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Abstract

In this paper a kernel estimator of the differential entropy of the mark distribution
of a homogeneous Poisson marked point process is proposed. The marks have an
absolutely continuous distribution on a compact Riemannian manifold without boundary.
We investigate L2 and the almost surely consistency of this estimator as well as its
asymptotic normality.
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1. Introduction

The concept of entropy was introduced by Shannon in the context of information theory [24]
and its origin lies in the classical Boltzmann entropy of thermodynamics. In Shannon’s original
paper, entropy was defined both for discrete and continuous distributions in R

d . In the last case
it is called differential entropy and this notion can be naturally generalized as follows. Let P be
a probability distribution of a random elementX on an abstract measurable phase space (M,μ)
with probability density f with respect to μ. The entropy of X is given by

Ef = −EP (log f (X)) = −
∫
M

f (x) log f (x) μ(dx),

where the expectation EP is taken with respect to the probability measure P .
In this paper we consider a homogeneous Poisson marked point process (MPP) with marks

from a compact Riemannian manifold of dimension p ≥ 1 without boundary that are as-
sumed to be independent of the process, and investigate the differential entropy of the mark
distribution Ef . Our motivation for the study of this quantity is its applicability to detect
inhomogeneities in materials modeled by MPPs such as fibre-reinforced plastics, where the
direction of each fibre corresponds to a mark of the MPP. During the production process of
such materials, the direction of the fibres may deviate from the predefined one and thus give rise
to undesirable clusters or deformations. If the deviation is strong, a significant change on the
(local) entropy of the directional distribution can be expected. Considering marks with values
in a Riemannian manifold makes this method applicable not only to directions but to any other
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Entropy estimation for Poisson MPPs 259

characteristic of interest, for instance fibre length or fibre curvature. Asymptotic properties of
such an estimator are important, in particular, for hypothesis testing.

In the present work we propose a nonparametric plug-in estimator of the differential ent-
ropy Ef based on [1]. It requires estimating the density of the distribution of interest in a
nonparametric way, which we perform by means of kernel density estimation. This technique
was introduced for stationary sequences of real random variables by Rosenblatt [21] and
Parzen [16], and extended to stationary real random fields in [9]. In the case of finite samples
of independent and identically distributed (i.i.d.) random vectors on the sphere, nonparametric
kernel estimation methods were studied in [2], [10] and extended to Riemannian manifolds
in [14], [18]. Alternative nonparametric estimators for the directional distribution in line and
fibre processes were presented in [15].

The main result of our paper, Theorem 5.3, gives a central limit theorem (CLT) for an
estimator of the differential entropy of the mark distribution density f of a homogeneous
Poisson MPP as the observation window grows to R

d+ in a regular manner. This result is
an application of a more general result (cf. Corollary 5.1) of this type for sequences of mn-
dependent random fields proved in Section 5. A CLT for nearest-neighbor estimates of entropy
of a sample with values in a manifold is given in [19], see also the references therein.

The paper is organized as follows. Notation and basics of the theory of MPPs are given in
Section 2. In Section 3 we construct a nonparametric kernel density estimator of f and give
conditions for its L2 and almost sure consistency. In Section 4 we introduce the nonparametric
estimator Êf (Bn) of the entropy Ef in an observation window Bn ⊂ R

d and prove its L2-
consistency when the window size grows appropriately. Finally, in Section 5 we present a
CLT for random sums of mn-dependent random fields (cf. Corollary 5.1) where independence
between the random number of summands and the summands themselves is not assumed.
A special case of this result is applied to obtain a CLT of the entropy estimator.

2. Preliminaries

In this section we briefly review basic notions from the theory of MPPs. For an introduction
and summary on these and other models of stochastic geometry we refer the reader to, e.g. [25],
and [26].

2.1. Poisson MPPs

In the following, � := {Yi}i≥1 will denote a homogeneous Poisson point process on R
d of

intensity λ > 0 and (M, g) a compact smooth Riemannian manifold of dimension p without
boundary and with Riemannian metric g. We further assume that (M, g) is complete, i.e.
(M, dg) is a complete metric space, where dg denotes the geodesic distance induced by the
Riemannian metric g. The associated Riemannian measure will be denoted by υg . A detailed
construction of this measure can be found in, e.g. [22, p. 61]. Note that since M is compact,
υg(M) is finite.

To each point Yi ∈ � we attach a mark ξi ∈ M and assume that marks are i.i.d. random
variables independent of the location of the points in�. The Poisson MPP� := {(Yi, ξi), Yi ∈
�} we will work with is a random variable with values in N := {ϕ locally finite counting
measure on R

d × M}. An important property of this process is stationarity, meaning that
Ty�

d= � for all y ∈ R
d , where the translation operator Ty is defined as Tyϕ(B × L) :=

ϕ((B + y) × L) for any Borel set B × L ⊂ R
d × M and ϕ ∈ N . We denote equality in

distribution by ‘
d=’. We will assume that the distribution of a typical mark ξ0 has a density

f : M → R with respect to the Riemannian volume measure υg .
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260 P. ALONSO-RUIZ AND E. SPODAREV

Example 2.1. Poisson fibre process (cf. [26, Section 8]). A fibre F : [0, 1] → R
2 is a

sufficiently smooth simple curve of finite length and a fibre process � is a random closed
subset of R

2 that can be represented as the union of at most countable many fibres F . To each
fibre, we can attach a mark ξF ∈ [0, 	] that represents its (random) length. If the fibre process
is Poisson distributed then � = {(F, ξF ), F ∈ �} and M = [0, 	].
Example 2.2. A Boolean model. Assume that d ≥ 3 and consider, for each 1 ≤ k ≤ d−1, the
GrassmannianG(k, d), i.e. the set of all nonoriented k-dimensional flats in R

d that contain the
origin (see, e.g. [22, p. 186]). This is a compact manifold of dimension k(d− k). Furthermore,
denote by B(o, r) the ball of radius r centered at the origin o ∈ R

d . The homogeneous Poisson
point process � ⊂ R

d leads to the Boolean model

� :=
⋃
Yi∈�

((B(o, Ri) ∩ Zi)+ Yi),

where Ri and Zi are independent copies of the random radius R : 
 → [0, r] and the random
Grassmannian Z : 
 → G(k, d), respectively. The particular case k = d − 1 is used in
applications to model lamellae structures, whereas the k = 1 case corresponds to a Poisson
fibre process with straight fibres. In both cases,G(k, d) is isomorphic to the half-sphere Sd−1+ .
Based on this model, one can directly work with the MPP � = {(Yi, B(o, Ri) ∩ Zi)}i≥1, with
M = [0, r] ×G(k, d) and p = k(d − k). Here, one may be interested in the entropy of some
specific characteristics of the grains, for instance their radius R and direction Z.

2.2. Space of marks

Since our mark space is a manifold, we recall in this section some useful concepts from
Riemannian geometry. For further details we refer the reader to [5] and [22].

Let TηM denote the tangent space of M at η ∈ M and let expη : TηM → M denote the
exponential map. For any r > 0, BM(η, r) := {ν ∈ M | dg(ν, η) < r} defines a neighborhood
of η, that we call a normal neighborhood of η if there exists an open ball V ⊂ TηM such
that expη : V → BM(η, r) is a diffeomorphism. The injectivity radius of M is defined as
injg M := infη∈M sup{r ≥ 0 | BM(η, r) is a normal neighborhood of η}.

