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Abstract

Mediation analysis is one of the most popularly used methods in social sciences and related areas. To
estimate the indirect effect, the least-squares regression is routinely applied, which is also the most efficient
when the errors are normally distributed. In practice, however, real data sets are often non-normally
distributed, either heavy-tailed or skewed, so that the least-squares estimators may behave very badly.
To overcome this problem, we propose a robust M-estimation for the indirect effect via a general loss
function, with a main focus on the Huber loss which is more slowly varying at large values than the squared
loss. We further propose a data-driven procedure to select the optimal tuning constant by minimizing the
asymptotic variance of the Huber estimator, which is more robust than the least-squares estimator facing
outliers and non-normal data, and more efficient than the least-absolute-deviation estimator. Simulation
studies compare the finite sample performance of the Huber loss with the existing competitors in terms of
the mean square error, the type I error rate, and the statistical power. Finally, the usefulness of the proposed
method is also illustrated using two real data examples.
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1. Introduction

In social sciences and related areas, the effect of an exposure on the outcome variable is often mediated
by an intermediate variable. Mediation analysis aims to identify the direct effect of the predictor on
the outcome and the indirect effect between the same predictor and the outcome via the change in a
mediator (MacKinnon, 2008). Since the seminal paper of Baron and Kenny (1986), mediation analysis
has become one of the most popular statistical methods in social sciences. Empirical applications of
mediation analysis have dramatically expanded in sociology, psychology, epidemiology, and medicine
(Lockhart et al., 2011; Newland et al., 2013; Ogden et al., 2010; Richiardi et al., 2013; Rucker et al., 2011).
In practice, however, researchers have found that the assumptions of traditional mediation analysis
methods, e.g., normality and no outliers, do not match the data they collected, which may lead to
misleading results (Preacher, 2015; Yuan & MacKinnon, 2014). To overcome the problem, it is often
required to adopt some sophisticated models for mediation analysis (Frölich & Huber, 2017; Lachowicz
et al., 2018; VanderWeele & Tchetgen, 2017). For more details on mediation analysis, one may refer to
the recent books including, for example, MacKinnon (2008), VanderWeele (2015), and Hayes (2023).
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One important issue in mediation analysis is to conduct the inference on the indirect effect,
with a main focus on testing its statistical significance. In this direction, the first approach is the
causal steps approach (Baron & Kenny, 1986), which specifies a series of tests of links in a causal
chain. Moreover, some variants of this method that test three different hypotheses have also been
proposed (Allison, 1995; Kenny et al., 1998). The second approach is the difference in coefficients
approach (Freedman & Schatzkin, 1992), which takes the difference between a regression coefficient
before and after being adjusted by the intervening variable. The third approach is the product of
coefficients approach which involves paths in a path model (MacKinnon et al., 1998, 2004; Sobel, 1982).
MacKinnon et al. (2002) compared 14 methods of testing the statistical significance of the indi-
rect effect and found that the difference in coefficients approach and the product of coefficients
approach have a better control on the type I error rate as well as a higher power in most cases. And
between them, the product of coefficients method is more widely used mainly thanks to its clear
causal path explanation (MacKinnon et al., 2004; Preacher & Hayes, 2008; Preacher & Selig, 2012;
Yuan & MacKinnon, 2014).

To estimate the indirect effect, the least-squares (LS) regression is routinely applied, which is also
the most efficient when the errors are normally distributed. In practice, however, real data sets are
often non-normally distributed, either heavy-tailed or skewed (Field & Wilcox, 2017). As an example,
Micceri (1989) examined 440 data sets from the psychological and educational literature and found
that none of them were normally distributed at the α = 0.01 significance level. When applied to non-
normal data sets, the LS estimators may behave very badly (Huber & Ronchetti, 2009). To circumvent
such drawbacks, some robust approaches have recently emerged in the mediation literature. Zu and
Yuan (2010) adopted the local influence function to identify the strongly-affected outliers. Yuan and
MacKinnon (2014) proposed the least-absolute-deviation (LAD) regression when the errors are heavy-
tailed, and moreover, Wang and Yu (2023) established the statistical theory for the LAD estimation of
the indirect effect. Lastly, as claimed by Preacher (2015), mediation analysis for non-normal variables
has become an active research field.

To move forward, it is noteworthy that the LS and LAD estimators are special cases of the
M-estimators, which minimize a specified loss function (Hansen, 2022; Serfling, 2001). Another
popular loss function in the M-regression is known as the Huber loss function, which utilizes a tuning
parameter to adjust the tail of the standard normal distribution (Huber, 1964). This tuning parameter
controls the trade-off between the efficiency and robustness. Wang et al. (2007) found that the Huber
loss function with the optimal tuning parameter can greatly improve the efficiency when maintaining
the robustness. To the best of our knowledge, little work has been done on estimating the indirect effect
from the perspective of the optimal loss.

