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DIFFERENTIATION OF n-DIMENSIONAL ADDITIVE 
PROCESSES 

M. A. AKCOGLU AND A. DEL JUNCO 

1. Introduction. Let n è 1 be an integer and let Kn be the usual 
w-dimensional real vector space, considered together with all its usual 
structure. The usual ^-dimensional Lebesgue measure on Rn is denoted 
by \n. The positive cone of Kn is R„+ and the interior of Rn

+ is Pn. Hence 
Pn is the set of vectors with strictly positive coordinates. A subset of Rw 

is called an interval if it is the cartesian product of one dimensional 
bounded intervals. If a, b £ Rn then [a, b] denotes the interval 
{u\a ^ u ^ b\. The closure of any interval / is of the form [a, b]\ the 
initial point of I will be defined as the vector a. The class of all intervals 
contained in Rn

+ is denoted by Jn. Also, for each u G Pw, let J:
n

u be the 
set of all intervals that are contained in the interval [0, u] and that have 
non-empty interiors. Finally let en £ Pn be the vector with all co
ordinates equal to 1. 

(1.1) Continuous semigroups. Let (X, Ĵ ~, /x) be a measure space and 
let L\ = L\(X,J^~, M) be the usual Banach space of integrable functions 
/ : X —> R. The positive cone of L\ is Li+. The main object of this paper 
is an w-dimensional (strongly) continuous semigroup {Tu] — {Tu\u<zPn of 
positive linear contractions on L\. This means that: 

(1.2) If u G Pn then Tu: L\ —> L\ is a linear operator with norm not 
more than 1, such that TUL\+ C Li+, 

(1.3) U u,v £ P n then TUTV = Tu+V. 

(1.4) Hue Pn and / 6 Lu then \\Tvf - Tuf\\ - > 0 a s ^ ^ i n P r 

Such a semigroup { Tu\ is said to be continuous at the origin if it satisfies 
the following additional condition: 

(1.5) There is a positive linear contraction T0: L\ —» L\ such that if 
f Ç Li then \\Tvf - T0f \\ -> 0 as v ~> 0 in Pw. 

Note that the continuity of {Tw} at the origin, together with the fact 
that TVs are contractions, implies the uniform strong continuity of {Tu) 
(i.e. given e > 0 a n d / G L\ there is a 5 > 0 such that \\Tuf — Tvf \\ < e 
whenever w, */ G Pn and p(w, «;) < ô, p being the euclidean distance in 
Rn). Hence if {Tw} is continuous at the origin then it can be extended to 
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the closure of P„, which is R„+. In this case the properties (1.2), (1.3) and 
(1.4) are also satisfied if Vn is replaced by Rn

+. 
In Section 2 it will be shown that for the purpose of this paper there 

is no loss of generality in assuming that {Tu) is continuous at the origin 
and also that T0 = 1 is the identity transformation. Hence, after the 
remarks in Section 2, these additional hypotheses will be made on the 
semigroup {Tu}. 

(1.6) Additive processes. A set function F: J'n-^L\ will be called a 
bounded additive process (with respect to { Tu}) if it satisfies the following 
conditions: 

(1.7) sup y^ffl \ieSn, X»(/) > o | = K(F) =K<œ, 

(1.8) TUF(I) = F(u + I) for all u G Pn and I Ç Jn, 

(1.9) If Ii, . . . , h G ^n are pairwise disjoint and if / = U*=i Ii G *?n 

then F (I) = H i W . 

Note that (1.7) and (1.9) imply that if {Ii} is a sequence of intervals 
converging to an interval / in the sense that \n(ItAl)-+0, then 
\\F(Ii) — F(I)\\ —> 0. In particular, (1.9) remains true for countably 
many intervals. Also, it is clear that F can be extended (in a unique way) 
to the class of bounded Borel subsets of R^+. For the extended function 
we also have that \\F(Bi) — F(B) || —* 0 whenever \n(BtAB) —» 0, where 
Bi and B are bounded Borel subsets of R^+. 

Finally we also note that if {Tu) is continuous at the origin and if F 
is a bounded additive process then TUF(I) = F(u + / ) , / £ Jn, is true 
not only for u ^ Vn but for all u £ Rw

+. Here, if v G Rw
+ — P;v then Tv 

of course denotes the value of the extended semigroup at this boundary 
point. 

(1.10) The main result. Our purpose is to show that if F is a bounded 
additive process then 

^ ^ \ = a»F[0,aen] 

converges a.e. as a —•> 0+. Since, however, F's are members of Li and not 
actual functions, we can let a change only over a countable set. Following 
the convention in [2], we will consider only rational values of a and write 
q — lim^o to indicate that the limit is taken as a approaches zero over 
the set of positive rational numbers. The main theorem is then stated 
as follows. 