Let U be a normal neighborhood of η ∈ M and let (U,ψ) be the induced exponential chart
of (M, g). For any ν ∈ U , the volume density function introduced by Besse in [4, p. 154] is
given by

θη(ν) :=
∣∣∣∣det

(
gν

(
∂

∂ψi
(ν),

∂

∂ψj
(ν)

))p
i,j=1

∣∣∣∣1/2

,

where gν(∂(ν)/∂ψi, ∂(ν)/∂ψj ) denotes the metric g in normal coordinates at the point exp−1
η ν

(see, e.g. [22, p. 24]). Note that this function is only defined for points ν ∈ U such that
dg(η, ν) < injg M . Since M is smooth, θη is continuous on M .

3. Kernel density estimator of the mark distribution

In this section we introduce a kernel density estimator for the density of the mark distribution
on an observation window B ′

n ⊂ R
d . More precisely, we consider a sequence {B ′

n}n∈N of
bounded Borel sets of R

d growing in the Van Hove sense (VH-growing sequence). This means
that

lim
n→∞ |B ′

n| = ∞ and lim
n→∞

|∂B ′
n ⊕ B(o, r)|

|B ′
n|

= 0,
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where B(o, r) denotes the ball of radius r > 0 centered at the origin o. Given a set B ⊂ R
d ,

|B| will denote its d-dimensional Lebesgue measure, where d is the ‘correct’ dimension of B,
i.e. the one for which B is a d-set. In this particular case, |B ′

n| is the d-dimensional volume
of B ′

n.

3.1. The estimator

Let � = {(Yi, ξi)}i≥1 be an homogeneous Poisson MPP of intensity λ > 0. We define the
kernel density estimator

f̂n(η) := 1

λ|B ′
n|

∑
i≥1

1{Yi∈B ′
n}

b
p
n θη(ξi)

K

(
dg(η, ξi)

bn

)
,

where 1{.} denotes the indicator function.
This is an extension of the estimator given in [18]. The sequence of bandwidths {bn}n∈N ⊂ R

satisfies

(B1) bn < r0 for all n ∈ N, with 0 < r0 < injg M and infη∈BM(z,r0) θz(η) > 0 for any z ∈ M ,

(B2) bn ↓ 0,

(B3) limn→∞ b
p
n |B ′

n| = ∞.

The kernel K : R+ → R is a bounded nonnegative function satisfying

(K1) suppK = [0, 1],
(K2)

∫
B(o,1) K(‖x‖) dx = 1,

(K3) 0 <
∫
B(o,1) K(‖x‖)‖x‖2 dx =: K2 < ∞,

(K4) supr≥0K(r) =: K0 < ∞,

(K5)
∫
B(o,1) K(‖x‖)x dx = o.

We further assume that

(F1) f ∈ L2(M), i.e. ‖f ‖2
2 := ∫

M
|f (η)|2 dυg(η) < ∞,

(F2) f is twice continuously differentiable.

Property (F2), in particular, means that f has bounded Hessian on any normal neighborhood
U ⊂ M , i.e. there exists C2 > 0 such that ‖D2f ‖ ≤ C2.

Assumptions on the kernel are standard when dealing with nonparametric density estima-
tion [18], [27]. For ease of notation, we will usually write

Fn(η, ξ) := 1

b
p
n θη(ξ)

K

(
dg(η, ξ)

bn

)
, η, ξ ∈ M.

In case the observation window B ′
n needs to be explicitly indicated in the notation, we will

write f̂B ′
n

instead of f̂n.
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3.2. Consistency

In this section we prove L2 and almost sure consistency of f̂n. In what follows, ωp will
denote the volume of the unit ball in R

p and we will write x ·y for the Euclidean scalar product
of any two vectors x, y ∈ R

p.
Note that in the classical (Euclidean) setting one could shorten proofs by applying Fourier

methods [27]. However, in the general case of manifolds, this approach does not seem to be
possible.

Theorem 3.1. Under the assumptions (B1)–(B3), (K1)–(K5), (F1) and (F2), we have

E[‖f̂n − f ‖2
2] ≤ CθωpK

2
0

λ|B ′
n|bpn

+ b4
nC

2
2K

2
2υg(M),

where Cθ := supz∈M supη∈BM(z,r0) θz(η)
−1.

Corollary 3.1. Under the above assumptions, it follows directly from Theorem 3.1 that f̂n is
an L2-consistent estimator of f , i.e. E[‖f̂n − f ‖2

2] → 0 as n → ∞.

Corollary 3.2. Under the assumptions of Theorem 3.1, it holds that

E[|f̂n(ξ0)− f (ξ0)|2] → 0 as n → ∞.

In order to prove these results, we establish some auxiliary lemmas.

Lemma 3.1. For each η ∈ M and n ∈ N,∫
BM(η,bn)

1

b
p
n θη(z)

K

(
dg(η, z)

bn

)
dυg(z) = 1. (3.1)

Proof. Consider the exponential chart (U,ψ) of (M, g) introduced in Section 2.2 and set
z := expη(x), B(0, bn) := expη BM(η, bn). Note that by definition (see [22, p. 65] for details)
the Jacobian of the transformation ‖g(x)‖1/2 coincides with θη(expη(x)). The integral in (3.1)
can thus be expressed as∫

B(0,bn)

1

b
p
n θη(expη(x))

K

(‖x‖
bn

)
‖g(x)‖1/2 dx =

∫
B(0,1)

K(‖y‖) dy = 1. �

The calculations in the proof of this lemma lead to the useful equality∫
BM(η,bn)

1

θη(z)
dυg(z) =

∫
B(0,bn)

‖g(x)‖1/2

θη(expη(x))
dx =

∫
B(0,bn)

dx = b
p
nωp. (3.2)

We next give an asymptotic bound for the bias of f̂n.

Lemma 3.2. For any η ∈ supp f and n ∈ N,

bias f̂n(η) := |E[f̂ n(η)] − f (η)| ≤ b2
nC2K2.

Proof. Let η ∈ supp f . By the Campbell theorem,

E[f̂n(η)] =
∫
M

Fn(η, z)f (z) dυg(z) = E[Fn(η, ξ0)]. (3.3)
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Due to Lemma 3.1, and (K2), we have

|E[Fn(η, ξ0)] − f (η)| =
∣∣∣∣
∫
BM(η,bn)

1

b
p
n θη(z)

K

(
dg(η, z)

bn

)
(f (z)− f (η)) dυg(z)

∣∣∣∣.
Consider now a normal neighborhood η ∈ U ⊂ M and a point x = (x1, . . . , xp) ∈ TηM
in normal coordinates, i.e. z = expη(x). Furthermore, define f̃ := f ◦ expη. The Taylor
expansion of f (z) around η in normal coordinates is

f (z) = f̃ (x) = f̃ (0)+ ∇f̃ (0) · x + R2(0, x),

where R2(0, x) = O(x�D2f̃ (0)x) is the second-order remainder. From assumption (F2), we
have |R2(0, x)| ≤ C2‖x‖2 for all x ∈ B(0, bn), hence passing to the exponential chart as in the
proof of Lemma 3.1 yields∣∣∣∣

∫
BM(η,bn)

1

b
p
n θη(z)

K

(
dg(η, z)

bn

)
(f (z)− f (η)) dυg(z)

∣∣∣∣
=

∣∣∣∣
∫
B(0,bn)

1

b
p
n

1

θη(expη(x))
K

(‖x‖
bn

)
(f̃ (x)− f̃ (0))‖g(x)‖1/2 dx

∣∣∣∣ (3.4)

=
∣∣∣∣
∫
B(0,bn)

1

b
p
n

1

θη(expη(x))
K

(‖x‖
bn

)
R2(0, x)‖g(x)‖1/2 dx

∣∣∣∣ (3.5)

≤ C2

∫
B(0,bn)

1

b
p
n

K

(‖x‖
bn

)
‖x‖2 dx

= C2b
2
nK2.

