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I. INTRODUCTION AND SUMMARY

This paper presents a normative model for the sequential re-
insurance and dividend-payment problem of the Insurance Company
(I.C.). Optimal strategies are found in closed form for a class of
utility functions. In some sense the model studied can be viewed
as an adaptation of Hakansson's investment-consumption model
of the individual [3] or a generalization of Frisque's model for the
dynamic management of an I.C. [2].

In Section 2 the model is formulated as a discrete time dynamic
programming problem. The objective of the I.C. is assumed to be
maximization of the expected utility of the dividend streams paid
to stock/policy-holders (s/p-holders). The initial reserves level is
assumed to be known. The premiums to be collected in each
period for selling policies are known in advance. The losses due to
claims from policy-holders are random variables independent from
period to period. In each period the I.C. must decide on the portion
of the reserves to be paid as dividends and on the form and level
of reinsurance with a reinsurer that quotes prices for any contract.

Optimal strategies in closed form are found in Section 3 when
the utility function of the I.C. is given by the discounted sum of
one-period utilities of dividends; and when the one-period utilities
belong to the linear risk-tolerance class, which is given by: (la)
u(x) = (ax + b)e+1ja(c + 1); ax + b > 0, ac < o. (Ib) u(x) =
log(ax + b); ax + b > 0. (II) u(x) = — e-™; y > o.

The results of Section 3 are discussed and interpreted in Section 4.
The optimal dividend payments are found to be linear in the
reserves level; while the optimal reinsurance treaty transforms
the reserves level (as a function of the losses) in such a way that
its form is independent of the prereinsurance total wealth of the
I.C. It only depends on the I.C.'s utility function, the prices quoted

* This study is based on my Ph.D. thesis submitted to the University of
California, Berkeley (1975). I am grateful to Professor W. S. Jewell (Chair-
man) as well as to Professors Nils Hakansson and David Gale for many
helpful comments and criticisms.
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by the reinsurer and the probability density function of the prere-
insurance losses.

Finally, in Section 5 we discuss a generalization to include
expenditures for promotion of sales and an extension to multipli-
cative utilities.

2. FORMULATION OF THE MODEL

2.1. The description of the Insurance Company

The I.C. is faced with a N-period problem. The periods are num-
bered backwards, thus the interval (t, t — 1) is the tth period.
We will use the following notation:

ft'- premiums collected by selling policies during period tf.They
are assumed to be collected at the end of the period for
simplicity and they are known in advance.

\t '• claims paid to policy-holders during period t — a random
variable which takes values on the internal Xt and whose
value will be denoted by xt. For simplicity it is assumed that
claims are paid at the end of the period and are independent
from period to period.

Ct: dividends paid to s/p-holders at start of period t (decision
variable).

Rt: level of reserves at start of period t before dividends are paid.
<pt(x): probability density function of the r.v. £t.

2.2. The utility function of the I.C.

We will assume that the utility function of the I.C. over possible
streams of dividends C = CN, . . . ., Ci, Co is given by one of the
three forms: *

(S) Discounted Sum:
N

U(C) = 2 «.ku{CN-k);o < a < 1
£ - 0

(MP) Multiplicative Positive:

U(C) = n »(C*-*);«(•) > o

i -o

(MN) Multiplicative Negative:

U(C) = — n [— u{CW-k)];u(.) < o
* - 0

* For justification and discussion of these forms see [4], [5].
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In each case the objective of the I.C. is to maximize the expected
value of U{C).

In the following we will concentrate on the form (S). The forms
(MP) and (MN) are briefly discussed in Section 5. For more details
the interested reader is referred to [6].

2.3 Reinsurance

We assume that in each period t there is a reinsurer who accepts
any risk for the appropriate premium. The way he quotes premium
is the following.

For any claims random variable \t (value denoted by xtzXt)
whose probability distribution he knows, the reinsurer assigns a
price function. Pi,{xt) > ° such that the premium for assuming a
contract Z^t), which promises to pay to the cedent f Zt(xt) at the
end of period t depending on the outcome xt of the random variable
\t, is given by:

Pt[Zt{lt)] = J Zt(x)Pi,(x)dx (1)

As a marginal case consider the contract Zt(x) = 1; VxeXt

which pays $1 to the cedent at the end of period t under any event.
The premium or present value of $1 asked by the reinsurer is

Pt[i] = ! Pi,{x)dx = nt < 1 (2)
xi

I Tlt

In other words, is the interest rate for period t.

