s}(v) F(d v)\right] d s \\
& =\frac{1}{\sqrt{\epsilon^{m}}} \int_{\mathbf{R}_{2 m}}\left[\int_{\left[0, \sqrt{\epsilon} e_{m}\right]} \phi_{s}(v) d s\right] F(d v) \\
& \geqq \frac{1}{\sqrt{\epsilon^{m}}} \int_{[0, \epsilon e 2 m]}\left[\int_{[0, \sqrt{\epsilon} e m]} \phi_{s}(v) d s\right] F(d v) \\
& \geqq \frac{\delta^{m}}{\epsilon^{2 m}} F\left[0, \epsilon e_{2 m}\right] .
\end{aligned}
$$

Therefore it is enough to take $d=\delta^{m}$.
(3.6) Decomposition of F into positive parts. A bounded additive process $F: \mathscr{I}_{n} \rightarrow L_{1}$ can be written as the difference of two positive bounded additive processes $F_{i}: \mathscr{I}_{n} \rightarrow L_{1}{ }^{+}, i=1,2$, as $F=F_{1}-F_{2}$. In fact, let $I \in \mathscr{I}_{n}$ and let $P=\left\{I_{1}, \ldots, I_{k}\right\}$ be a partition of I into finitely many intervals. If $a_{i} \in \mathbf{R}_{n}{ }^{+}$is the initial point of I_{i}, then define

$$
F_{1}^{P}(I)=\sum_{i=1}^{k} T_{a_{i}}\left[F\left(I_{i}-a_{i}\right)\right]^{+} \text {and } F_{2}^{P}(I)=\sum_{i=1}^{k} T_{a_{i}}\left[F\left(I_{i}-a_{i}\right)\right]^{-} .
$$

Then it is clear that $F(I)=F_{1}{ }^{P}(I)-F_{2}{ }^{P}(I)$ and also that $\left\|F_{i}{ }^{P}(I)\right\| \leqq$ $K \lambda_{n}(I), i=1,2$.
(3.7) Lemma. If $P=\left\{I_{1}, \ldots, I_{k}\right\}$ and $Q=\left\{J_{1}, \ldots, J_{i}\right\}$ are two partitions of I into intervals such that $P<Q$ then $F_{i}{ }^{P} \leqq F_{i}{ }^{Q}, i=1,2$.

Proof. Let a_{i} and b_{j} be the initial points of I_{i} and J_{j}. Let $M_{i}=$ $\left\{j \mid 1 \leqq j \leqq l, J_{j} \subset I_{i}\right\}, i=1, \ldots, k$. Then

$$
F\left(I_{i}-a_{i}\right)=\sum_{j \in M_{i}} F\left(J_{j}-a_{i}\right)
$$

and consequently

$$
\left[F\left(I_{i}-a_{i}\right)\right]^{+} \leqq \sum_{j \in M_{i}}\left[F\left(J_{j}-a_{i}\right)\right]^{+}
$$

Since $b_{j}-a_{i} \in \mathbf{R}_{n}{ }^{+}$for all $j \in M_{i}$ we then have that

$$
\begin{aligned}
T_{a_{i}}\left[F\left(I_{i}-a_{i}\right)\right]^{+} & \leqq \sum_{j \in M_{i}} T_{a_{i}}\left[T_{b_{j}-a_{i}} F\left(J_{j}-b_{j}\right)\right]^{+} \\
& \leqq \sum_{j \in M_{i}} T_{b_{j}}\left[F\left(J_{j}-b_{j}\right)\right]^{+}
\end{aligned}
$$

Hence $F_{1}{ }^{P}(I) \leqq F_{1}{ }^{Q}(I)$, and also $F_{2}{ }^{P}(I) \leqq F_{2}{ }^{Q}(I)$.
From this lemma it is clear that $F_{1}(I)=\lim _{P} F_{1}{ }^{P}(I)$ exists in L_{1}, where the limit is taken over the directed set of partitions P of I into intervals. It is also clear that the function $F_{1}: \mathscr{I}_{n} \rightarrow L_{1}{ }^{+}$so defined is a positive bounded additive process. Similarly one obtains the positive bounded additive process $F_{2}: \mathscr{I}_{n} \rightarrow L_{1}{ }^{+}$and then F is expressed as $F=F_{1}-F_{2}$. Hence, to prove the main convergence theorem (1.11) it is enough to consider only positive bounded additive processes.