Equality (3.5) follows from (K5) due to

∫
B(0,bn)

1

b
p
n

K

(‖x‖
bn

)
∇f̃ (0)x dx =

d∑
i=1

∫
B(0,bn)

1

b
p
n

K

(‖x‖
bn

)
∇f̃ (0)ixi dx

=
d∑
i=1

∇f̃ (0)i
∫
B(0,bn)

1

b
p
n

K

(‖x‖
bn

)
xi dx

= ∇f̃ (0)
∫
B(0,bn)

1

b
p
n

K

(‖x‖
bn

)
x dx︸ ︷︷ ︸

=0

= 0. �

Lemma 3.3. For any n ∈ N,∫
M

E[F 2
n (η, ξ0)] dυg(η) ≤ Cθ ωpK

2
0

b
p
n

,

with Cθ as in Theorem 3.1.

Proof. Applying Fubini’s theorem, we write∫
M

E[F 2
n (η, ξ0)] dυg(η) =

∫
M

I (z)f (z) dυg(z), (3.6)
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where

I (z) =
∫
BM(z,bn)

1

b
2p
n θ

2
z (η)

K2
(
dg(η, z)

bn

)
dυg(η).

Define Cθ(z) := supη∈BM(z,r0) θz(η)
−1, which is finite because of (B1). By assumption (K4)

and (3.2),

I (z) ≤ Cθ(z)K
2
0

b
p
n

∫
BM(z,bn)

1

b
p
n θz(η)

dυg(η) = Cθ(z)ωpK
2
0

b
p
n

.

Substituting this estimate into (3.6) completes the proof. �
Proof of Theorem 3.1. By Fubini’s theorem,

E[‖f̂n − f ‖2
2] =

∫
M

E[|f̂n(η)− f (η)|2] dυg(η) =:
∫
M

J(η) dυg(η).

Note that J (η) = var(f̂n(η))+ (bias f̂n(η))2. In view of (3.3) and the Campbell theorem, we
obtain

var(f̂n(η)) = E[f̂ 2
n (η)] − (E[f̂n(η)])2

= 1

λ2|B ′
n|2

E

[∑
i≥1

1{Yi∈B ′
n}F

2
n (η, ξi)

]

+ 1

λ2|B ′
n|2

E

[ ∑ �=

i,j≥1

1{Yi ,Yj∈B ′
n}Fn(η, ξi)Fn(η, ξj )

]
− E[Fn(η, ξ0)]2

= 1

λ|B ′
n|

E[F 2
n (η, ξ0)] + α(2)(B ′

n × B ′
n)

λ2|B ′
n|2

E[Fn(η, ξ0)]2 − E[Fn(η, ξ0)]2

= 1

λ|B ′
n|

E[F 2
n (η, ξ0)]. (3.7)

Here, α(2)(·) denotes the second-order factorial moment measure of the Poisson point process
� := {Yi}i≥1. We refer the reader to [26, Chapter 1] for further definitions and formulas
related to this measure in the Poisson case. Lemmas 3.2 and 3.3 yield the existence of constants
Cθ,C2 > 0 such that

E[‖f̂n − f ‖2
2] ≤ CθωpK

2
0

λ|B ′
n|bpn

+ b4
nC

2
2K

2
2υg(M). �

Analogous arguments show the L2-convergence of f̂n(ξ0) to f (ξ0).

Proof of Corollary 3.2. Passing to normal coordinates as in (3.4) and (3.5) and setting f̃ :=
f ◦ expη lead to

E[Fn(η, ξ0)] =
∫
B(0,bn)

1

b
p
n

K

(‖x‖
bn

)
f̃ (x) dx = (1 + o(1))f (η). (3.8)

From the proof of Lemma 3.3, we thus obtain

E[F 2
n (η, ξ0)] ≤ K0Cθ(η)

b
p
n

E[Fn(η, ξ0)] ≤ 2K0Cθ(η)

b
p
n

f (η) for any η ∈ supp f. (3.9)
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In view of (3.7) and Lemma 3.2, this yields

E[|f̂n(ξ0)− f (ξ0)|2] ≤ 2CθK0‖f ‖2
2

λb
p
n |B ′

n|
+ b4

nC
2
2K

2
2 ,

which tends to 0 as n → ∞. �
Remark 3.1. The problem of finding an optimal sequence of bandwidths {bn}n∈N can be
understood as a special case of regularization [23] and the bound of the estimation error given in
Theorem 3.1 can be used in order to find it. For any fixed n ∈ N, the optimal bandwidth will be
arg minbn E[‖f̂n − f ‖2

2]. Applying Theorem 3.1, we can approximate the order of magnitude
of this optimal bn by minimizing the upper bound of the mean-square error

e(bn) := CθωpK
2
0

λ|B ′
n|bpn

+ b4
nC

2
2K

2
2υg(M).

A simple calculation leads to the unique minimum point

bn,opt =
(

pCθωpK
2
0

4C2
2K

2
2υg(M)λ|B ′

n|
)1/(p+4)

.

Note that bn,opt ↓ 0 and bpn,opt|B ′
n| → ∞ as n → ∞.

We finish this section by proving that if the observation window B ′
n is large enough, then

the previous bounds provide the almost surely (a.s.) consistency of f̂n.

Theorem 3.2. Under the assumptions of Theorem 3.1, choosing bn = o(n−(1+δ)/4) and B ′
n

such that bpn |B ′
n| > n1+δ for some δ > 0,

|f̂n(η)− f (η)| → 0 as n → ∞ a.s.

for any η ∈ M such that f (η) < ∞.

Proof. For each ε > 0, Chebyshev’s inequality and the bounds used in the proof of
Corollary 3.2 yield

P(|f̂n(η)− f (η)| > ε) ≤ E[|f̂n(η)− f (η)|2]
ε2 ≤ 2CθK0f (η)

ε2λb
p
n |B ′

n|
+ b4

nC
2
2K

2
2

ε2 .

Due to the choice of bn, we have bpn |B ′
n| > n1+δ and b4

n < n−(1+δ), hence,

∞∑
n=1

P(|f̂n(η)− f (η)| > ε) ≤ c1f (η)

∞∑
n=1

1

n1+δ < ∞ for some c1 < ∞.