The description of the reinsurance process above implies that:

1) There are no transaction costs in reinsuring.
2) Borrowing and lending rates are the same.
3) Reinsurance contracts have a span of one period. That is at

the end of each period when the risks realize (the value of \ is
observed) the contracts are fulfilled and then cease to exist.

In the following we will denote by Pt(x) the price function of
the claims r.v. Z,t of period t to avoid the complexity of the notation
P^t).

2.4 Dynamic Programming formulation

At the start of period t the I.C.'s reserves level is Rf. It immedi-
ately pays dividends Q thus remaining with Rt — Ct which by the
end of the period grow to (Rt — Ctj/izt where

nt = J Pt(x)dx (3)
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At the end of the period the I.C. collects premiums pt and
pays claims x (the value of \t) and thus, if it conducted no rein-
surance, the reserves level for the next period (t — i) would be

Rt — Ct
Ru

t_l(x) = + pt — x. With reinsurance, however, the I.C.

sells to the reinsurer R^^x) and buys Rt_1(x) so that the budget
constraint

Rt-i(x)Pt(x) = I [ ~ ^ + Pt->\ Pt{x)dx (4)

is satisfied.

It will be useful to denote the premium demanded by the re-
insurer for assuming the risk \t by

9t = J xPt{x)dx (5)
xi

Now let

ft{Rt) '• the maximum expected utility for a ^-period problem with
initial reserves level Rt.

Then the problem of an I.C, whose utility function is of the form
(S) above, can be written as a Dynamic Programming problem:

ft(Rt) = max {u(Ct) + a£[/t_i(i?f_i(^))]}; o < a < I (6)
c\, R, - ,

subject to the budget constraint (4) and with boundary condition,

MRo) = u(R0) (7)

3. CLOSED FORM SOLUTIONS

The D.P. problem formulated by (4), (6) and (7) cannot in general
be solved analytically. In this section we will find closed form
solutions to the problem when we additionally assume that the
one-period utility function of the I.C. belongs to the Linear Risk-
Tolerance (LRT) class.

u"{x)
The quantity — T7T *s known as the absolute risk aversion

u'(x) .
index (Pratt [7]). The inverse, — „, . is known as the risk-toleranre

u (x)
index. The LRT class is then defined as the solutions to the equation

u' (x) ax -f b
( 8 )
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where g, a, b reals and u"(x) < o and u'(x) > o.

It can be shown that the solutions to (8) are

(ax + b)c + 1

u(x) = —:———\> c ̂  — i, ax 4- b > o, ac < o (la)

i
u(x) = - log(flA; + b); ax + b > o, a > o (Ib)

i

u(x) = - (i — <?~Ya:); — co < # < + oo, y > o (II)

It will be useful later to split class la into:

a > o, c < — i —»-«(•) < o

a > o, — i < c < o -->- M( •) > o (Ia2)

« < o , c > o —>-«(•)< o (las)

Theorem la (Model la)

If u(x) belong to class (la) then the solution to the ^-period prob-
lem as described by (6) subject to (4) and (7) is unique and is
given by

ft(Rt) = Dtu(AtRt + Bt) (9)

The optimal dividend strategy is

C*t =AtRt + Bt (10)

The optimal reinsurance strategy transforms the wealth of the
I.C. to

r
[A

as long as the initial reserves Rt satisfy the condition:

a(AtRt + Bt) + b > o (12)

where

m,
^ = i+A-i^lfc.^>i (13)

1

At = — , o < At < 1 (14)

L>t

[ t \ t t b mt

* + +

[

https://doi.org/10.1017/S0515036100006322 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006322


OPTIMAL REINSURANCE AND DIVIDEND PAYMENT STRATEGIES 39

can be calculated recursively starting with

Do = 1, Ao = 1, Bo = 0

and

- /- - / Kir w <i6>
Proof: The proof is inductive showing the result to be valid for a
i-period problem and then proving the induction step from t — i
to t.

One period problem (t = i)

The DP relation (6) becomes for t = i

= max (M(CI) + a£[w(i?o(£i))]} (17)

subject to (4) which for t = 1 becomes,

J Ri(x)Pi{x)dx = fli — Ci + ^im — pi (18)

Fix. C\. To maximize the second term in (17) subject to (18)
according to the calculus of variation R*o (•) must be chosen so that

where X is to be determined by substituting in (18).

Using the fact that «(•) belongs to class la we solve (19) to find
| i / c b

- ~ (20)

Upon substitution of (20) in (18) we find

a I b
yilc _ I ~Ry Q1 _(_ plTZl pi + — :

mi \ a
with pi, ni\ defined in (5) and (16) respectively.