We also note that this decomposition has the additional property that $K(F)=K\left(F_{1}\right)+K\left(F_{2}\right)$. We omit the routine proof, as we are not going to need this property.
4. Singular and absolutely continuous processes. As before, we consider an n-dimensional continuous semigroup $\left\{T_{u}\right\}, u \in \mathbf{R}_{n}{ }^{+}$, of positive L_{1} contractions with $T_{0}=1$. We assume that $F: \mathscr{I}_{n} \rightarrow L_{1}{ }^{+}$is a positive bounded additive process with respect to $\left\{T_{u}\right\}$. Such a process will be called absolutely continuous if there is an $f \in L_{1}+$ such that

$$
F(I)=\int_{I} T_{u} f d u \quad \text { for all } I \in \mathscr{I}_{n}
$$

and it will be called singular if it does not dominate any absolutely continuous nonzero positive process. If $F: \mathscr{I}_{n} \rightarrow L_{1}+$ is absolutely continuous then Terrell's theorem [6] gives that

$$
q-\lim _{\alpha \rightarrow 0} \alpha^{-n} F\left[0, \alpha e_{n}\right]
$$

exists a.e. This theorem, combined with the following result, enables us to restrict our attention to singular processes in the proof of Theorem (1.11).
(4.1) Theorem. A positive bounded additive process is the sum of an absolutely continuous and a singular process.

Proof. Let $i \in L_{1}{ }^{+}$be the function which is equal to i everywhere, $i=1,2, \ldots$, and let \mathscr{A} be a countable class of measurable sets that generates \mathscr{F}. Consider a fixed sequence α_{k} of strictly positive numbers converging to zero, and let

$$
I_{k}=\left[0, \alpha_{k} e_{n}\right] \text { and } f_{k}=F\left(I_{k}\right) / \lambda_{n}\left(I_{k}\right)
$$

By passing to a subsequence, if necessary, we may assume that

$$
\lim _{k \rightarrow \infty} \int_{A}\left[f_{k} \wedge i\right] d \mu
$$

exists for each $A \in \mathscr{A}$ and for each integer $i=1,2, \ldots$ Let ρ_{i} be the weak limit of $f_{k} \wedge i$ as $k \rightarrow \infty$. Then $\rho_{i} \leqq \rho_{i+1}$ and

$$
\left\|\rho_{i}\right\| \leqq K=\lim _{k \rightarrow \infty}\left\|f_{k}\right\|
$$

Hence $\lim _{i \rightarrow \infty} \rho_{i}=\rho$ exists a.e. and also in L_{1}-norm. Let

$$
F^{\prime}(I)=\int_{I} T_{u} \rho d u
$$

for each $I \in \mathscr{I}_{n}$. To conclude the proof we will show that $F^{\prime \prime}=F-F^{\prime}$ is positive and singular.

For a fixed $I \in \mathscr{I}_{n}$ let $A_{I}: L_{1} \rightarrow L_{1}$ be defined as

$$
A_{I} f=\int_{I} T_{u} f d u, \quad f \in L_{1}
$$

which is a positive linear bounded operator. Then, by (3.2), $A_{I} f_{k} \rightarrow F(I)$ in L_{1}-norm. Since $f_{k} \wedge i \rightarrow \rho_{i}$ weakly, we also have that $A_{I}\left(f_{k} \wedge i\right) \rightarrow$ $A_{I} \rho_{i}$ weakly. Hence $A_{I} \rho_{i} \leqq F(I)$ for all i, which implies that $A_{I} \rho=$ $F^{\prime}(I) \leqq F(I)$. Hence $F^{\prime \prime}=F-F^{\prime}$ is a positive bounded additive process.

Let

$$
f_{k}^{\prime}=F^{\prime}\left(I_{k}\right) / \lambda_{n}\left(I_{k}\right) \text { and } f_{k}^{\prime \prime}=F^{\prime \prime}\left(I_{k}\right) / \lambda_{n}\left(I_{k}\right)=f_{k}-f_{k}^{\prime} .
$$