The almost sure convergence follows from Borel–Cantelli’s lemma. �

4. Entropy estimator

As already mentioned in the introduction, we measure the diversity of the distribution of
interest by analyzing its Kolmogorov entropy defined as

Ef := −
∫
M

f (η) log f (η) dυg(η),

where f is the density of the distribution. This section is devoted to the construction of a
consistent estimator for Ef .
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4.1. Definition of the estimator and consistency

For each n ∈ N we define

Êf (Bn) := − 1

λ|Bn|
∑
i≥1

1{Yi∈Bn} log f̂B ′
n+Yi (ξi),

where B ′
n + y denotes the translation of B ′

n by y ∈ R
d and B ′

n ⊆ Bn. The window B ′
n is

introduced for the purpose of notation and it will become relevant when proving the CLT
in Section 5. Throughout this section we have no restrictions on it and we can assume that
Bn = B ′

n.
From now on, we substitute the previous assumption (F1) by f being continuous. Note

that since M is compact, the new (F1), in particular, implies the former. With the additional
assumptions for a typical mark ξ0,

(L1) E[log2 f (ξ0)] =: L1 < ∞ and

(L2) E[(‖∇f (ξ0)‖/f (ξ0))
2] =: L2 < ∞,

we can prove L2-consistency of the estimator.

Theorem 4.1. For each n ∈ N, let {Bn}n∈N and {B ′
n}n∈N be sequences of VH-growing Borel

sets satisfying (B1)–(B3). Furthermore, assume that conditions (K1)–(K5), (F1), (F2),
(L1), and (L2) hold. Then,

E[|Êf (Bn)− Ef |2] ≤ 3

(
8K0Cθυg(M)

λ2|Bn||B ′
n|bpn

+ 4

λ2|B ′
n|

+ 32b2
nL2 + L1

λ|Bn|
)

for sufficiently large n ∈ N.

Corollary 4.1. Under the above assumptions, it follows directly from Theorem 4.1 that Êf (Bn)
is an L2-consistent estimator of Ef , i.e. E[|Êf (Bn)− Ef |2] → 0 as n → ∞.

4.2. Proof of Theorem 4.1

We start by proving the following lemma assuming that all conditions of Theorem 4.1 are
satisfied.

Lemma 4.1. For sufficiently large n ∈ N, it holds that

∫
supp f

(E[f̂B ′
n
(η)] − f (η))2

f (η)
dυg(η) ≤ 4b2

nL2.

Proof. Recall from (3.3) that E[f̂B ′
n
(η)] = E[Fn(η, ξ0)]. Using normal coordinates analo-

gously to (3.4) and (3.5) with f̃ := f ◦ expη, we obtain

|E[Fn(η, ξ0)] − f (η)| =
∣∣∣∣
∫
B(0,bn)

1

b
p
n

K

(‖x‖
bn

)
x ·

∫ 1

0
∇f̃ (tx) dt dx

∣∣∣∣
≤ bn

∫
B(0,1)

K(‖y‖)‖y‖
∫ 1

0
‖∇f̃ (tbny)‖ dt dy.
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Since bn ↓ 0, we have ‖∇f̃ (tbny)‖ = ‖∇f̃ (0)‖(1 + o(1)) for sufficiently large n ∈ N and in
view of (K2), the last expression can be bounded by

2bn‖∇f̃ (0)‖
∫
B(0,1)

K(‖y‖)‖y‖ dy ≤ 2bn‖∇f̃ (0)‖.

Hence, |E[f̂B ′
n
(η)] − f (η)| ≤ 2bn‖∇f (η)‖ for sufficiently large n ∈ N and (L2) yields

∫
supp f

(E[f̂B ′
n
(η)] − f (η))2

f (η)
dυg(η) ≤ 4b2

n

∫
supp f

‖∇f (η)‖2

f (η)
dυg(η) = 4b2

nL2. �

We now proceed to prove Theorem 4.1. Based on [1], we introduce the quantities

Ln := − 1

λ|Bn|
∑
i≥1

1{Yi∈Bn} log E[f̂B ′
n+Yi (ξi)], Mn := − 1

λ|Bn|
∑
i≥1

1{Yi∈Bn} log f (ξi).

Applying (a + b + c)2 ≤ 3(a2 + b2 + c2), a, b, c ∈ R, leads to

E[|Êf (Bn)− Ef |2] ≤ 3
(
E[|Êf (Bn)− Ln|2]︸ ︷︷ ︸

=:I1,n

+ E[|Ln −Mn|2]︸ ︷︷ ︸
=:I2,n

+ E[|Mn − Ef |2]︸ ︷︷ ︸
=:I3,n

)
,

hence, our aim is to compute an upper bound for Ii,n and each i = 1, 2, 3. First,

I1,n = 1

λ2|Bn|2 E

[∑
i≥1

1{Yi∈Bn}(log f̂B ′
n+Yi (ξi)− log E[f̂B ′

n+Yi (ξi)])2
]

+ 1

λ2|Bn|2 E

[ ∑ �=

i,j≥1

1{Yi ,Yj∈Bn}(log f̂B ′
n+Yi (ξi)− log E[f̂B ′

n+Yi (ξi)])

× (log f̂B ′
n+Yj (ξj )− log E[f̂B ′

n+Yj (ξj )])
]

=: J1 + J2.

On the one hand, note that, by definition,

h(Yi, ξi, TYi� − δ(o,ξi )) := 1{Yi∈Bn}(log f̂B ′
n+Yi (ξi)− log E[f̂B ′

n+Yi (ξi)])2

depends on (Yi, ξi) and TYi� − δ(o,ξi ). Since � is an independently marked Poisson MPP, the
Campbell–Mecke-type formula in [25, p. 129] yields

1

λ2|Bn|2 E

[∑
i≥1

h(Yi, ξi, TYi� − δ(o,ξi ))

]
= 1

λ|Bn|2
∫

Rd

∫
M

EPo!η [h(y, η,�)]f (η) dυg(η) dy,

where EP !
(o,η)

denotes expectation with respect to the reduced Palm distribution of �. Again

because� is an independently marked Poisson MPP,P !
(o,η) coincides with the distribution of�

and we obtain

J1 = 1

λ|Bn|2
∫
Bn

∫
M

E[(log f̂B ′
n+y(η)− log E[f̂B ′

n+y(η)])2]f (η) dυg(η) dy.
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Note that log x is a differentiable function, hence the mean value theorem yields

|log x − log z| = |x − z|
|(1 − γ )x + γ z| ≤ |x − z|

min{x, z} , x, z > 0 (4.1)

for some γ ∈ (0, 1). Since� is stationary and, by assumption (F1), f is continuous, f̂B ′
n+y(η)

converges to f (η) a.s. for any y ∈ R
d and η ∈ M by Theorem 3.2. Furthermore, in view

of (3.8), E[Fn(η, ξ0)] = (1 + o(1))f (η), hence, for n ∈ N large enough,

min{f̂B ′
n+y(η),E[f̂B ′

n+y(η)]} ≥ 1
2f (η). (4.2)

Applying (4.1) with x = f̂B ′
n+y(η) and z = E[f̂B ′

n+y(η)] = E[Fn(η, ξ0)], we obtain

J1 ≤ 4

λ|Bn|2
∫
Bn

∫
M

E[(f̂B ′
n+y(η)− E[f̂B ′

n+y(η)])2]
f (η)2

f (η) dυg(η) dy.