This article proposes to further advance the literature by developing robust estimation of the indirect
effect. To be specific, our approach mainly alleviates effects in the response variable and implicitly
assumes that there is no large leverage points in the independent variables. In Section 2, we introduce
the M-regression in the simple mediation model with a general loss function. An iteratively reweighted
least-squares algorithm is also proposed to numerically solve the M-regression, as well as to construct
two robust confidence intervals. In Section 3, we propose a data-driven approach to select the optimal
tuning constant, and moreover study the statistical properties specifically for the Huber loss. In Sec-
tion 4, we conduct simulation studies to assess the finite sample performance of the Huber loss and com-
pared it with the existing competitors used in mediation analysis. We further illustrate the advantages
of our method by an empirical example in Section 5, and conclude the article in Section 6 with some
discussion.

2. Simple mediation model

The simplest mediation model is given in Figure 1, where X is the independent variable, Y is the
dependent variable, and M is the mediating variable that mediates the effects of X on Y. Given the
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Figure 1. Causal diagram of the simple mediation model.

observations (Xi,Mi,Yi) for i = 1, . . . ,n, this simple mediation model consists of three linear regression
equations as

Yi = β1+ cXi+ ε1,i, (1)

Mi = β2+aXi+ ε2,i, (2)

Yi = β3+ c′Xi+bMi+ ε3,i, (3)

where c represents the total effect of X on Y, a represents the relation between X and M, c′ represents
the direct effect of X on Y after adjusting the effect of M, b represents the relation between M and Y
after adjusting the effect of X, and the random errors εj,i,j = 1,2,3, are independent of the corresponding
regressors.

2.1. M-regression
To alleviate the effects of influential observations in the least-squares fitting, we adopt the M-regression
to estimate the regression parameters, which can be regarded as a generalization of the maximum
likelihood estimation as follows:

(β̂1, ĉ)T = argmin
β1,c

n
∑
i=1

ρ(Yi−β1− cXi), (4)

(β̂2,â)T = argmin
β2,a

n
∑
i=1

ρ(Mi−β2−aXi), (5)

(β̂3, ĉ′,b̂)T = arg min
β3,c′,b

n
∑
i=1

ρ(Yi−β3− c′Xi−bMi), (6)

where ρ(⋅) is the loss function with three properties: (i) non-negativity such that ρ(ε) ≥ 0 with ρ(0) = 0,
(ii) symmetricity such that ρ(ε) = ρ(−ε), and (iii) monotonicity such that ρ(ε) ⩾ ρ(ε′) for any ∣ε∣ ⩾ ∣ε′∣.

Let ψ(ε) = (d/dε)ρ(ε) be the first derivative of the loss function, referred to as the influence curve.
Let also X = (X1, . . . ,Xn)T , M = (M1, . . . ,Mn)T , Y = (Y1, . . . ,Yn)T , I = (1, . . . ,1)T , X̃ = (I,X), and X̌ =
(I,X,M). For large samples, we further assume that U is the limiting matrix of (n−1X̃TX̃)−1, and V is the
limiting matrix of (n−1X̌TX̌)−1. Then by Huber and Ronchetti (2009), we have the following asymptotic
normality for the M-estimators of the regression parameters.

Lemma 1. For the mediation model linked with (1)–(3), under the regularity conditions given on pages
163–164 of Huber and Ronchetti (2009), the M-estimators in (4)–(6) are all normally distributed:

√
n(ĉ− c) ∼N(0, Eε1[ψ2]

(Eε1[ψ′])2 U[2,2]),
√

n(â−a) ∼N(0, Eε2[ψ2]
(Eε2[ψ′])2 U[2,2]),
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√
n(ĉ′− c′) ∼N(0, Eε3[ψ2]

(Eε3[ψ′])2 V[2,2]),
√

n(b̂−b) ∼N(0, Eε3[ψ2]
(Eε3[ψ′])2 V[3,3]) .

Finally, based on the M-estimators in (4)–(6), we can define two new estimators of the indirect effect:
one is the difference estimator ĉ− ĉ′ and the other is the product estimator âb̂.

2.2. Solution to M-regression
For a general loss ρ(⋅), noting that the M-estimator may not have an explicit expression, a numerical
solution is often required. To present our algorithm, we will focus only on (4) since the same algorithm
can be extended to solve (5) and (6) as well. Differentiating the objective function∑n

i=1 ρ(Yi−β1− cXi)
with respect to β1,c and setting the partial derivatives to be zero, it yields a system of two estimating
equations as

n
∑
i=1

ψ(Yi−β1− cXi) = 0,

n
∑
i=1

ψ(Yi−β1− cXi)Xi = 0.