(1.11) THEOREM. If F: Jn —> Li is a bounded additive process then 
q — lima_^o a~nF[0, aen] exists a.e. 
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As in [2], one can also give a version of this theorem that deals with 
the unrestricted values of a, applied to a fixed representation of F[0, aen]. 
This follows directly, however, from (1.11) and from the fact that if 
h: R —•> R is a monotone function then the existence of 

q - lima_>0 (l/a)h(a) 

is equivalent to the existence of lima_>o (l/a)h(a). 
Theorem (1.11) generalizes a theorem of Akcoglu-Krengel [2], [3] on 

the differentiation of one dimensional additive processes, an w-dimen-
sional local ergodic theorem of Terrell [6] and also the Lebesgue 
differentiation theorem on Rn. 

In fact, let n = 1 and let {Fu), u G Pi = (0, oo ) be a "bounded 
additive process" in the sense of [2]. This means that 

p 4_ T p = p I 

and that 

sup 0 < u\ < oo. 

Then, letting F0 = 0 and defining F(I) = Fb — Fa for any type of sub-
interval I of Ri + = [0, oo), with end points 0 ^ a ^ b, we see that F 
becomes a bounded additive process in the sense of the present work. Then 
Theorem (1.11) gives the differentiation theorem of Akcoglu-Krengel. 

To obtain Terrell's theorem from (1.11), let / 6 L\ and define 
F: Jn —> Li as 

= J Tufdu, (1.12) F(I)=J Tufdu,I£jn. 

It is easy to see that F is a bounded additive process. Hence (1.11) gives 
the existence of 

q — lim a~n I Tufdu a.e. 
a^O •/ [0,aen] 

This implies the existence of the unrestricted limit, if / G Li+. This is 
Terrell's local ergodic theorem, actually generalized to semigroups that 
are not necessarily continuous at the origin. 

Finally, to see the relation between (1.11) and the Lebesgue differ
entiation theorem, let X = Rn and ^ = Xn. Let ^ b e a Borel measure on 
Kn with bounded total variation. For each I G Jn, define F(I) G L\ as 

[F(I)](x) = V(x + I). 

Then F: Jn —» L\ is a bounded additive process with respect to the 
translation semigroup {Tu}, u G Rw

+, defined as 

(Tuf)(x) = f(x + u),f G i i , x G Rn 

(Actually it will follow from the remark in (4.12) that in this case any 
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bounded additive process is of this form.) Then (1.11) gives that 
a~nv([x, x + aen]) converges \n — a.e. as a —•» 0+ through the rational 
numbers. For the unrestricted convergence, one may assume that v is a 
positive measure, which makes v([x, x + oten]) a monotone function of a. 

(1.13) An outline of the proof of (1.11). Since (1.11) deals with a count
able class of L\ functions, there is no loss of generality in assuming that \x 
is cr-finite and that the o--algebra Ĵ ~ is generated by a countable class of 
sets stf. We will actually assume that \x is finite. Standard arguments 
show that this is also not a restriction in the proof of (1.11). 

We will then start, in Section 2, by reducing the semigroup [Tu] to a 
semigroup that is continuous at the origin. This will be done by general
izing some results of Akcoglu-Chacon [1] on the decomposition of X into 
(initially) conservative and dissipative parts, and on some properties of 
the conservative part. 

Section 3 contains several results that are either essentially known or 
that can be obtained without too much effort. First we show that a 
bounded additive process is the difference of two positive bounded 
additive processes. This is done by a routine extension of the correspond
ing result given by Akcoglu-Krengel [2] in the one-dimensional case. 
Section 3 also contains an outline of a technique introduced by Dunford-
Schwartz [5] and further developed by Terrell [6] to reduce the 2m-
dimensional case to the w-dimensional case. The original technique is 
slightly extended in order to deal with the additive processes. 

In Section 4 it is shown that a positive additive process is the sum of 
two processes that are called the absolutely continuous and the singular 
parts. This decomposition is obtained by using an idea of Akcoglu-
Sucheston [4], that was used to obtain a similar result for super-additive 
processes in [4]. The convergence of the absolutely continuous part is 
covered by Terrell's theorem [6]. Hence it remains to show the con
vergence for the singular part. 

This part of the proof of (1.11) contains the main argument of this 
work. First we show that the singularity of a process is equivalent to a 
property, which is called the localization property. Then we note that 
if a 2m-dimensional semigroup has the localization property then the 
reduced w-dimensional process has also the same property. This makes 
it possible to apply an induction argument over the number of dimen
sions, to obtain the convergence of singular processes, starting with the 
known one-dimensional case. Section 4 is concluded by giving a general 
form of the additive processes for the translation semigroup in Rn. 

2. The conservative and dissipative parts. Let {Tu] be a semigroup 
satisfying (1.2), (1.3) and (1.4) and let F be a bounded additive process 
with respect to { Tu). The continuity of { Tu) at the origin is not assumed. 
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If u 6 Pn then {Ttu}, t Ç (0, oo ) is a one dimensional semigroup. Let 
Cu and DM be the initially conservative and dissipative parts of X with 
respect to this one dimensional semigroup, as given in [1]. Then 
XDuTtuf = 0 for any t > 0 a n d / 6 Lu where x denotes the characteristic 
function of its subscript. 