Due to (3.7) and (3.9),

J1 ≤ 4

λ|Bn|
∫
M

E[F 2
n (η, ξ0)]

f (η)2λ|B ′
n|
f (η) dυg(η) dy ≤ 8K0Cθυg(M)

λ2|Bn||B ′
n|bpn

. (4.3)

Analogously, each summand in J2 can be expressed as a function h depending on (Yi, ξi),
(Yj , ξj ), and TYi� − δ(o,ξi ) − δ(Yj ,ξj ). Hence, the Campbell–Mecke-type formula in [25,
p. 129] in the independently marked Poisson case yields

J2 = E

[ ∑�=

i,j≥1

h(Yi, ξi, Yj , ξj , TYi� − δ(o,ξi ) − δ(Yj ,ξj ))

]

= λ

∫
Rd

∫
Rd

∫
M2

E
P
o,y2 !
η1,η2

[h(y1, η1, y2, η2, �)]f (η1)f (η2) dυg(η2) dυg(η1) dy1 dy2

= λ

∫
Rd

∫
Rd

∫
M2

E[h(y1, η1, y2, η2, �)]f (η1)f (η2) dυg(η2) dυg(η1) dy1 dy2,

where the last inequality follows from the independent marking of the Poisson MPP. Applying
again Theorem 3.2, (4.1), and (3.8), we obtain, for n ∈ N large enough,

J2 ≤ 4

λ|Bn|2
∫
(Bn×M)2

cov(f̂B ′
n+y1(η1), f̂B ′

n+y2(η2))

f (η1)f (η2)
f (η1)f (η2) dυg(η2) dυg(η1) dy1 dy2.

In view of (3.3) and the Campbell theorem,

cov(f̂B ′
n+y1(η1), f̂B ′

n+y2(η2))

= E[f̂B ′
n+y1(η1)f̂B ′

n+y2(η2)] − E[f̂B ′
n+y1(η1)]E[f̂B ′

n+y2(η2)]
= 1

λ2|B ′
n|2

E

[∑
i≥1

1{Yi∈(B ′
n+y1)∩(B ′

n+y2)}Fn(η1, ξi)Fn(η2, ξi)

]

+ 1

λ2|B ′
n|2

E

[ ∑ �=

i,j≥1

1{Yi∈B ′
n+y1}1{Yj∈B ′

n+y2}Fn(η1, ξi)Fn(η2, ξj )

]

− E[Fn(η1, ξ0)]E[Fn(η2, ξ0)]
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= |(B ′
n + y1) ∩ (B ′

n + y2)|
λ|B ′

n|2
E[Fn(η1, ξ0)Fn(η2, ξ0)]

≤ 1

λ|B ′
n|

E[Fn(η1, ξ0)Fn(η2, ξ0)].

Fubini’s theorem and Lemma 3.1 yield

J2 ≤ 4

λ2|B ′
n|

∫
M2

E[Fn(η1, ξ0)Fn(η2, ξ0)] dυg(η1) dυg(η2) = 4

λ2|B ′
n|
,

which together with (4.3) leads to

I1,n ≤ 8K0Cθυg(M)

λ2|Bn||B ′
n|bpn

+ 4

λ2|B ′
n|
.

Secondly, due to the stationarity of � and the Campbell theorem, we have, for large n ∈ N,

I2,n = 1

λ2|Bn|2 E

[∑
i≥1

1{Yi∈Bn}(log E[f̂B ′
n+Yi (ξi)] − log f (ξi))

2
]

+ 1

λ2|Bn|2 E

[ ∑ �=

i,j≥1

1{Yi ,Yj∈Bn}(log E[f̂B ′
n+Yi (ξi)] − log f (ξi))(log E[f̂B ′

n+Yj (ξj )]

− log f (ξj ))

]

= 1

λ|Bn|E[(log E[f̂B ′
n
(ξ0)] − log f (ξ0))

2] + (E[log E[f̂B ′
n
(ξ0)] − log f (ξ0)])2

≤ 2E[(log E[f̂B ′
n
(ξ0)] − log f (ξ0))

2].
On the other hand, by (4.2) and Lemma 4.1, we obtain

E[(log E[f̂B ′
n
(ξ0)] − log f (ξ0))

2] ≤ 4
∫

supp f

(E[f̂B ′
n
(η)] − f (η))2

f (η)
dυ(η) ≤ 16b2

nL2,

so that I2,n ≤ 32b2
nL2.

Finally, note that Ef = −E[log f (ξ0)]. Applying once again the Campbell theorem, we
obtain

I3,n = 1

λ2|Bn|2
(

E

[∑
i≥1

1{Yi∈Bn} log2 f (ξi)

]
+ E

[ ∑ �=

i,j≥1

1{Yi ,Yj∈Bn} log f (ξi) log f (ξj )

])

+ 2

λ|Bn|E
[∑
i≥1

1{Yi∈Bn} log f (ξi)

]
Ef + E2

f

= 1

λ|Bn|E[log2 f (ξ0)] + (E[log f (ξ0)])2 + 2E[log f (ξ0)]Ef + E2
f

= 1

λ|Bn|E[log2 f (ξ0)]

= L1

λ|Bn| .

This completes the proof of Theorem 4.1. �
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Remark 4.1. The proof of Theorem 4.1 gives an explicit bound of the error that can be used
to find an optimal sequence of bandwidths. In this case analogous calculations to Remark 3.1
lead to

bn,opt =
(
pK0Cθυg(M)

4L2λ2|Bn||B ′
n|

)1/(p+2)

.

5. A CLT for entropy

If the window B ′
n satisfies B ′

n ⊂ Bn, andmn is the diameter of B ′
n, the estimator Êf (Bn) can

be seen as a normalized random sum of elements of a stationary mn-dependent random field.
In this section we present a CLT for a modified version of the original estimator.

We start by fixing some notation. In general, we use uppercase for coordinates and lowercase
for enumerating elements. For K ∈ {N,Z,R}, any j ∈ K

d will therefore be written as
j = (j1, . . . , jd), while j1, j2, . . . will denote a sequence in K

d . Moreover, we write t =
(t, . . . , t) ∈ K

d for any t ∈ K. We set Cy := ×d
k=1[0, yk) for any y ∈ R

d+ and Vj := Cj ∩ N
d

for j ∈ N
d . In particular, Ct = [0, t)d for t ∈ R+.

A random field {Xj , j ∈ K
d} is said to bem-dependent for somem > 0 if for any finite sets

I, J ⊂ K
d the random vectors (Xi)i∈I and (Xj )j∈J are independent whenever ‖i − j‖∞ > m

for all i ∈ I and j ∈ J .
In stochastic geometry, m-dependent random fields often appear in connection with models

based on independently marked MPPs. A CLT for sums ofm-dependent random fields was first
investigated by Rosén [20] and improved by Heinrich [11]. These results have been extended
in the last years to weaker dependence structures (see [8] and [25], and references therein).

5.1. Theoretical results

Our CLT is based on the following result by Chen and Shao [8] for deterministic sums of
m-dependent random fields.

Theorem 5.1. ([8, Theorem 2.6].) Let {Xi}i∈I , I ⊆ N
d , be a centered m-dependent random

field such that E[|Xi |q ] < ∞ for some 2 < q ≤ 3 and any i ∈ I . Then,

sup
x∈R

|F(x)−�(x)| ≤ 75(10m+ 1)(q−1)d
(

var
∑
i∈I

Xi

)−q/2 ∑
i∈I

E[|Xi |q ],

where F is the distribution function of (var
∑
i∈I Xi)−1/2 ∑

i∈I Xi .

We give an extension of this theorem to random sums of stationary mn-dependent random
fields indexed in R

d+. For simplicity, we assume that our observation windows are cubic, i.e.
Bn := Cpn with pn → ∞ as n → ∞.