Substituting (20) and (21) in (17) we obtain after some algebra:

b

(22)

where we have used the identity:
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The second term in the RHS of (22) is strictly concave as long as

a(Ri — Ci + pim — pi) + 6 TTi > o (24)

while the first term, u(Ci), is strictly concave as long as

aCi + b > 0 (25)

Differentiating the maximand in (22) w.r.t. Ci and equating to
zero we obtain the unique optimal dividend strategy

C*1 = AlR1+Bl (26)

with Ai,Bi as defined in (14) and (15).

Further, when Cx is given by (26) the conditions (24) and (25)
are equivalent and thus the only condition required is

a{AiRx + Bi) + b > o (27)

Finally, substituting (26) in (22) we obtain

fi(Ri) = Diu(AiRi + Bi)

which is in the desired form.

The t-period problem

We assume that the theorem holds for a (t — 1)-period prob-
lem and we show that it holds for a ^-period problem. The argu-
ments are similar and we will thus be rather brief (a more detailed
proof can be found in [6]).

We first fix Ct and we find that the optimal post-reinsurance
wealth i?*_!(5f) must satisfy

X1/c \PU)V'e b Bt_,

where

} ' c 1 f Bt.i -Kt bnt']
173 f 1 1 1 1 _ 1, = — \Kt — w + pfKt — Pt T" "7 + ~AL f i mt I At-x mt aAt-iiaAt-

Substitution of (28), (29) in (6) yields

ft(Rt) = max )u(Ci) + ~: ; : [Rt — Ct + pt^t — P*

(29)

aATltt S (30)

Differentiating the maximand w.r.t. Ct and setting equal to zero
we find the unique optimal dividend:

q = AtRt+Bt (31)
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as long as Rt is such that

a(AtRt + Bt) + b > o (32)

Finally substituting (31) in (29) and using the definitions of At, Bt

in (14) and (15) we obtain (11) and the Theorem is proved.

Remark: If for a t-period problem the initial reserves Rt are such
that a(AtRt + Bt) + b > o and the optimal strategies (10) and
(11) are followed, then at the start of period t — 1 the reserves
Rt-i will again satisfy a(At-i Rt-i + Bt-i) + b > o. To see this
we only need to observe (11). This means that following the op-
timal strategies for a ^-period problem we are guaranteed that
we will be able to reapply them for a t — 1 period problem with
no further conditions.

Theorem Ib (Model Ib)

If n(x) belongs to class (Ib) then the solution to the ^-period
problem as described by (6) subject to (4) and (7) is unique and
is given by

ft(Rt) = Dtu(AtRt + Bt) + Et (33)

The optimal dividend strategy is

C't=AtRt + Bt (34)

The optimal reinsurance strategy transforms the wealth of the
I.C. to

b\ q>,(L) b B, x
AtKt + Bt + „ p It: \ — nA —A (35)

as long as the initial reserves Rt satisfy the condition:

a{AtRt + Bt) + b > 0 (36)

where

Dt = i

At =

Ptizt 9t -f

a
Et= - Dt-

+ xDt-i

i

T) ' ° —

Bt-1

At~\ nt

i [log a +

, Dt>

At < i

bnt

aAt.

•?«] + «

i

a b~\

.1 At-i a]

Et-i

(37)

(38)

(39)

(40)
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can be calculated recursively starting with

Do = I, Ao = i, Bo = o, Eo = o (41)

and

qt = E |̂ log \ ^ 7 y j j (42)

Proof: is similar to that of Theorem la and is deleted. For more
details see [6].

Remark 1: Except (33), (40), (42) all the results of Theorem Ib can
follow from Theorem la by letting c -> — 1 and mt —> 1.

Remark 2: The Remark at the end of Theorem la again holds as it
can be checked by observing (35).

Theorem II {Model II)

If u(x) belongs to class (II) then the solution to the ^-period
problem as described by (6) subject to (4) and (7) is unique and is
given by

ft(Rt) = Dtu{AtRt + Bt) + Et (43)

The optimal dividend strategy is

C* = AtRt+Bt (44)

The optimal reinsurance strategy transforms the wealth of the
I.C. to

1 B, , log a 1
4 ^ t 4

At-\ At-i YAt-1 YAt 1
(45)

where

Dt = 1 + ntDt-u Dt > 1 (46)

1
At = ^ , o<At < 1 (47)

r B( 1 wt iit ]
^< = At \p(Kt — P« + 1 7c( + --T-- — —. log a (48)

L At-i ~(A t -1 yA t\ J

Et = (a — nt) + a.Et-i (49)
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can be calculated recursively starting with

Do = 1, Ao = 1, Bo = o, Eo = 0

and
I I1'AX)\

dx (50)

Proof: Similar to that of Theorem la. An outline of the proof
appears in [6].