(2.1) LEMMA. CU and Du are independent ofu£ Pn. 

Proof. Given u,v £ Pn> there is a real a > 0 such that w = au — v £ Pn. 
Hence, 

XDvTtauf = XDVT tvT twf = 0 

for all t > 0 and / G Li. This means that Du D Z)c, so by symmetry, 
Du = Dv and Cu = C\ 

We will now write D = Du and C = Cu for some w f P„ and define D 
and C = X — D as the initially dissipative and conservative parts of X, 
with respect to the n dimensional semigroup {Tu). Note that XDTUJ = 0 
for any u G Pn a n d / Ç L\. 

(2.2) LEMMA. / / F is a bounded additive process then XDF(I) = 0 for 
all I e Jn. 

Proof. Let a G R«+ be the initial point of / . Hence I = a + I' with 
/ ; G Jn. H a 6 Pw then 

Xz)F(I) = Xz,F(a + P) = XnTaF(r) = 0. 

If a G Rn
+ — Pw then we can find a sequence of intervals It with initial 

points in Pw, such that \(lAli) —> 0. This implies that 7 (̂7*) —> F (I) in 
Li and hence XDF(I) = 0, since XDF(II) = 0 for each i. 

(2.3) These considerations show that to prove Theorem (1.11) we may 
restrict the semigroup {Tu] to the conservative part C. Hence from now 
on we will assume that C = X, in addition to the previous assumptions 
(1.2), (1.3) and (1.4) on {Tu}. 

The following theorem is a generalization of Theorem (4.1) in [1]. 

(2.4) THEOREM. If C = X then \TU) is continuous at the origin. 

Proof. We have to show that (1.5) is satisfied; i.e. that there is a 
positive contraction T0 on L\ such that if/ (E L\ then \\Tuf — T0f \\ —* 0 
as u —> 0 in Pn. 

Let u G Pn be a fixed vector. Then the one dimensional semigroup 
{Ttu} t>o is continuous at the origin, by Theorem (4.1) of [1]. Let T0u be 
the initial transformation for {Ttu} t>0. 

Now let v, w be any two vectors in Pn such that u = av + pw with 
strictly positive scalars a and /3. We will show that T0u = T0vT0w, which 
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will obviously imply T0 = T0u is independent of u G Pw. Now if / 6 L\ 
then 

II ^ W ~ T0vl owf II = ||7 tavTtpwj — TovT0wf \\ 

S \\TtavTtpwf ~~ TtavTowf || + \\TtavTowf — TovT0wf \\ 

^ IITtpwf — T0wf || + \\TtavTowf — TovToicf || —» 0 

as t —> 0+. Hence r0w = T0vT0w = TV Note that 7V = T0 and that 
TUT0 = r 0 r M = Tw for any u £ Pn. 

We will now show that if/ Ç Li then || Tvf — Ttf \\ —> 0 as v —> 0 in Pn. 
Let wi, . . . , un £ Pw be a basis for Rn. Hence any v £ Rn can be 

written as 

71 

2 = 1 

where a / s are bounded linear functionals. If v 6 Pn is such that at = 
«*(*>) ^ 0 then it is easy to see that 

\\T.f-T0f\\ fki,\\Taiuif-Tof\\. 
1 = 1 

This shows that if z; —> 0 remaining in On = (£ji=i aiUi\at ^ 0} then 
\\Tvf — Tof || —-> 0. In general, for any y Ç Rw we let 

n 

v+ = 5D ^i[0 V «*(#)] and zT = P + — v. 

Then z;+ and z>~ are in Qn. Now if z; —> 0 remaining in Pw then both 
v+ —> 0 and z;~ —> 0, remaining in On- Hence, 

[|TV - TV || g ||r,r0/ - r j r / || + ||T>/ - zy || 
g | |r,-/- r0/Il + IITV/- 7y||-»o. 

This completes the proof. 

We conclude this section by observing that there is no loss of generality 
in assuming that T0 is the identity operator 1. In fact, as shown in (3.8) 
of [2], by a change of measure /* to an equivalent measure one can assume 
that To is a conditional expectation with respect to a sub c-algebra 
J? / Q_^~. As in the proof of Lemma (2.2) one then notes that if F is a 
bounded additive process then F (I) is measurable with respect to J^~' for 
each I £ Jn. Since Tu maps ^ ' -measurable functions to J^'-measurable 
functions, we may then assume that J^ ' = Ĵ ~ and hence T0 = 1. 