Corollary 5.1. Let {Xn,y, y ∈ Bn}n∈N be a sequence of stationary centered mn-dependent
random fields and let � be a stationary Poisson point process on R

d+. Assume that

(A) supn∈N E[| ∑y∈�∩C1
Xn,y |q ] < ∞ for some 2 < q ≤ 3.

Then,

sup
x∈R

|Fn(x)−�(x)| ≤ 75(10mn + 11)(q−1)d |Bn|σ−q
n E

[∣∣∣∣ ∑
y∈�∩C1

Xn,y

∣∣∣∣q
]
,

where σ 2
n = var

∑
y∈�∩Bn Xn,y and Fn is the distribution function of

∑
y∈�∩Bn Xn,y/σn.
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Proof. For each j ∈ N
d and n ∈ N, define Zn,j := ∑

y∈�∩(C1+j) Xn,y . Obviously,
{Zn,j }j∈Vpn

is a stationary centered (mn+1)-dependent random field with supn∈N E[|Zn,j |q ] <
∞ for any j ∈ Vpn and 2 < q ≤ 3. Hence, an application of Theorem 5.1 with I = Vpn yields
the stated bound. �
Remark 5.1. Note that Corollary 5.1 does not require independence between the random fields
{Xn,y}y∈Bn and the point process �. If independence is provided, the Campbell theorem
together with the generalized Cauchy–Schwartz inequality and the stationarity of � lead to

E

[∣∣∣∣ ∑
y∈�∩C1

Xn,y

∣∣∣∣3]
≤ λ

∫
C1

E[|Xn,y |3] dy + λ

∫
C2

1

E[X2
n,y1

|Xn,y2 |]α(2)(dy1, dy2)

+ λ

∫
C3

1

E[|Xn,y1Xn,y2Xn,y3 |]α(3)(dy1, dy2, dy3)

≤ λE[|Xn,0|3](1 + α(2)(C2
1 )+ α(3)(C3

1))

= λE[|Xn,0|3](1 + λ2 + λ3),

where λ > 0 is the intensity of � and α(k), k = 2, 3, denotes the kth-order factorial moment
measure of � (see [26, Chapter 1] for explicit formulas in the Poisson case). Thus, we may
substitute condition (A) by

(A′) supn∈N E[|Xn,0|3] < ∞
and obtain Corollary 5.1 in the q = 3 case.

Before applying Corollary 5.1 and Remark 5.1 to our entropy estimator, we want to investi-
gate under which conditions the limiting variance exists. The following theorem is an extension
of [6, Theorem 1.8, p. 175] to random sums of wide-sense stationary random fields indexed
in R

d .

Theorem 5.2. Let {Xn,y, y ∈ R
d}n∈N be a sequence of wide-sense stationary measurable

centered random fields and let � be a homogeneous Poisson point process of intensity λ > 0
independent of {Xn,y, y ∈ R

d}. Assume that

lim
p→∞ lim sup

n→∞

∫
Rd\(−p,p)d

|cov(Xn,0, Xn,y)| dy = 0, (5.1)

and

sup
n∈N

∫
Rd

|cov(Xn,0, Xn,y)| dy < ∞. (5.2)

If the limit

σ 2 := lim
n→∞

(
λE[X2

n,0] + λ2
∫

Rd

cov(Xn,0, Xn,y) dy

)
exists and is positive, then

1

|Un| var

( ∑
y∈�∩Un

Xn,y

)
→ σ 2 as n → ∞ (5.3)

for any VH-growing sequence {Un}n∈N⊆ R
d .
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Proof. Since � is a Poisson point process independent of {Xn,y}y∈Rd , it follows from the
Campbell theorem and the wide-sense stationarity that

var

( ∑
y∈�∩Un

Xn,y

)
= λ|Un|E[X2

n,0] + λ2|Un|
∫

Rd

cov(Xn,0, Xn,y) dy

− λ2
∫
Un

∫
Ucn

cov(Xn,y1 , Xn,y2) dy1 dy2.

Following the proof of [6, Theorem 1.8], let p > 0 be arbitrary and set Gn := Un ∩ (∂Un)p,
Wn := Un \Gn, where (∂Un)p := ∂Un ⊕ B(0, p) denotes the p-neighborhood of ∂Un ⊂ R

d .
From the previous calculation, we have

λ|Un|E[X2
n,0] + λ2|Un|

∫
Rd

cov(Xn,0, Xn,y) dy − var

( ∑
y∈�∩Un

Xn,y

)

= λ2
∫
Gn

∫
Ucn

cov(Xn,y1 , Xn,y2) dy1 dy2 + λ2
∫
Wn

∫
Ucn

cov(Xn,y1 , Xn,y2) dy1 dy2

=: Rn,1 + Rn,2.

On the one hand, |Gn| ≤ |(∂Un)p| and since {Un}n∈N is VH-growing, assumption (5.2) yields

|Rn,1|
|Un| ≤ |(∂Un|)p

|Un| λ2
∫

Rd

|cov(Xn,0, Xn,y)| dy → 0 as n → ∞.

On the other hand, dist(Wn,U
c
n) ≥ p and |Wn| ≤ |Un|, hence,

|Rn,2|
|Un| ≤ |Wn|

|Un| λ
2
∫

Rd\(−p,p)d
|cov(Xn,0, Xn,y)| dy

≤ λ2
∫

Rd\(−p,p)d
|cov(Xn,0, Xn,y)| dy

and in view of assumption (5.1) the convergence in (5.3) is established. �
The same holds under weaker assumptions if the random fields {Xn,y, y ∈ R

d}n∈N are
mn-dependent.

Corollary 5.2. Let {Xn,y, y ∈ R
d}n∈N be a sequence of wide-sense stationary measurable

centered mn-dependent random fields and let � be a homogeneous Poisson point process of
intensity λ > 0 independent of {Xn,y, y ∈ R

d}n∈N. Assume that

sup
n∈N

∫
Rd

|cov(Xn,0, Xn,y)| dy < ∞. (5.4)

If the limit

σ 2 := lim
n→∞

(
λE[X2

n,0] + λ2
∫

Rd

cov(Xn,0, Xn,y) dy

)
exists and is positive, then

lim
n→∞

1

|Un| var

( ∑
y∈�∩Un

Xn,y

)
→ σ 2 as n → ∞

for any sequence of subsets {Un}n∈N satisfying |(∂Un)mn |/|Un| → 0 as n → ∞.
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Remark 5.2. The result holds, for instance, by taking cubic windows Un = Cun with
mn/un → 0 as n → ∞.

Proof. Set p = mn in the proof of Theorem 5.2. Due to mn-dependence, condition (5.1) is
trivially fulfilled and, therefore, lim supn→∞ |Rn,2|/|Un| = 0. On the other hand,

|Rn,1|
|Un| ≤ |(∂Un)mn |

|Un|
∫

Rd

|cov(Xn,0, Xn,y)| dy → 0 as n → ∞

in view of assumption (5.4) and the choice of Un. �
5.2. Application to entropy

The results of last paragraph evince that the independence between the Poisson point
process � and the sequence {Xn,y, y ∈ R

d+}n∈N is crucial in order to perform calculations.
Therefore, we need to consider the modified estimator

Ê∗
f (Bn) := − 1

λ|Bn|
∑
i≥1

1{Y ∗
i ∈Bn} log f̂B ′

n+y(ξ
∗
i ),

where �∗ := {(Y ∗
i , ξ

∗
i )}i≥1 is an independent copy of the original Poisson MPP �. The study

of the original estimator is the subject of further research and it involves MPPs whose marks
depend of their location (we refer the reader to [12], [13], and [17] for some investigations in
this direction). Moreover, we also need to assume that

(F3) infη∈supp f f (η) := c0 > 0.