We will now show that $\left\|f_{k}{ }^{\prime \prime} \wedge 1\right\| \rightarrow 0$ as $k \rightarrow \infty$. Since $f_{k}{ }^{\prime} \rightarrow \rho$ in L_{1} we also have that $f_{k}{ }^{\prime} \wedge j \rightarrow \rho \wedge j$ in L_{1}. Note that, since $f_{k}{ }^{\prime} \leqq f_{k}$, this implies that $\rho \wedge j \leqq \rho_{j}$ and consequently $\rho \wedge j=\rho_{j}$. Now, given $\epsilon>0$ find j such that $\left\|\rho-\rho_{j}\right\|<\epsilon$. Then

$$
\begin{gathered}
\overline{\lim }_{k \rightarrow \infty}\left\|f_{k}^{\prime \prime} \wedge 1\right\|=\overline{\lim }_{k \rightarrow \infty}\left\|\left(f_{k}-f_{k}^{\prime}\right) \wedge 1\right\| \\
\leqq \overline{\lim }_{k \rightarrow \infty}\left\|\left[f_{k}-\left(f_{k}^{\prime} \wedge j\right)\right] \wedge 1\right\| \leqq \overline{\lim }_{k \rightarrow \infty}\left\|f_{k} \wedge(j+1)-f_{k}^{\prime} \wedge j\right\| \\
=\left\|\rho_{j+1}-\rho_{j}\right\|<\epsilon
\end{gathered}
$$

Now if $g \in L_{1}{ }^{+}$and

$$
G(I)=\int_{I} T_{u} g d u \leqq F^{\prime \prime}(I)
$$

for all $I \in \mathscr{I}_{n}$, then letting $g_{k}=G\left(I_{k}\right) / \lambda_{n}\left(I_{k}\right)$, we see that $g_{k} \rightarrow g$ in L_{1}. Since $g_{k} \leqq f_{k}{ }^{\prime \prime}$, the above result shows that $\|g \wedge 1\|=0$ and consequently $g=0$. Hence $F^{\prime \prime}$ is a positive singular process. We may also add that the sequences $f_{k}{ }^{\prime}$ and g_{k} above are uniformly integrable, since T_{u} is continuous at the origin.
(4.2) Localization property of singular processes. The last argument of the previous proof shows that the singularity of a (positive) process F is equivalent to the following property: For each $\epsilon>0$ there is a $u \in \mathbf{P}_{n}$ such that

$$
\left\|\frac{F(I)}{\lambda_{n}(I)} \wedge 1\right\|<\epsilon \quad \text { for all } I \in \mathscr{\mathscr { I }}_{n}{ }^{u}
$$

This is also equivalent to the following property: For each $\epsilon>0$ there is a $u \in \mathbf{P}_{n}$ such that if $I \in \mathscr{I}_{n}{ }^{u}$ then one can find a set $E \in \mathscr{F}$ with $\mu(E)<\epsilon$ and

$$
\int_{E^{c}} \frac{F(I)}{\lambda_{n}(I)} d \mu<\epsilon
$$

We will now show that actually the singularity of F is equivalent to a much stronger property which states that the set E above can be chosen depending only on u and not on $I \in \mathscr{I}_{n}{ }^{u}$.
(4.3) Deflnition. A function $f: \mathscr{I}_{n} \rightarrow L_{1}{ }^{+}$is said to have the localization property if for each $\epsilon>0$ there is a set $E \in \mathscr{F}$, with $\mu(E)<\epsilon$, and a vector $u \in \mathbf{P}_{n}$ such that

$$
\int_{E^{c}} f(I) d \mu<\epsilon \quad \text { for all } I \in \mathscr{I}_{n}^{u}
$$

(4.4) Theorem. Let $F: \mathscr{I}_{n} \rightarrow L_{1}{ }^{+}$be a bounded additive process and let $f(I)=F(I) / \lambda_{n}(I)$ if $\lambda_{n}(I)>0$ and $f(I)=0$ if $\lambda(I)=0, I \in \mathscr{I}_{n}$. Then F is a singular process if and only if f has the localization property.

If f has the localization property then F must be a singular process. This follows from the remarks already made in (4.2). For the other part of the proof we first obtain the following lemma.
(4.5) Lemma. If a function $f: \mathscr{I}_{n} \rightarrow L_{1}+$ does not have the localization property then there is a number $\rho>0$ and a set $B \in \mathscr{F}$ with $\mu(B)>0$, such that if $G \subset B$ with $\mu(G)>\frac{1}{2} \mu(B)$ and if $u \in \mathbf{P}_{n}$ then there is an
$I \in \mathscr{I}_{n}{ }^{u}$ satisfying

$$
\int_{G} f(I) d \mu>\rho
$$

Proof. Let $r>0$ and $E \in \mathscr{F}$. Call E an r-admissible set if there is a $u \in \mathbf{P}_{n}$ such that

$$
\int_{E^{c}} f(I) d \mu<r
$$

for all $I \in \mathscr{I}_{n}{ }^{u}$. For each $r>0$ let

$$
\eta_{r}=\inf \{\mu(E) \mid E \text { is an } r \text {-admissible set }\} .
$$