Further by introducing the weight function w(e) = ψ(e)/e, the estimating equations can be rewritten as
n
∑
i=1

wi×(Yi−β1− cXi) = 0,

n
∑
i=1

wi×(Yi−β1− cXi)Xi = 0,

where wi =w(Yi−β1− cXi). Solving these two equations is equivalent to minimizing
n
∑
i=1

wi×(Yi−β1− cXi)2,

which is a weighted LS problem. Moreover, an iteratively reweighted least-squares (IRLS) algorithm
can be appropriate to obtain the numerical solution of the regression coefficients, because the weights
depend on the regression coefficients, and the regression coefficients in turn depend on the weights
(Holland & Welsch, 1977). To also handle the multiple-minima problem, in case it has, we choose several
different points in the parameter space as the initial estimates, in such a way to get a higher confidence
to obtain the true global minimum (Green, 1984). More specifically, the IRLS algorithm for our problem
is as follows.

Algorithm 1: Iteratively reweighted least-squares

1. Choose some initial estimates θ(0) = (β(0)1 ,c(0))T , including those from the LS or LAD methods.
2. For each iteration t ≥ 1, calculate the residuals e(t−1)

i = Yi−β(t−1)
1 −c(t−1)Xi and the associated

weights w(t−1)
i =w(e(t−1)

i ).
3. Obtain the weighted LS estimates

θ(t) = (X̃TW(t−1)X̃)−1X̃TW(t−1)Y,

where W(t−1) = diag{w(t−1)
i }.

4. Repeat steps 2 and 3 until θ(t) satisfies ∥θ(t)−θ(t−1)∥2 < 10−5.
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2.3. Error conditions for model consistency
When is the product of parameters ab equal to the difference in parameters c− c′ in population? This
is an important question in mediation analysis since it uncovers the relationship between the indirect,
direct and total effects (Wang et al., 2023; Wang & Yu, 2023; Yuan & MacKinnon, 2014).

Note that the three regression equations, (1)-(3), are interrelated in the simple mediation model. By
substituting (2) into (3), we have

Yi = β3+ c′Xi+b(β2+aXi+ ε2,i)+ ε3,i

= (β3+bβ2)+(c′+ab)Xi+ εi, (7)

where εi = bε2,i + ε3,i. Assume that ε2,i and ε3,i are independent and symmetrically distributed with
median 0, then εi is also symmetric with Med[εi] = 0 (see Proposition 1 in Wang and Yu (2023)). In
addition, let ε1,i also be symmetrically distributed with Med[ε1,i] = 0. Then by (1) and (7),

Med[Yi∣Xi] = β1+ cXi+Med[ε1,i∣Xi],
Med[Yi∣Xi] = (β3+bβ2)+(c′+ab)Xi+Med[εi∣Xi].

Noting also that the random errors are independent of the corresponding regressors as assumed in
Section 2.1, we have Med[ε1,i∣Xi] =Med[ε1,i] = 0 and Med[εi∣Xi] =Med[εi] = 0, and moreover,

β1+ cXi ≡ (β3+bβ2)+(c′+ab)Xi, i = 1, . . . ,n,

which further yields that β1 = β3 +bβ2 and c = c′ +ab. Finally, by comparing (1) and (7), we also have
εi = ε1,i. For convenience, we summarize the above result in Theorem 1.

Theorem 1. In the simple mediation model, given the independence of the errors and the corresponding
regressors, we further assume that the errors are independent and symmetrically distributed with a unique
median 0 for j = 1,2,3. Then we have ab = c−c′, which builds an equality between the indirect effect, direct
effect and total effect.

Remark 1. Many error distributions satisfy the error assumption in Theorem 1. For instance, when ε2,i
and ε3,i are independent and normally distributed, Yuan and MacKinnon (2014) discussed the model
consistency. Wang and Yu (2023) further discussed the consistency conditions for the LAD loss and
obtained the similar equality as in Theorem 1.

2.4. Inference based on confidence interval
There are two estimators for the indirect effect: ĉ− ĉ′ and âb̂. Unlike the equivalence of the two LS
estimators (MacKinnon et al., 1995; Wang et al., 2023), the two M-estimators of the indirect effect for
a general loss are not the same in general, that is, âb̂ ≠ ĉ− ĉ′. Simulation studies show that the product
estimator is often more efficient than the difference estimator (see Appendix A0). Interestingly, the same
conclusion can also be seen when the LAD loss is applied (Wang & Yu, 2023). In view of this, we thus
consider the null hypothesis H0 ∶ ab = 0. To test whether ab = 0, there are two common methods in the
literature including the parameter method (Sobel, 1982) and the nonparametric resampling method
(MacKinnon et al., 2004; Preacher & Selig, 2012).