3. Some properties of i7. From now on we assume that {Tu} is a 
strongly continuous semigroup of positive L\ contractions, defined for 
all u £ Rn+ and that T0 = 1. A bounded additive process r\ Jr n » x̂ i 
with respect to {Tu] will then satisfy TUF(I) = F(u + I) for all u £ R„+ 
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and for all I Ç Jn. As in (1.7), we let 

K = K(F) = sup jj^Jjf] I € Jn, X»(/) > 0} . M M 
x»(/) 

Also recall that if M € PK then 

Jn" = {/ | /€ A , / C [0, u], \n(I) > 0 | . 

Note that given any / G ^n and any e > 0 one can find a w G Pn such 
that if / G * / / then there is an interval / ' , which is the disjoint union 
of intervals of the form (at + / ) , a{ G Rn

+, for which \n(JAl') < e. This 
choice of u is the choice of a 'small' vector. We will have the same 
situation in several other occasions: a certain property is satisfied for 
all I G yn

u if u is sufficiently close to the origin. 

(3.1) LEMMA. For each e > 0 there is a u G Pw s weft that 

\\F(I)\\ > (K- e)K(I) for all I e Jn
u. 

Proof. First note that if an interval / ' is the disjoint union of intervals 
of the form (at + / ) , where at- G R«+ and / is another fixed interval, then 

\\F(I')\\/Xa(I
r) è \\F(I)\\/K(I). 

This follows from the fact that 

\\F(.a{ + I)\\ = \\TaiF(I)\\ ^ \\F(I)\\ 

and from the finite additivity of F. 
Now the proof of the lemma is obtained easily, first finding / G Jn 

with \\F(J)\\/\n(J) > K - e/2 and then finding a u G Pn such that if 
I G ^nu then there is an interval / ' , which is a disjoint union of intervals 
(flj + / ) , at G Rw

+, for which 

IW)11 \F(I')\\ 

Uf) < l 
(3.2) LEMMA. Given any J G J'n and any e > 0 there is a u G Pw such 

that if I G </n
M ' f t^ 

F{J) I f(D 
J-KO)*" < c. 

Proof. As will be discussed in the next paragraph in more detail, the 
integral above is with respect to the measure \n and is defined as the 
Li-limit of the corresponding Riemann sums. Given / G Jn

 a n d e > 0, 
choose u G Pn such that for any I G J* n the following two conditions 
are satisfied: 

(i) F(J) TVF(J) dv <-
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(ii) there is an interval I' C. J such that / ' is a disjoint union of 
intervals at + I, with at £ R„+, i = 1 tn, and such that XB(/ — / ' ) 
< e/éK. 

Then, for any given I 6 «/»" we have 

Il f „ F(I) , C _, F(I) , || || f „ F(I) 
< 4 ' 

and also that 

f . , F(I) , v f r F(I) . $ f T F(I) , 

- éô /, T° 5F(at+I)dv = m X T°F{r)dv-
But ||F(7) - /?(/') II £ XX»(/ - -H < «/4, which implies that 

je ) / ,w / '^ - je ) X T°F{J)dv < e/4. 

Hence 

1/ -L_f TvF(J)dv < e/2, 

which, together with the condition (i) above, completes the proof. 

(3.3) Some Li-valued integrals. Let g: Rw —•» Li and </>: Rn —> R be 
continuous functions, where L\ is considered with its norm topology. If 
/ C Rw and / C Rn+ are (bounded) intervals then 

and 

I g(u)du 

I <j>(v)F(dv 
J J 

are defined, in the usual manner, as the Li-limits of Riemann sums 
^L,ig(Ui)\n(Ii) and ^ ;-4>(^)F(y,,), respectively. Here {It} and {Jj\ are 
finite partitions of / and J into intervals, respectively, and ut £ Iu 

Vj Ç J y If 

L \g{u)\du < oo and I \<Kv)\dv 
J Rn + 

< 00 

then 

/ g{u)du and I <t>(v)F(dv) 
Rn J Rn + 
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are also well defined, in the usual way, since 

Il f II f 
I g(u)du\\ ^ I \\g(u)\\du 

II*' i II J i 
and 

Il f II f 
I 4>(v)F(dv)\\ èK I \4>(v)\dv. 

\\J j II •/ j 

In our applications <j> will always vanish on Rw — Rn
+ and we will write 

I <t>(v)F(dv) 
J Rn 

instead of 

v)F(dv). 
J R n t 

Note that 

Tu I <$>(v)F{dv) = I 4>(v - u)F(dv) for all u G R„+. 
J Rn ^ Rn 

Let i/': R„ X Rw —> R be a continuous function that vanishes on 
Rw X (Rw — Rn

+) and let I and 7 be intervals in Rn. Then the iterated 
integrals 

I ( I \p{u)v)F{dv)\du and I I I \l/(u,v)du\ F(dv) 

are both well defined and equal to each other. Also, the norm of the 
resulting Lx function is bounded by 

K I \yp{u,v)\du dv. 
J
 IXJ 

Hence, if 

I \$(u, v)\dudv < oo 
J RnXRn 

and if both 

g(u) = I \p(u,v)F(dv) and <t>(v) = I \p(u,v)du 
J Rn J Rn 

define continuous functions g: Rn —> Li and #: Rn -—» R, then we will 
also have that 

I ( I ^ i / ) F ( < f o ) W = 1 ( l ^(«,w)dtt)F(dw). 
J Rn \ J R n / J R n \ J R n / 

We note that the restriction of these definitions to continuous functions 
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is not necessary and, as it is well known, can be removed easily. We omit 
this, however, as we will deal only writh continuous functions. 