This assumption, although being very restrictive, is usual in the context of entropy estimation
(see, e.g. [3]). We could substitute it by a set of slightly milder yet cumbersome assumptions
and opted for the former for ease of proofs. The aim of this section is to apply Corollary 5.1 in
order to obtain a CLT for Ê∗

f (Bn).

Theorem 5.3. Let {Bn}n∈N and {B ′
n}n∈N be sequences of observation windows in R

d+ with
Bn = Cpn , B ′

n = Cmn for some pn,mn > 0. Under the conditions of Theorem 4.1, there exists
a > 0 such that, for any n ∈ N,

sup
x∈R

|Fn(x)−�(x)| ≤ 600aλ(1 + λ2 + λ3)(10|B ′
n|1/d + 11)2d

|Bn|1/2 , (5.5)

where Fn is the distribution function of

√|Bn|
Ê∗
f (Bn)− μ̂Bn

σn

with

μ̂Bn := −�
∗(Bn)
λ|Bn| E[log f̂B ′

n
(ξ0)]

and

σ 2
n := λ var(log f̂B ′

n
(ξ0))+ λ2

∫
B ′
n

cov(log f̂B ′
n
(ξ0), log f̂B ′

n
(ξ ′
y)) dy,

where {ξ ′
y}y∈R

d+ are independent copies of ξ0.

Choosing a suitable size relation between Bn and B ′
n leads to the desired CLT.
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Corollary 5.3. If the side-lengths of the observation windows satisfy pn = m4+δ
n for some

δ > 0 and any n ∈ N, then

√|Bn|
Ê∗
f (Bn)− μ̂Bn

σn

d−→ N (0, 1) as n → ∞,

where ‘
d−→’ denotes convergence in distribution with the uniform rate of convergence of order

m
−δd/2
n given in (5.5).

5.3. Proof of Theorem 5.3

First of all, note that

√|Bn|
Ê∗
f (Bn)− μ̂Bn

σn
=:

∑
y∈�∗∩Bn

Xn,y,

where

Xn,y = 1√|Bn| σn (−log f̂B ′
n+y(ξ

∗
y )+ E[log f̂B ′

n
(ξ0)])

is a stationary centered mn-dependent random field with variance 1. Our strategy will thus
consist in verifying condition (A′) and computing the bound given by Corollary 5.1. In order
to do so we prove next some helpful lemmas.

For the ease of notation, we use f̂B ′
n+y instead of f̂B ′

n+y(ξ
′
y) and only refer explicitly to the

argument when confusion may occur. Moreover, we assume that the conditions of Theorem 5.3
hold in the subsequent lemmas without mentioning them explicitly.

We begin by proving the uniform boundedness of the third moment.

Lemma 5.1. There exists a constant c1 > 0 such that for any y ∈ R
d+ and n ∈ N

E[|log f̂B ′
n+y |3] ≤ c1.

Proof. Due to stationarity, it suffices to show that the assertion holds for E[|log f̂B ′
n
|3]. On

the one hand, by adding and subtracting log E[f̂B ′
n
], we have

E[|log f̂B ′
n
|3] ≤ E[|log f̂B ′

n
− log E[f̂B ′

n
]|3] + 3 |log E[f̂B ′

n
]|E[|log f̂B ′

n
− log E[f̂B ′

n
]|2]

+ 3(log E[f̂B ′
n
])2E[|log f̂B ′

n
− log E[f̂B ′

n
]|] + |log E[f̂B ′

n
] |3.

By Corollary 3.2, log E[f̂B ′
n
] → log E[f (ξ0)] as n → ∞. In view of (F3) and since f is con-

tinuous, any power of this quantity is also bounded. Thus, it suffices to show that E[| log f̂B ′
n
−

log E[f̂B ′
n
]|3] < ∞. For n ∈ N large, (4.1), (4.2), and assumption (F3) yield

E[|log f̂B ′
n
− log E[f̂B ′

n
]|3] ≤ 8E[|f̂B ′

n
− E[f̂B ′

n
]|3]

c3
0

for n ∈ N large,

hence, it suffices to prove that E[|f̂B ′
n
|3] is finite. Due to the Campbell theorem,

E[|f̂B ′
n
(ξ ′

0)|3] = 1

λ2|B ′
n|2

E[F 3
n (ξ

′
0, ξ1)] + 1

λ|B ′
n|

E[F 2
n (ξ

′
0, ξ1)Fn(ξ

′
0, ξ2)]

+ E[Fn(ξ ′
0, ξ1)Fn(ξ

′
0, ξ2)Fn(ξ

′
0, ξ3)], (5.6)
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where ξ1, ξ2, ξ3 are independent copies of ξ ′
0. Moreover, following the proof of Lemma 3.3 we

find constants Cθ,K0 > 0 such that, for n ∈ N large enough,

E[F 3
n (ξ

′
0, ξ1)] ≤ C2

θK
2
0

b
2p
n

(1 + o(1))E[f (ξ ′
0)],

E[F 2
n (ξ

′
0, ξ1)Fn(ξ

′
0, ξ2)] ≤ CθK0

b
p
n

(1 + o(1))E[f 2(ξ ′
0)],

as well as

E[Fn(ξ ′
0, ξ1)Fn(ξ

′
0, ξ2)Fn(ξ

′
0, ξ3)] ≤ (1 + o(1))

∫
M

f (η)4 dυg(η) = (1 + o(1))E[f 3(ξ ′
0)].

Substituting this into (5.6), we obtain

E[|f̂B ′
n
|3] ≤ 2C2

θK
2
0

λ2b
2p
n |B ′

n|2
E[f (ξ ′

0)] + 2CθK0

b
p
nλ|B ′

n|
E[f 2(ξ ′

0)] + 2E[f 3(ξ ′
0)]

for n ∈ N sufficiently large. This quantity is bounded because all expressions depending on n
tend to 0 as n → ∞. �

In the consequent lemmas we show that σ 2
n is uniformly bounded.

Lemma 5.2. There exists c2 > 0 such that, for any x1, x2 ∈ Bn and n ∈ N,

cov(log f̂B ′
n+x1 , log f̂B ′

n+x2) ≤ c2 cov(f̂B ′
n+x1 , f̂B ′

n+x2).

Proof. Adding and subtracting log E[f̂B ′
n+y1 ] respectively log E[f̂B ′

n+y2 ], Theorem 3.2,
(4.2), and assumption (F3) lead to

cov(log f̂B ′
n+x1 , log f̂B ′

n+x2) = E[(log f̂B ′
n+x1 − log E[f̂B ′

n
])(log f̂B ′

n+x2 − log E[f̂B ′
n
])]

− (E[log f̂B ′
n
] − log E[f̂B ′

n
])2

≤ 4

c2
0

cov(f̂B ′
n+x1 , f̂B ′

n+x2)

for n ∈ N sufficiently large. The result now follows for any n ∈ N with a constant c2 > 0
(maybe different from 4/c2

0). �

Lemma 5.3. There exists c3 > 0 such that, for any n ∈ N and x1, x2 ∈ Bn,

cov(f̂B ′
n+x1 , f̂B ′

n+x2) ≤ c3|(B ′
n + x1) ∩ (B ′

n + x2)|
λ|B ′

n|2
.