To move forward, our first method is to perform a robust Sobel test. Given the robust estimates â
and b̂, we define the robust test statistic as

Z = âb̂
ŜESobel

,
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where ŜESobel =
√

â2× ŜE2
b+ b̂2× ŜE2

a, and ŜEa and ŜEb are the standard errors (SEs) of â and b̂,
respectively. Following Theorem 1, the two SEs can be estimated by

ŜEa =
⎛
⎝

n−1∑n
i=1 ψ2(Mi− β̂2− âXi)[(X̃TX̃)−1][2,2]

[n−1∑n
i=1 ψ′(Mi− β̂2− âXi)]2

⎞
⎠

1/2

,

ŜEb =
⎛
⎝

n−1∑n
i=1 ψ2(Yi− β̂3− ĉ′Xi− b̂Mi)[(X̌TX̌)−1][3,3]

[n−1∑n
i=1 ψ′(Yi− β̂3− ĉ′Xi− b̂Mi)]2

⎞
⎠

1/2

.

Moreover, the normal-based (1−α)% CI of ab can be constructed as

[âb̂−z1−α/2ŜESobel, âb̂+z1−α/2ŜESobel],

where α is the significance level, and z1−α/2 represents the (1−α/2) quantile of the standard normal
distribution. Note however that, when a and b are small, the sampling distribution of âb̂ may not be
normal (MacKinnon et al., 2004; Wang et al., 2023). Thus to obtain an accurate CI, critical values of
the distribution of âb̂ can be obtained by Monte Carlo simulation study (Meeker et al., 1981; Meeker &
Escobar, 1994). In fact, one can easily obtain these critical values via inputting â, b̂, ŜEa and ŜEb into an
R procedure medci() which was introduced by Tofighi and MacKinnon (2011).

Our second method to construct CI is the bootstrap method based on resampling. The bootstrap
method is nonparametric and robust in the sense that it does not need to estimate the SEs. First,
we repeatedly resample the original dataset with replacement (Efron & Tibshirani, 1993); second, we
estimate the indirect effect for each bootstrap sample using our proposed Huber method; third, we
construct the CI by the percentile bootstrap (PRCT) as [qα/2,q1−α/2], where qα/2 is the α/2 quantile
of the empirical distribution of the indirect effect. To adjust and remove the potential estimation bias,
the bias-corrected and accelerated bootstrap (BCa) is an important variation (Efron, 1987; Efron &
Tibshirani, 1993). In general, the BCa method can yield a more accurate CI than the PRCT method when
the true parameter value is not the median of the distribution of the bootstrap estimates (MacKinnon
et al., 2004).

3. Robust and efficient estimation via Huber loss

From a likelihood perspective, the best loss function would be the negative log-likelihood function
(Schrader & Hettmansperger, 1980). Nevertheless, since the likelihood function is often unknown, one
needs to specify an appropriate loss function in real applications. In this section, we study the robust
and efficient estimation using the Huber loss with the optimal choice of tuning parameter. Note that our
methodology is general and can also be extended to other loss functions.

3.1. Huber Loss
The Huber loss, as defined in Huber (1964), is given as

ρH(e) = {
1
2 e2, if ∣e∣ ≤ k,
k∣e∣− 1

2 k2, if ∣e∣ > k,

ψH(e) = {
e, if ∣e∣ ≤ k,
k× sgn(e), if ∣e∣ > k,

where k > 0 is the tuning parameter. A smaller value of k produces more resistance to outliers, but at
the expense of lower efficiency when the error is normal. For instance, by letting k = 1.345σ with σ
being the standard deviation of the error, it will yield a 95% efficiency for the normal errors, which is
also resistant to outliers with a breakdown point of 5.8%. Moreover, the standard deviation σ can be
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estimated robustly by the median absolute deviation (MAD) as

σ̂MAD =Med{∣ei∣}/0.6745.

For any error ε, we denote τ = σ2
ψ/B2

ψ as the asymptotic variance of the Huber estimator (Huber, 1964),
where σ2

ψ = E[ψ2(ε)] and Bψ = E[ψ′(ε)]. We then minimize the τ value to determine the optimal ρ(⋅).
For the Huber loss with a given k, we have

Bψ(k) = ∫
k

−k
dF(ε),

σ2
ψ(k) = ∫

k

−k
ε2dF(ε)+k2(1−Bψ(k)),

where F(⋅) is the cumulative distribution function of ε.