Finally, as already mentioned in the introduction, if / G L\ then 

•J, F(I)=J TJdu, I£jn 

defines a bounded additive process F: J>n —> L\. More generally let 
g. : Pn —> L\ be a function such that ||g. ||: Pn —» R is a bounded 
function and such that Fvgu = gM+w for all p G Rn

+ and for all u G Pn. It 
is clear that this function is continuous on Pw, but not necessarily on R^+. 
From the boundedness of the norm function it follows easily, however, 
that 

- / , 
G (I) = J gudu 

is wTell defined for all / G Jn and that G: Jn —> L\ is a bounded additive 
process. 

(3.4) Reduction of the dimension. We will now assume that the dimen
sion n of the semigroup is an even integer n = 2m. This is no loss of 
generality for the following reason. If n is an odd integer than starting 
with the n-dimensional semigroup {Fu}, u G Rw

+, and the additive 
process F: Jn —> L\ we define an n' = n + 1 dimensional semigroup 
{Tlu,a)\, (u,a) G Rre

+ X Ri + = Rn+i+ and a corresponding additive 
process F'\ Jn X J^i = </w+i —> £i, as 

n,,«) = TUJF'(I,J) = F(/)Xi(J). 

If the main theorem, Theorem (1.11), could be proved for T7' then it 
would also follow for F. Hence we may assume that n = 2m is an even 
integer. 

Starting with the 2w-dimensional semigroup {Tu}, u G R2?n
+ and an 

additive process F: J' 2m —» L\ we will define an ra-dimensional semigroup 
{St}, t G Rm

+, and an additive process G: J>m—*Li. For the definition 
of {St} we will follow exactly the technique introduced by Dunford-
Schwartz [5] and further developed by Terrell [6]; hence we omit the 
details. For the definition of G we will use a slight variation of the same 
technique. 

For each a > 0 and /3 G R, let 

le~a2^ i f / 3 > 0 

0 if (3 ^ 0. 

If / = (/x, . . . , tm) G Pm and u = (ui, . . . , u2m) G R2m then let 
m 

<t>t(u) = Ylvti(u2i-l)Vu^2i)-
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For each fixed t G Pw, <j>t: R2m —• R is a non-negative continuous function 
that vanishes on R2m — R2m+. Also 

J R2m 
(u)du = 1 and / 

J R2 

4>t(v - u)(j>s(u)du = <t>t+s(v) 

for each t, s G Pm and z; G R2m-

Finally, for any v G P2w> and for any e > 0 there is a t° G Pw such that 

I <f)t(u)dii > 1 — e 
J [0,p] 

for all / 6 Pm with / ^ /°. 
F o r / G £i and / G Pw we now define 

Stf = I ct>t(u)Tufdu. 
J R2m 

Then {S,}, / G Pm, is a (strongly) continuous w-dimensional semigroup 
of positive linear contractions of L\. It is also continuous at the origin, 
with So = 1. Hence it can be extended to Km

+ to obtain the semigroup 
{st},te Rm+ 

For ^ G Pw we now define 

gs = I <f>s{v)F(dv). 
d R2m 

From the remarks in (3.3) it follows that 

Stgs = I <t>t(u)Tu\ I <j>s{v)F{dv) \du 

= I #*(«) I **(w - u)F(dv 
J R2m L*/R 2 ? n 

= I I <Pt(u)(t)s(v — u)du 
J R2m L«/ R2m J 

= I 4>t+s{v)F(dv) = g<+s 
^ R2m 

for all / G Rm+ and 5 G Pw- It is also clear that 

/ 4>s(v)dv = 
R2m 

G ^ 

F(dv) 

M * K K. 

Hence 

G(I) =JTg4st 

I G Jm defines a bounded additive process G: Jm —» Lx with respect to 
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{St}, t G Rm+- Note that if F is a positive process, i.e. if F (I) G Li+ for 
ail I £ Jr

2w, then G is also a positive process. 

(3.5) LEMMA. There exists a constant d > 0, depending only on the 
dimension m} such that if F is a positive process then 

de-*mF[0, ee2m] ^ V~e~mG[0, V~eem] 

for all e > 0. 