4. INTERPRETATION OF THE OPTIMAL STRATEGIES

4.1 The dividend strategy
In all Models the optimal dividend strategy is linear in the

reserves level at the start of the period. In our formulation the
dividends were not restricted to be positive. Negative dividends
would, of course, mean that the s/p-holders agree that an increase
in the reserves now is desirable for better profits in the future. If,
however, we insist that dividends should be non-negative we can
easily achieve it by restricting to Models Iai, Ia2, Ib with — bja > o.
In the case of Model II, a sufficient condition to guarantee the non-
negativity of dividends for a iV-period problem is ANRN + BN > 0

Pt(x)
and a > —j-r ; xzXt, t = N, . . ., 1. This can be seen by looking

at (45). A necessary condition for the latter is a > izt for all t.

4.2 The reinsurance strategy

(Pt(h\llc

We can interpret —rz~r as a unit of -post-reinsurance risky

asset for Model la. The name is suggested by observing (11) since

——- is the only quantity which is a function of the outcome
of the random variable \t and its form is independent of the initial
wealth of the I.C. In this sense, mt can be interpreted as the cost of
a unit of post-reinsurance risky asset. Similarly, in Model Ib (35)
the unit of post-reinsurance risky asset is „ . and its cost is 1.

In Model II (45) the unit of risky asset is log —jrrr and its cost is wt.
9t(Zt)

In Models la, Ib the amount of risky asset increases linearly
with the initial reserves level, while in Model II the amount of risky
asset is fixed independent of the reserves level.
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If is non-decreasing in x then the post-reinsurance wealth

of the I.C. is non-increasing in x in all Models. This of course means
that the I.C. participates positively in the risk. That is, the larger
the claims x paid to the policy-holders, the less the wealth of the

Pt(x)
I.C. after reinsurance. We can think of —--- as the loading factor.

?t(x)
An increasing loading factor then means that the reinsurer asks
for a greater loading to a certificate that guarantees final reserves
of $i to the cedent when the claims x paid to the policy-holders
are large than when they are small.

Further, in Models la and Ib the post-reinsurance wealth Rt-i{Z,t)
Rt(x)

Models Iais Ia2

upper bound

Model la.

Model Ib Model II

Figure i. The post-reinsurance wealth Jit(x) as a function of the claims x.
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of the I.C. satisfies the condition a(At-iRt-i(^t) + Bt~i) + b > o.
This condition imposes upper or lower bounds on Rt- i(£j) depending
on the sign of a which is negative for Model Ia3 and positive for
Models Iai, Ia2 and Ib (see Figure i).

The negativity of a makes Class Ia3 the only one with an in-
creasing risk-aversion index (Classes Iai, Ia2, Ib have decreasing
while Class II has a constant risk-aversion index). Thus Class Ia3
(to which also the quadratic utility function belongs) must be ap-
plied with caution as it is doubtful whether it has meaning in real
life (for a discussion of this point see Arrow [i]).

5. GENERALIZATIONS - EXTENSIONS

(a) All Models can be easily extended to an infinite horizon by
simply letting the number of periods N tend to infinity. The
optimal strategies remain qualitatively the same.

(b) All Models can be generalized to include a decision on ex-
penditures to promote sales if we assume that the sales volume is a
concave function of the money spent. The optimal dividend and
reinsurance strategies remain essentially the same. This is in-
tuitively expected by observing that the quantity pt (premiums
collected from policy-holders) appears only in the constant Bt and
not in At or Dt or Et.

(c) Multiplicative Utilities. If instead of the form (5) we assume
that the I.C.'s utility over dividend streams is given by (MN) or
(MP) (Section 2.2) we can again find closed form solutions but only
when (MN) is coupled with the Class Iai of utility functions or
(MP) with Class Ia2. The results are similar in nature with those of
Section 3. Again the optimal dividend strategy is linear in the
leserves while the form of the post-reinsurance wealth of the I.C. is
independent of its initial wealth. It only depends on the price func-
tion, the probability density function of the claims, the one-period
utility function of the I.C. and the number of periods remaining.

These extensions-generalizations are treated in detail in [6].
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