Remark 2. As k→∞, the Huber loss becomes the LS loss so that τLS = σ2, where σ2 is the variance of
the error distribution. As k→ 0, the Huber loss becomes the LAD loss so that τLAD = 1/(4f (0)2), where
f (0) is the density value of the error distribution at 0. Based on the observational data, the optimal
tuning constant can be selected to obtain the smallest estimation variance. From this viewpoint, the
Huber estimator is more efficient than its competitors when dealing with the unknown and complex
error distributions.

3.2. Optimal Tuning constant
As is known, the tuning parameter k of the Huber loss can have a great impact on the estimation
efficiency. When the error is normally distributed without contamination, the best choice of k is ∞.
On the other hand, when the error follows a heavy-tailed distribution such as the t distribution, then k
tends to be a small value close to 0.

We adopt a numerical method proposed by Wang et al. (2007) to select the optimal tuning constant,
which minimizes the asymptotic variance of the estimator. For the Huber loss, the optimal k minimizes
the efficiency factor τ with a three-step procedure as follows. First, we compute τ(k) for a range of k
values, i.e., 0 ≤ k ≤ K by 0.001, where K is a positive number, e.g., K = 4. Second, we select the optimal
k as

kopt = arg min
0<k≤K

τ(k).

Lastly, we compute the minimum value τ(kopt). In Appendix B, we provide an R procedure to obtain
the optimal tuning constant with a known error distribution.

For ease of reference, we also list the optimal kopt and τ(kopt) in Table 1 for some error distributions,
including the standard normal distribution N(0,1), the Laplace distribution Laplace(0,1), the mixed
normal distribution 0.9N(0,1)+0.1N(0,σ2) with σ = 3 or 10, and the t distribution with 1 or 2 degrees
of freedom. In general, the Huber loss with the optimal tuning parameter k is more efficient than the
LS and LAD losses, since the less τ is, the more efficient the loss is. Moreover, to intuitively reflect the
variation trend of τ(k) as k varies, we also plot the τ(k) function for a normal mixed and t1 distributions
in Figure 2. It is evident that the value of τ(k) varies dramatically along with the k value.

3.3. Nonparametric selection of Tuning constant
Following (4) and letting ei = Yi− β̂1− ĉXi be the residuals, we propose to estimate τ nonparametrically
by

τ̂(k) =
σ̂2

ψ(k)
B̂2

ψ(k)
, (8)
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Huber loss for the mixed normal distribution
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k

τ

Huber loss for the t_1 distribution

Figure 2. τ(k) is plotted for 0.9N(0,1) + 0.1N(0,32) (left) and t1 (right). The corresponding red lines are τ(1.489) = 1.296 and

τ(0.395) = 2.278, respectively.

Table 1. Optimal k and τ(k) for various error distributions and loss

functions

Distribution kH τH(k) τLS τLAD

N(0,1) ∞ 1 1 1.571

Laplace(0,1) 0 1 2 1

0.9N(0,1)+0.1N(0,32) 1.489 1.296 1.800 1.803

0.9N(0,1)+0.1N(0,102) 1.222 1.432 10.900 1.897

t1 0.395 2.278 ∞ 2.467

t2 0.692 1.722 ∞ 2

where σ̂2
ψ(k) =n−1∑n

i=1 ψ2(ei) and B̂ψ(k) =n−1∑n
i=1 ψ′(ei). More specifically for the Huber loss, we have

B̂ψ(k) =
1
n

n
∑
i=1

I(∣ei∣ ≤ k),

σ̂2
ψ(k) =

1
n

n
∑
i=1
{e2

i I(∣ei∣ ≤ k)+k2I(∣ei∣ > k)},

where I is the 0−1 indicator function.
We propose a data-driven procedure that determines the optimal k̂ by minimizing τ̂(k), which is,

in fact, similar to Wang et al. (2007) for a linear regression model with a scale parameter σ. Our new
procedure is summarized in Algorithm 2.

Algorithm 2: Nonparametric selection of Tuning constant
1. Select the initial estimates (β̂1, ĉ)T , e.g., the LAD estimates.
2. Compute τ̂(k) for a range of k values satisfying 0.2 ≤ k ≤ 3σ̂MAD by 0.01, and then choose the

optimal k as

k̂opt = arg min
0.2≤k≤3σ̂MAD

τ̂(k).