Proof. This essentially follows from Lemma (2.3) in [6]. There it was 
shown that there is a constant 5 > 0, such that if e > 0 then 

-— I 7]a{0i)y)a{^2)da > ~2 whenever 0 < 0i, 02 < e. 
V e «/ o € 

Hence, if e > 0 then 

T ï̂ I (j)s(u)ds > -2m / m l yjs\u<juso y 

whenever w £ P2m and u < ee2w. 
Now, 

V € Ve J [0)V^€m] 

= -7-m I I 4>s(v)F(dv 

Ve J [0,€C2m] L * / [0 ) V /?em] 

ds 

F(dv) 

F(dv) 

Therefore it is enough to take d = ôm. 

(3.6) Decomposition of F into positive parts. A bounded additive process 
F: Jn —> L\ can be written as the difference of two positive bounded 
additive processes Ft\ Jn —> Li+ , i = 1, 2, as F = Fi — F2. In fact, let 
I G </„ and let P = {Ii, . . . , Ik] be a partition of I into finitely many 
intervals. If at Ç Rw

+ is the initial point of /*, then define 

^ i P ( / ) = E ra<[F(/< - a,)]+ and F2
F(I) = £ Tai[F(It - a,)]". 

t - l i - 1 

Then it is clear that F(I) = / ^ ( J ) - F2
P(J) and also that \\F,P(I)\\ ^ 

KK(I), i = 1,2. 
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(3.7) LEMMA. If P = [Iu . . . , Ik} and Q = {Ju . . . , Jt\ are two 

partitions of I into intervals such that P < Q then Ft
p ^ Ff

Q, i — 1,2. 

Proof, Let at and b5 be the initial points of I{ and Jj. Let Mt = 
{i|l £j S UjCIi), i = 1, . . . , * . Then 

F(It - at) = £ F ( / , - a,) 

and consequently 

[F(It - at)]
+ S Z [HJj ~ at)]

+. 
jdMi 

Since bj — az- Ç R„+ for all 7 G Mi we then have that 

Tai[F(it - a,)]+ ^ £ r a , [ r6 i . f l t .F(/ , - 6 ;)]+ 

Hence 7^ (7 ) ^ ^ ( 7 ) , and also F2
P{I) ^ F2

Q(I). 

From this lemma it is clear that Fi(I) = limP FiP(I) exists in Lif 

where the limit is taken over the directed set of partitions P oî I into 
intervals. It is also clear that the function F\\ Jn —» Li+ so defined is a 
positive bounded additive process. Similarly one obtains the positive 
bounded additive process F2: Jn—>Li+ and then F is expressed as 
F = F\ — F2. Hence, to prove the main convergence theorem (1.11) it 
is enough to consider only positive bounded additive processes. 

We also note that this decomposition has the additional property that 
K(F) = K(F\) + K(F2). We omit the routine proof, as we are not 
going to need this property. 

4. Singular and absolutely continuous processes. As before, we 
consider an w-dimensional continuous semigroup {Tu), u G Rn

+, of 
positive L\ contractions with TQ — 1. We assume that F: Jn—>Li+ is 
a positive bounded additive process with respect to {Tu\. Such a process 
will be called absolutely continuous if there is an / G L\+ such that 

F {I) = J Tuf du for all 7 G Jn, 

and it will be called singular if it does not dominate any absolutely con
tinuous nonzero positive process. If F: Jn —> Li+ is absolutely con
tinuous then Terrell's theorem [6] gives that 

a - lima_,o orn F[0, aen] 

exists a.e. This theorem, combined with the following result, enables us 
to restrict our attention to singular processes in the proof of Theorem 
(LID. 
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(4.1) THEOREM. A positive bounded additive process is the sum of an 
absolutely continuous and a singular process. 

Proof. Let i G L\+ be the function which is equal to i everywhere, 
i = 1 , 2 , . . . , and let s/ be a countable class of measurable sets that 
generates J^". Consider a fixed sequence ak of strictly positive numbers 
converging to zero, and let 

Ik = [0,aken] and/fc = F(Ik)/Xn(Ik). 

By passing to a subsequence, if necessary, we may assume that 

lim I [fk A i]d/ji 

exists for each A Ç se and for each integer i = 1, 2, . . . . Let p* be the 
weak limit of fk A i as k —> co . Then pt ^ pi+i and 

||p,|| a = l im t ^ \\fk\\. 

Hence l im^ œ pt = p exists a.e. and also in Li-norm. Let 

F {i) = J z;P^ 

for each / G </TO. To conclude the proof we will show that F" = F — F' 
is positive and singular. 

For a fixed I £ Jn let Az: L\—+ Li be defined as 

// = J rM/dw, / G i l , 

which is a positive linear bounded operator. Then, by (3.2), Ajfk —> F (I) 
in Li-norm. Since /* A i —> p?- weakly, we also have that A7(fk A i) —> 
^4/PÏ weakly. Hence /l/p* ^ F(7) for all i, which implies that Ajp = 
^'(7) ^ F (I). Hence F" = F — Fr is a positive bounded additive 
process. 