It is clear that if $0<r \leqq r^{\prime}$ then $0 \leqq \eta_{r^{\prime}} \leqq \eta_{\tau} \leqq \mu(X)$. Hence $\lim _{r \rightarrow 0^{+}}$ $\eta_{r}=\eta \geqq 0$ exists and if $\eta=0$ then f has the localization property. Therefore $\eta>0$. Choose $r_{0}>0$ such that

$$
\frac{9}{10} \eta<\eta_{r} \leqq \eta
$$

for all $r, 0<r<r_{0}$. Then choose an $r_{0} / 4$-admissible B such that

$$
\frac{9}{10} \eta<\eta_{\tau_{0} / 4} \leqq \mu(B)<\frac{11}{10} \eta
$$

If $G \subset B$ and $\mu(G)>\frac{1}{2} \mu(B)$ then

$$
\mu(B-G)<\frac{9}{10} \eta
$$

and consequently $B-G$ can not be $r_{0} / 2$-admissible. Hence given $u \in \mathbf{P}_{n}$ there must exist an $I \in \mathscr{I}_{n}{ }^{u}$ such that

$$
\int_{G} f(I) d \mu>\frac{r_{0}}{4}
$$

The proof is then obtained with $\rho=r_{0} / 4$.
(4.6) Proof of Theorem (4.4). Let F and f be as in Theorem (4.4) and assume that f does not have the localization property. Obtain the number $\rho>0$ and the set $B \in \mathscr{F}$ from Lemma (4.5). We may assume that $\rho<\frac{1}{2} K=\frac{1}{2} K(F)$. If F is a singular process then we can find an interval $I_{0} \in \mathscr{I}_{n}, \lambda_{n}\left(I_{0}\right)>0$, and a set $H \in \mathscr{F}$ such that all of the following conditions (4.7), (4.8) and (4.9) are satisfied. Here $A: L_{1} \rightarrow L_{1}$ denotes the averaging operator

$$
A f=\frac{1}{\lambda_{n}\left(I_{0}\right)} \int_{I_{0}} T_{u} f d u
$$

which is a positive linear contraction.

$$
\begin{equation*}
K-\frac{\rho}{100}<\left\|f\left(I_{0}\right)\right\|, \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
\mu(H)<\frac{1}{100} \mu(B) \text { and } \quad \int_{H^{c}} f\left(I_{0}\right) d \mu<\frac{\rho}{100}, \tag{4.8}
\end{equation*}
$$

(4.9) $\left\|\chi_{B}-A \chi_{B}\right\|<\frac{1}{100} \mu(B)$.

Here we must use Lemma (3.1) and also the fact that $T_{u} \rightarrow 1$ strongly as $u \rightarrow 0$ in \mathbf{P}_{n}. Now, using Lemmas (3.1) and (3.2) we find $u \in \mathbf{P}_{n}$ such that if $I \in \mathscr{I}_{n}{ }^{u}$ then

$$
K-\frac{\rho}{100}<\|f(I)\| \text { and }\left\|f\left(I_{0}\right)-A f(I)\right\|<\frac{\rho}{100} .
$$

Hence

$$
\int_{H^{c}} A f(I) d \mu<\frac{2 \rho}{100} \text { and }\|A f(I)\|>\|f(I)\|-\frac{2 \rho}{100}
$$

for all $I \in \mathscr{I}_{n}{ }^{u}$.
Therefore, if $I \in \mathscr{I}_{n}{ }^{u}$ and if $g \in L_{1}{ }^{+}$is any function with $g \leqq f(I)$ and $\|g\|=\rho$, then

$$
\|A g\|>\frac{98}{100} \rho \text { and } \int_{H^{c}} A g d \mu<\frac{2 \rho}{100}
$$

and, consequently,

$$
\int_{H} A g d u>\frac{96}{100} \rho=\frac{96}{100}\|g\| .
$$

Now call a set $E \in \mathscr{F}$ a bad set if

$$
\int_{H} A \chi_{E} d \mu>\frac{96}{100} \mu(E) .
$$

We will show that if $G \subset B$ and if $\mu(G)>\frac{1}{2} \mu(B)$ then G has a bad subset of nonzero measure. In fact, we can find an interval $I \in \mathscr{I}_{n}{ }^{4}$ such that