3. Obtain the robust estimates of the regression parameters using the IRLS in Algorithm 1 with
k = k̂opt .
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Note that in the algorithm, we have specified the maximum allowable k as 3σ̂MAD, which is often
treated as sufficient since the probability that the errors fall within the interval [−3σ̂MAD,3σ̂MAD] is as
large as 99.73% for the normal errors. To further investigate the performance of the proposed method
on the selection of tuning constant k, we conduct a simulation study and report the results in Table B of
the Appendix. When the sample size is large, the selected tuning constant k is very close to the theoretical
one. Moreover, we note that the standard deviation of the tuning constant decreases dramatically as the
sample size increases. These findings coincide with the conclusion in Wang et al. (2007).

4. Simulation studies

Two simulation studies are carried out to evaluate the performance of the proposed method. Simulation
A compares the efficiency of the three estimators based on the LS, LAD, and Huber losses under
various designs, and Simulation B evaluates their type I error rate and power. For the simulation
settings, we follow Yuan and MacKinnon (2014) and Wang and Yu (2023) and set β2 = β3 = 0, c′ = 1,
and a = b = 0.14,0.39,0.59. Moreover, the sample size is set at n = 50,200,1000, corresponding to the
small, medium and large samples, and four error distributions will be considered including N(0,1),
Laplace(0,1), 0.9N(0,1)+0.1N(0,102), and t2.

For each simulated dataset, we estimate the regression parameters based on the LS, LAD, and Huber
losses, and apply the product âb̂ to estimate the indirect effect. Then with 1,000 simulations for each
setting, we compute the mean square error (MSE) to assess the estimation accuracy as follows:

MSE[âb̂] = 1
1000

1000
∑
i=1
(âb̂−ab)2.

Moreover, we apply the type I error rate and the statistical power to assess the performance of the
LS, LAD, and Huber estimators for testing H0 ∶ ab = 0. We use the robust Sobel test (Sobel Z), the
percentile bootstrap (PRCT), and the BCa methods to construct the CIs. The type I error rate denotes
the probability of incorrectly rejecting the null hypothesis when it is actually true, whereas the statistical
power refers to the probability correctly rejecting the null hypothesis when the alternative hypothesis is
true. A good testing procedure should control the type I error rate and, meanwhile, it also maximizes
the power as much as possible. In practice, the empirical type I error rate (or power) is calculated as the
proportion of CIs that do not contain zero when the indirect effect does not exist (or exists).

4.1. Efficiency of the LS, LAD, and Huber estimators
The MSE(×103) and standard deviation (SD×103) of the LS, LAD, and Huber estimators are presented
in Table 2 for various designs. Comparing the MSE of the three estimators, we have two main findings.
First, the MSE and SD of the three estimators decrease as the sample size increases. Second, the MSE
and SD of the Huber estimator are always the smallest or close to the smallest. When the error follows
N(0,1) (or Laplace(0,1)), the LS (or LAD) estimator provides the optimal estimation. In these two
cases, the Huber estimator performs very close to the performance of the optimal estimator. While
for 0.9N(0,1)+ 0.1N(0,102) and t2, the MSE of the Huber estimator is the smallest among the three
estimators. To conclude, the Huber estimator is more efficient than the LAD estimator when the error
distribution is normal, and is more robust than the LS estimator when the error distribution is non-
normal.

4.2. Type I error rate and power
We now apply the Sobel Z, PRCT and BCa methods to construct the 95% CI. Note that the medium
effect sizes (a = b = 0.39) will yield a high power even when the sample size is moderate (n = 200). Thus
to save space, we omit the simulation for the large effect size.
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Table 2. MSE (×103) and SD (×103 labeled below MSE) for the LS, LAD, and Huber estimators

a = b = 0.14 a = b = 0.39 a = b = 0.59

n LS LAD Huber LS LAD Huber LS LAD Huber

N(0,1)

50 1.19 2.22 1.69 13.9 22.25 18.2 6.29 10.26 8.34

(2.91) (4.57) (3.73) (10.44) (15.65) (13.34) (21.22) (31.61) (27.07)

200 0.24 0.39 0.28 3.83 5.82 4.42 1.69 2.58 1.95

(0.46) (0.71) (0.53) (2.54) (3.76) (2.90) (5.56) (8.20) (6.36)

1,000 0.04 0.07 0.04 0.74 1.14 0.75 0.32 0.50 0.33

(0.06) (0.11) (0.06) (0.45) (0.76) (0.47) (1.04) (1.73) (1.08)

Laplace(0,1)

50 1.34 0.84 0.82 6.76 4.92 4.71 14.65 11.03 10.47

(3.29) (1.75) (1.80) (11.93) (7.55) (7.43) (23.80) (16.33) (15.72)