Let 

U = F'(Ik)/\n(Ik) and / / ' = F"(Ik)/K(h) = / * - / * ' • 

We will now show that \\fk" A 11| —* 0 as k -^ co . Since fk —• p in Li we 
also have that fk'Aj—>pA j in Lx. Note that, since fk ^ /*, this 
implies that p A j ^ pj and consequently p A j = Pj. Now, given e > 0 
find j such that ||p — p ; | | < e. Then 

îuïû-x» ||/*" A 1|| = ï h ^ œ ||(/* - / * ' ) A 1|| 

^ i i ^ „ III/* - (/*' A i)] A ill g iiW^ 11/* A (j + i) - /*' A ill 
= IIPJ+I - p}\\ < «• 
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Now if g G Li+ and 

G (I) =J Tugdu ^ F"{I) 

for all I G </„, then letting g* = G(Ik)/\n(Ik), we see that gfc -» g in L\. 
Since ĝ  ^ /*/', the above result shows that ||g A 1|| = 0 and con
sequently g = 0. Hence F" is a positive singular process. We may also 
add that the sequences fk and gk above are uniformly integrable, since 
Tu is continuous at the origin. 

(4.2) Localization property of singular processes. The last argument of 
the previous proof shows that the singularity of a (positive) process F 
is equivalent to the following property: For each e > 0 there is a u G Pw 

such that 

M A 1 < e for all / G 

This is also equivalent to the following property: For each e > 0 there 
is a u G Pw such that if / G </n

w then one can find a set £ G <̂ ~ with 
jit(£) < e and 

F(I) 
/ 

We will now show that actually the singularity of F is equivalent to a 
much stronger property which states that the set E above can be chosen 
depending only on u and not on I G Jn-

(4.3) Definition. A function/: Jn —» Li+ is said to have the localization 
property if for each e > 0 there is a set £ G ^~, with n(E) < e, and a 
vector w G Pn such that 

/ . 
f(I)dn < e for all / G Jn

u 

(4.4) THEOREM. Let F: Jn —» Li+ fre a bounded additive process and let 
/ ( / ) = F(I)/\n{I) if \n(I) > 0 a ^ / C O = 0 if X(I) = 0, / G . /». rfte» 
T7 is a singular process if and only if f has the localization property. 

If / has the localization property then F must be a singular process. 
This follows from the remarks already made in (4.2). For the other part 
of the proof we first obtain the following lemma. 

(4.5) LEMMA. If a function f: Jn —> Li+ does not have the localization 
property then there is a number p > 0 and a set B G &~ with fx(B) > 0, 
such that if G C B with \x(G) > \v{B) and if u G Pw then there is an 
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I € « / / satisfying 

f(I)dn > P. S. 
Proof. Let r > 0 and E G ^ . Call E an r-admissible set if there is a 

w f Pn such that 

/ f(I)dn < r 
Ec 

for all I e Jn
u- For each r > 0 let 

7jr = inf {ju(£)|£ is an r-admissible set}. 

It is clear that if 0 < r ̂  r' then 0 ̂  y\r> S Vr S M PO- Hence limr^0
 + 

7]r = 77 g: 0 exists and if 77 = 0 then /has the localization property. There
fore 77 > 0. Choose r0 > 0 such that 

YQ ̂  < Vr ̂  1? 

for all r, 0 < r < r0. Then choose an r0/4-admissible B such that 

9 11 

If G C B and M(G) > § M ( £ ) then 

»(B-G) <^>7 

and consequently B — G can not be r0/2-admissible. Hence given w 6 Pw 

there must exist an / Ç J^ such that 

X G ^ 

The proof is then obtained with p = r0/4. 

(4.6) Proa/ 0/ Theorem (4.4). Let P a n d / be as in Theorem (4.4) and 
assume that / does not have the localization property. Obtain the 
number p > 0 and the set B Ç &~ from Lemma (4.5). We may assume 
that p < \K = ^K"(P). If P is a singular process then we can find an 
interval J0 G Jn, K(h) > 0, and a set if Ç ^ such that all of the 
following conditions (4.7), (4.8) and (4.9) are satisfied. Here A: L\ —> Lx 

denotes the averaging operator 

Af = w n I Tufdu, 
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which is a positive linear contraction. 

(4.7) K - ^ < \\f(I0)\\, 

(4.8) „ (# ) < j~»(B) and /^ / ( /o)<fo < ^ , 

(4.9) H X S - ^ X B I I < ^ Q M ( 5 ) . 

Here we must use Lemma (3.1) and also the fact that Tu —* 1 strongly 
as u —» 0 in Pn. Now, using Lemmas (3.1) and (3.2) we find w G Pn such 
that if I G < / / then 

* " loo < li/(/)l1 and ll/(/o) " ^/(/)l1 < ïoô 
Hence 

/ , HcAf{I)d»<^>- and \\Af(I)\\ > | | / ( / ) | | - | > -

for all J G AM-
Therefore, if J 6 . / / and if g 6 Li+ is any function with g ^ / ( / ) 

and ||g|| = p, then 

| | ^ | | > — P and j ^ ^ d M < — 

and, consequently, 

/ , 
. , ^ 96 96 .. „ 

H
Agdu>mp=mkl 

Now call a set E G & a bad set if 

/ , 
Axsdfi > JQQIX(E). 