$$
\int_{G} f(I) d \mu>\rho .
$$

Hence we can find a simple function $g=\sum_{i=1}^{k} \alpha_{i} \chi_{E_{i}}$ with $\alpha_{i}>0$, $E_{i} \subset G, \mu\left(E_{i}\right)>0$, such that $g \leqq f(I)$ and $\|g\|=\rho$. Hence

$$
\sum_{i=1}^{k} \alpha_{i} \int_{H} A \chi_{E_{i}} d \mu>\sum_{i=1}^{k} \alpha_{i} \frac{96}{100} \mu\left(E_{i}\right),
$$

which implies that at least one E_{i} is a bad set. Since an increasing union of bad sets is also a bad set, we see that B must have a bad subset E of measure $\mu(E) \geqq \frac{1}{2} \mu(B)$. Then

$$
\int_{H} A \chi_{B} d \mu \geqq \int_{H} A \chi_{E} d \mu>\frac{96}{100} \mu(E) \geqq \frac{48}{100} \mu(B)
$$

But this contradicts (4.8) and (4.9). Therefore if F is singular then f must have the localization property.
(4.10) Singularity of the reduced process. Let $F: \mathscr{I}_{2 m} \rightarrow L_{1}$ be a positive bounded additive process with respect to a $2 m$-dimensional semigroup $\left\{T_{u}\right\}, u \in \mathbf{R}_{2 m}{ }^{+}$, and let $G: \mathscr{I}_{m} \rightarrow L_{1}$ be the reduced process with respect to the m-dimensional semigroup $\left\{S_{t}\right\}, t \in \mathbf{R}_{m}{ }^{+}$as defined in (3.4). We would like to show that if F is singular then G is also singular.

Now we have

$$
G(I)=\int_{I} g_{s} d s, \quad I \in \mathscr{I}_{m}
$$

where

$$
g_{s}=\int_{\mathbf{R}_{2 m}} \phi_{s}(v) F(d v)
$$

by the definitions in (3.4). Since F is singular, for each $\epsilon>0$ we can find a set $E \in \mathscr{F}$ and a vector $u \in \mathbf{P}_{2 m}$ such that $\mu(E)<\epsilon$ and such that

$$
\int_{E^{c}} F(I) d \mu<\epsilon \lambda_{2 m}(I) \quad \text { for all } I \in \mathscr{I}_{2 m}^{u}
$$

by Theorem (4.4). This implies that

$$
\int_{E^{c}}\left[\int_{[0, u]} \phi_{s}(v) F(d v)\right] d \mu<\epsilon \int_{[0, u]} \phi_{s}(v) d v<\epsilon .
$$

Now, by the definition of $\phi_{s}(v)$, we can find a $t \in \mathbf{P}_{m}$ such that if $s \in \mathbf{P}_{m}$ and if $s \leqq t$ then

$$
\int_{\mathbf{R}_{2 m-[0, u]}} \phi_{s}(v) d v<\frac{\epsilon}{K} .
$$

Therefore, if $s \in \mathbf{P}_{m}$ and $s \leqq t$, then

$$
\begin{aligned}
\int_{E^{c}} g_{s} d \mu & =\int_{E^{c}}\left[\int_{[0, u]} \phi_{s}(v) F(d v)\right] d \mu \\
+\int_{E^{c}} & {\left[\int_{\mathbf{R}_{2 m-[0, u]}} \phi_{s}(v) F(d v)\right] d \mu } \\
& <\epsilon+\left\|\int_{\mathbf{R}_{2 m-[0, u]}} \phi_{s}(v) F(d v)\right\|<2 \epsilon .
\end{aligned}
$$

This implies that

$$
\int_{E^{c}} \frac{G(I)}{\lambda_{m}(I)} d \mu<2 \epsilon \quad \text { for all } I \in \mathscr{I}_{m}{ }^{\imath}
$$