200 0.24 0.15 0.14 1.70 1.08 1.07 3.89 2.46 2.43

(0.38) (0.24) (0.24) (2.36) (1.56) (1.52) (5.35) (3.56) (3.43)

1,000 0.04 0.02 0.02 0.34 0.17 0.18 0.78 0.39 0.42

(0.07) (0.03) (0.03) (0.49) (0.24) (0.26) (1.14) (0.55) (0.59)

0.9N(0,1)+0.1N(0,102)

50 1929.95 21.02 18.14 3130.94 73.84 69.83 4928.99 152.67 147.54

(4461.83) (61.24) (57.06) (6524.01) (169.61) (165.16) (9212.73) (315.85) (308.93)

200 568.45 2.76 2.53 1586.29 13.78 13.42 3100.87 29.97 29.39

(1386.04) (9.65) (8.06) (3237.90) (29.33) (27.12) (5592.51) (55.75) (52.94)

1,000 28.44 0.32 0.31 154.49 2.34 2.29 340.70 5.33 5.23

(71.51) (0.53) (0.49) (264.92) (3.34) (3.23) (531.80) (7.54) (7.36)

t2

50 23.61 1.75 1.52 75.38 9.82 8.84 144.62 21.76 19.70

(379.83) (3.94) (3.38) (931.66) (15.07) (13.73) (1574.78) (31.82) (29.63)

200 1.33 0.30 0.26 8.73 2.15 1.90 19.82 4.89 4.32

(3.64) (0.53) (0.41) (22.65) (3.07) (2.61) (51.53) (6.80) (5.89)

1,000 0.65 0.05 0.04 3.04 0.36 0.31 6.59 0.82 0.71

(9.24) (0.06) (0.06) (14.08) (0.48) (0.43) (26.75) (1.09) (0.97)

Note: Note that the bold font indicates the samllest MSE among the three estimators under one set of experimental conditions.

Table 3 report the type I error rates of the three estimators under various designs. When the sample
size is large, i.e., n = 1000, we note that the type I error rates of the LS, LAD, and Huber estimators are
all controlled in most cases. One exception is the LS estimator with the CIs constructed by the BCa
method, which was also observed by Fritz et al. (2012) with an explanation that the increased type I
error rate is a function of an interaction between the nonzero effect size and the sample size. Another
notable situation is that the type I error rate of the Huber loss Sobel test is slightly too high for the mixed
normal and t2 under the small and moderate sample sizes. Possible reasons can be, e.g., the standard
error used for the Sobel test ŜESobel is affected by the Optimizer’s curse (Smith & Winkler, 2006), and/or
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Table 3. Type I error rates (%) of the LS, LAD and Huber estimators for various designs

Sobel Z PRCT BCa

n LS LAD Huber LS LAD Huber LS LAD Huber

a = 0,b = 0.14 N(0,1)

50 0.0 0.0 0.3 0.3 0.0 0.2 1.5 2.1 1.4

200 0.3 0.3 0.5 1.9 0.5 1.0 3.7 3.0 3.4

1,000 1.4 1.2 1.5 3.1 2.0 2.9 5.7 5.2 5.4

Laplace(0,1)

50 0.2 0.2 1.5 0.7 0.1 0.3 1.7 2.3 1.8

200 0.2 0.9 1.6 1.8 1.8 1.7 5.0 4.7 4.4

1,000 1.9 1.8 2.7 4.1 2.9 3.0 5.9 4.6 4.6

0.9N(0,1)+0.1N(0,102)

50 0.0 1.5 8.2 0.9 0.3 0.3 4.7 2.4 2.1

200 1.4 2.2 5.9 0.2 0.1 0.0 2.5 1.9 1.6

1,000 2.2 2.5 3.5 1.3 0.7 0.4 3.3 2.5 1.5

t2

50 0.0 0.5 2.9 1.0 0.3 0.6 4.4 3.7 2.2

200 0.8 0.8 3.8 2.0 1.6 2.1 7.8 5.0 4.8

1,000 2.6 3.6 4.1 4.3 3.4 3.9 6.7 4.6 5.0

a = 0,b = 0.39 N(0,1)

50 1.7 0.8 4.2 3.9 1.3 3.0 7.0 6.7 6.3

200 3.2 2.7 4.4 5.2 3.2 4.3 7.0 7.1 6.2

1,000 5.3 4.9 5.4 5.5 4.6 5.0 5.4 6.0 5.0

Laplace(0,1)