We will show that if G C B and if n{G) > \ix(B) then G has a bad 
subset of nonzero measure. In fact, we can find an interval / G / „ " such 
that 

/ . 
f(I)dfjL > p. 

Hence we can find a simple function g — X)*=ia*Xs» with c^ > 0, 
Et C G, MCE<) > 0, such that g ^ / ( / ) and ||g|| = p. Hence 

i=l J H 
AxEidfi > J^oii — fxiEi), 
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which implies that at least one Et is a bad set. Since an increasing union 
of bad sets is also a bad set, we see that B must have a bad subset E of 
measure JU(£) §: ^fi(B). Then 

)HAxBd» ^JHAxEd, > | ^ ( E ) â | | M ( 3 ) . 

But this contradicts (4.8) and (4.9). Therefore if F is singular t h e n / 
must have the localization property. 

(4.10) Singularity of the reduced process. Let F: J 2m —> Li be a positive 
bounded additive process with respect to a 2m-dimensional semigroup 
{ Tu), u G R2m+, and let G: Jm —> Li be the reduced process with respect 
to the w-dimensional semigroup [St), t G Rm

+ as defined in (3.4). We 
would like to show that if F is singular then G is also singular. 

Now we have 

G(I) =jigsds, ie Jm, 

where 

s(v)F(dv), -j 
J R2 

by the definitions in (3.4). Since F is singular, for each e > 0 we can 
find a set £ G ^ and a vector u G P2m such that n(E) < e and such that 

/ F(I)dv < e\2m(I) for all / G J2m
u, 

by Theorem (4.4). This implies that 

I I (t>s(y)F(dv) \dn < e I <j>s(v)dv < e. 
[ 0 ,M] 

Now, by the definition of <j>s(v), we can find a / G Pm such that if s G Pw 

and iî s < t then 

1 4>»̂ > < ~ . 
J R2m-[0,tt] A 

Therefore, if 5 G Pm and s ^ t, then 

1 £,<*/* = 1 1 * , W W 
^ #c . / # c L »/ [0fM] -J 

d/jL 

+ 1 1 4>s(v)F(dv) L 
•S EC L*S R2m-[0,M] J 

<6 + 1 <t>,(v)F(dv)\ 
\ J R2i»-[0,«] 1 

< 2e. 
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This implies that 

/ 
£%dn<2e for all le • /„ ' . 

EC \m\l) 

Hence G is also a singular process. 

(4.11) Proof of the main theorem. To prove the existence of 
q — lima^o orn F[0, aen] a.e. we may assume that F is a singular process. 
If n = 1 then this theorem is proved in [2]. In this case the limit is zero. 
By Lemma (3.5), if this limit exists and is zero for the w-dimensional 
case, then the same is also true for the 2m dimensional case. This com
pletes the proof. 

(4.12) Singular processes for the translation group. Let (X,^, /x) be Kn 

with the Borel sets and the Lebesgue measure Xn. Let {Tu], u G Rw
+ be 

the translation semigroup, defined as 

(TuF){x) =f(x + u),fe Lu x G R„. 

We would like to note that any singular bounded additive process F with 
respect to [Tu] is of the form (F(I))(x) = v(x + 7), where x G Rw, 
7 G J'n and v is a Borel measure on Rn, singular with respect to \n. 

In fact, let ak > 0 be a sequence converging to zero and let 

fk = F[0, aken]/\n[0, aken]. 

Then fk is a bounded sequence in L\+. Choosing a subsequence we may 
assume that 

lim I MdXn = *(£) 

exists for each bounded continuous function £: Rw —•> R. Then there is a 
finite Borel measure v on Rw such that 

An 

This measure v must be singular with respect to \n, since fk —> 0 \n — a.e. 
Now, by (3.2), 

lim I Tufkdu = F (I), in Lh 
k^œ J I 

for each 7 G Jn- Hence 

lim I n I r„/fcdw d\w = I £F(I)d\n 
fc->oo ^ Rn L ^ / J ^ Rn 
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dx 

for each bounded and continuous £: Rn —> R. But 

J d j Tufkdu^d\n = J ? 0 ) [ J fk(x + u)dt 

= J J £ 0 - u)fk(x)dx 

and this converges to 

dw 

dw, 

/ . 

u)v(dx) 

which is equal to 

%(x)v(x + I)dx. 
Rn 

Hence (F(I))(x) = !>(# + / ) for Xn — a.a. x G Rn. We note that similar 
considerations are valid whenever {Tu\ is induced by a measurable flow 
of X. In this case, however, one should deal with the points in Lœ* that 
do not correspond to points in Lif instead of singular measures. We omit 
the details. 
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