Proof. Applying the Campbell theorem,

cov(f̂B ′
n+x1 , f̂B ′

n+x2) = E[f̂B ′
n+x1 f̂B ′

n+x2 ] − (E[f̂B ′
n
])2
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= 1

λ2|B ′
n|2

E

[ ∑
y∈�∩(B ′

n+x1)∩(B ′
n+x2)

Fn(ξy, ξ
′
x1
)Fn(ξy, ξ

′
x2
)

]

+ 1

λ2|B ′
n|2

E

[ ∑ �=

y1∈�∩(B ′
n+x1), y2∈�∩(B ′

n+x2)

Fn(ξy1 , ξ
′
x1
)Fn(ξy2 , ξ

′
x2
)

]

− (E[Fn(ξ0, ξ
′
x1
)])2

= |(B ′
n + x1) ∩ (B ′

n + x2)|
λ|B ′

n|2
E[Fn(ξ0, ξ

′
x1
)Fn(ξ0, ξ

′
x2
)]

+ |(B ′
n + x1) ∩ (B ′

n + x2)|
λ|B ′

n|2
(E[Fn(ξ0, ξ

′
x1
)])2.

Furthermore, it follows from (3.8) that, for n ∈ N large enough,

E[Fn(ξ0, ξ
′
x1
)Fn(ξ0, ξ

′
x2
)] =

∫
M3
Fn(μ, z)Fn(z, η)f (μ)f (z)f (η) dυg(μ, z, η)

= (1 + o(1))
∫
M

f (z)3 dυg(z)

= (1 + o(1))E[f 2(ξ0)]
as well as

E[Fn(ξ0, ξ
′
x1
)] =

∫
M2
Fn(μ, z)f (μ)f (z) dυg(μ, z) = (1 + o(1))E[f (ξ0)].

Thus, the assertion holds with c3 = 2E[f 2(ξ0)] + 4(E[f (ξ0)])2 > 0 for n ∈ N large and for
any n ∈ N with maybe a different constant c3 > 0. �

Finally, by Corollary 3.2 and analogous arguments involved in (4.1)–(4.3), it follows that
log f̂B ′

n
(ξ0) converges to log f (ξ0) in L2. Therefore, E[log2 f̂B ′

n
] → E[log2 f (ξ0)] as n → ∞

and since E[log2 f (ξ0)] < L1 by assumption (L1), E[log2 f̂B ′
n
] can be bounded by some

constant L̃1 > 0 uniformly on n ∈ N. On the other hand, Lemmas 5.2 and 5.3, and the
mn-dependence yield∫

Rd

|cov(log f̂B ′
n
, log f̂B ′

n+y)| dy =
∫
B ′
n

|cov(log f̂B ′
n
, log f̂B ′

n+y)| dy

≤ c1c2

λ|B ′
n|2

∫
B ′
n

|B ′
n ∩ (B ′

n + y)| dy

= c1c2

λ22d
< ∞.

In the next lemmas we ensure that σ 2
n can be uniformly bounded from below. Recall that we

are assuming that the density f is continuous.

Lemma 5.4. The estimator f̂B ′
n+y(ξ

′
y) is uniformly bounded with respect to y ∈ R

d+ and n ∈ N

almost surely.

Proof. By stationarity it suffices to prove the assertion for f̂B ′
n
(ξ0). Note that ξ0 is a generic

mark that is independent of the MPP �. From Theorem 3.2 and since M is compact and f
continuous, we have f̂n(η) → f (η) ≤ ‖f ‖∞ as n → ∞ a.s., and, hence, f̂n(η) ≤ ‖f ‖∞ + ε

a.s. for any ε > 0 and n ∈ N. The same holds for f̂B ′
n
(ξ0). �
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Lemma 5.5. There exists c4 > 0 such that

lim inf
n→∞

∫
B ′
n

cov(log f̂B ′
n
(ξ0), log f̂B ′

n+y(ξ
′
y)) dy ≥ c4.

Proof. Since� is a Poisson point process, we know from [7] that it is positively associated.
On the other hand, the random variables {ξ ′

y}y∈R
d+ are positively associated as well because

they are i.i.d. (see [6, Theorem 1.8]). Therefore, by [6, Corollary 1.9], the random field
{f̂B ′

n+y(ξ
′
y)}y∈R

d+ is positively associated. Using the characterization of positively associated
random fields given in [6, Remark 1.4], this means that, for any nondecreasing functions
h, g : R → R such that the expectations forming the covariance cov(h(f̂B ′

n+y1), g(f̂B ′
n+y2))

exist, cov(h(f̂B ′
n+y1), g(f̂B ′

n+y2)) ≥ 0. In view of Lemma 5.1, we thus have cov(log f̂B ′
n+y1 ,

log f̂B ′
n+y2) ≥ 0 and since log is an increasing function, the random field {log f̂B ′

n+y}y∈R
d+ is

also positively associated.
From Lemma 5.4 we know that f̂B ′

n
≤ ‖f ‖∞ + ε a.s. for large n ∈ N, and following the

proof of [6, Theorem 5.3] with the exponential function, we obtain

cov(log f̂B ′
n
, log f̂B ′

n+y) ≥ 1

2(‖f ‖∞ + ε)2
cov(f̂B ′

n
, f̂B ′

n+y).

Together with the calculations in the proof of Lemma 5.3, this yields∫
Rd

cov(log f̂B ′
n
, log f̂B ′

n+y) dy ≥ E[f 2(ξ0)] + (E[f (ξ0)])2
4(‖f ‖∞ + ε)2λ|B ′

n|2
∫
B ′
n

|B ′
n ∩ (B ′

n + y)| dy

= E[f 2(ξ0)] + (E[f (ξ0)])2
4(‖f ‖∞ + ε)2λm2d

n

(∫ mn

0
(mn − y) dy

)d

= E[f 2(ξ0)] + (E[f (ξ0)])2
(‖f ‖∞ + ε)2λ2d+2

=: c4 > 0

and the result follows with maybe a different constant c4. �
Proof of Theorem 5.3. Recall that

Xn,y = 1√|Bn| σn (−log f̂B ′
n+y(ξ

∗
y )+ E[log f̂B ′

n
(ξ0)]).

On the one hand, applying the Cauchy–Schwartz inequality, Lemma 5.1 and Lemma 5.5, we
obtain, for n ∈ N large,

E[|Xn,0|3] ≤ 8E[|log f̂B ′
n
(ξ∗

0 )|3]
|Bn|3/2σ 3

n

≤ 8c1

|Bn|3/2σ 3
n

≤ 8a

|Bn|3/2

with a ≥ c1(λc4)
−3/2. Corollary 5.1 and the bound in Remark 5.1 finally yield

sup
x∈R

|Fn(x)−�(x)| ≤ 600aλ(1 + λ2 + λ3)(10|B ′
n|1/d + 11)2d

|Bn|1/2
as desired.

This completes the proof of Theorem 5.3. �
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