Hence G is also a singular process.
(4.11) Proof of the main theorem. To prove the existence of $q-\lim _{\alpha \rightarrow 0} \alpha^{-n} F\left[0, \alpha e_{n}\right]$ a.e. we may assume that F is a singular process. If $n=1$ then this theorem is proved in [2]. In this case the limit is zero. By Lemma (3.5), if this limit exists and is zero for the m-dimensional case, then the same is also true for the $2 m$ dimensional case. This completes the proof.
(4.12) Singular processes for the translation group. Let (X, \mathscr{F}, μ) be \mathbf{R}_{n} with the Borel sets and the Lebesgue measure λ_{n}. Let $\left\{T_{u}\right\}, u \in \mathbf{R}_{n}{ }^{+}$be the translation semigroup, defined as

$$
\left(T_{u} F\right)(x)=f(x+u), f \in L_{1}, x \in \mathbf{R}_{n}
$$

We would like to note that any singular bounded additive process F with respect to $\left\{T_{u}\right\}$ is of the form $(F(I))(x)=\nu(x+I)$, where $x \in \mathbf{R}_{n}$, $I \in \mathscr{I}_{n}$ and ν is a Borel measure on \mathbf{R}_{n}, singular with respect to λ_{n}.

In fact, let $\alpha_{k}>0$ be a sequence converging to zero and let

$$
f_{k}=F\left[0, \alpha_{k} e_{n}\right] / \lambda_{n}\left[0, \alpha_{k} e_{n}\right]
$$

Then f_{k} is a bounded sequence in $L_{1}{ }^{+}$. Choosing a subsequence we may assume that

$$
\lim _{k \rightarrow \infty} \int_{\mathbf{R}_{n}} f_{k} \xi d \lambda_{n}=\psi(\xi)
$$

exists for each bounded continuous function $\xi: \mathbf{R}_{n} \rightarrow \mathbf{R}$. Then there is a finite Borel measure ν on \mathbf{R}_{n} such that

$$
\psi(\xi)=\int_{\mathbf{R}_{n}} \frac{\operatorname{ax}}{\xi} d \nu
$$

This measure ν must be singular with respect to λ_{n}, since $f_{k} \rightarrow 0 \lambda_{n}-$ a.e. Now, by (3.2),

$$
\lim _{k \rightarrow \infty} \int_{I} T_{u} f_{k} d u=F(I), \quad \text { in } L_{1}
$$

for each $I \in \mathscr{I}_{n}$. Hence

$$
\lim _{k \rightarrow \infty} \int_{\mathbf{R}_{n}} \xi\left[\int_{I} T_{u} f_{k} d u\right] d \lambda_{n}=\int_{\mathbf{R}_{n}} \xi F(I) d \lambda_{n}
$$

for each bounded and continuous $\xi: \mathbf{R}_{n} \rightarrow \mathbf{R}$. But

$$
\begin{aligned}
\int_{\mathbf{R}_{n}} \xi\left[\int_{I} T_{u} f_{k} d u\right] d \lambda_{n}=\int_{\mathbf{R}_{n}} \xi(x) & {\left[\int_{I} f_{k}(x+u) d u\right] d x } \\
& =\int_{I}\left[\int_{\mathbf{R}_{n}} \xi(x-u) f_{k}(x) d x\right] d u
\end{aligned}
$$

and this converges to

$$
\int_{I}\left[\int_{\mathbf{R}_{n}} \xi(x-u) \nu(d x)\right] d u,
$$

which is equal to

$$
\int_{\mathbf{R}_{n}} \xi(x) \nu(x+I) d x .
$$

Hence $(F(I))(x)=\nu(x+I)$ for λ_{n} - a.a. $x \in \mathbf{R}_{n}$. We note that similar considerations are valid whenever $\left\{T_{u}\right\}$ is induced by a measurable flow of X. In this case, however, one should deal with the points in $L_{\infty}{ }^{*}$ that do not correspond to points in L_{1}, instead of singular measures. We omit the details.

References

1. M. A. Akcoglu and R. V. Chacon, A local ratio theorem, Can. J. Math. 22 (1970), 545-552.
2. M. A. Akcoglu and U. Krengel, A differentiation theorem for additive processes, Math. Z. 163 (1978), 199-210.
3. A differentiation theorem in L_{p}, Math. Z. 169 (1979), 31-40.
4. M. A. Akcoglu and L. Sucheston, A ratio ergodic theorem for superadditive processes, Z. Wahr. und verw. Geb. 44 (1978), 269-278.
5. N. Dunford and J. T. Schwartz, Convergence of almost everywhere of operator averages, J. Rat. Mech. and Anal. 5 (1956), 129-178.
6. T. R. Terrell, Local ergodic theorems for n-parameter semi-groups of operators, in Contributions to ergodic theory and probability, Lecture notes in Math. 160 (Springer-Verlag, 1970), 262-278.

University of Toronto, Toronto, Ontario;
Ohio State University, Columbus, Ohio