50 1.2 1.2 6.9 4.4 1.5 3.5 8.6 6.7 6.0

200 3.3 2.6 4.7 5.1 2.6 3.5 7.4 5.4 5.0

1,000 4.5 3.1 5.0 4.7 3.7 4.4 5.3 4.1 4.6

0.9N(0,1)+0.1N(0,102)

50 0.0 0.9 9.0 1.4 0.3 0.4 7.8 3.3 2.6

200 5.6 3.7 7.9 2.3 0.6 0.9 8.5 3.9 4.1

1,000 3.3 3.4 3.9 4.7 2.5 2.3 8.0 5.6 4.8

t2

50 0.7 1.0 8.0 4.2 2.2 3.4 9.2 6.8 5.7

200 2.1 4.8 8.8 5.1 4.0 5.6 10.4 7.3 7.4

1,000 3.9 3.1 5.3 5.6 3.8 4.1 7.2 5.4 3.7

Note: Note that the bold font indicates the excessive type I error rate which exceeds 6.8% since with 1000 independent
simulation runs, the type I error rate of a test with level 0.05 is expected lie in the interval [2.3%,6.8%]with probability 0.99,
using the normal approximation.
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there is a potential gap between the optimal tuning constant and the one determined by Algorithm 2
in the small sample size. In Appendix E, we have also conducted another simulation study to assess
their effect on the standard error used for the Sobel test. The results indicate that the ŜESobel is indeed
influenced by the optimizer’s curse, whereas its effect will diminish as the sample size increases. At the
same time, the Huber estimator with the fixed k = 1.345 performs better than the Huber estimator with
the selected tuning constant (Huber-SEL) in the case of small sample size. Observing this, when the
Huber-SEL estimator fails to yield satisfactory results, we suggest to take a moderate tuning constant,
i.e., k = 1.345, as an alternative.

Following the same designs, we report the power of the three estimators in Table 4. For the
normal errors, it is evident that the LS estimator not only controls the type I error rate but also
achieves the highest power among the three estimators. Nevertheless, for the non-normal errors, the
LS estimator is notably lacking in statistical power especially for the mixed normal distribution (e.g.,
a = b = 0.14, 0.9N(0,1) + 0.1N(0,102), and n = 1000). In addition, despite that the LAD estimator
is the most robust method with respect to the outliers, it however suffers from the efficiency loss
and consequently yields a lower power (e.g., a = b = 0.14, N(0,1), and n = 1000). In contrast, the
Huber estimator makes a trade-off between the efficiency and robustness, in which its power is close
to the largest and, meanwhile, it also controls the type I error rate below 5% regardless of the error
distribution.

5. Real data analysis

In this section, we conduct two real data analyses to illustrate the usefulness of the proposed method.
Both the studies show that our newly method can provide a more efficient estimation than the existing
competitors for mediation analysis. To promote the practical application, we have also made the R code
publicly available on GitHub at https://github.com/pxj66/REMA.git.

5.1. Pathways to desistance study
Our first study is to uncover the causal mechanisms between mental health and violent offending
among serious adolescent offenders (Kim et al., 2024). In criminology, one possible mechanism is that
individuals with mental health issues may be more likely to experience victimization, and this, in turn,
may lead to their committing a serious crime. Our data comes from the Pathways to Desistance (PTD)
study, which consists of 1354 serious juvenile offenders in two sites, including the Maricopa County
in Arizona (N = 654) and Philadephia County in Pennsylvania (N = 700), over the years from 2000 to
2010 (Mulvey et al., 2013). Focusing on the data of baseline interviews, our study contains a total of
1195 respondents after the data cleansing.

Consider the linear mediation model,

Expvici = β2+aHealthi+δT
1 Zi+ ε2,i

Offendi = β3+ c′Healthi+bExpvici+δT
2 Zi+ ε3,i

where Health (mental health) is the independent variable, Expvic (experienced victimization) is the
mediating variable, Offend (violent effending) is the response variable. In addition, Z denotes the
matrix of other controlled variables including age, gender, enthnicity, family structure, parental warmth,
alcohol, marijuana, gang membership, parental hostility, and unsupervised routine activities. We
summarize the type and the measure of these variables in Appendix F.

To assess the normality assumption for the errors, we compute the skewness and kurtosis of the
residuals of y after regressing on x and m and the residuals of m after regressing on x, and then report
them in Table 5. These values, together with the Kolmogorov–Smirnov (KS) test, clearly suggest a
violation of the normality assumption. In view of this, we thus apply our new method to this dataset and
also compare it with the existing methods for mediation analysis. Table 6 reports the indirect effects and
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Table 4. Power (%) of the LS, LAD and Huber estimators for various designs

Sobel Z PRCT BCa

n LS LAD Huber LS LAD Huber LS LAD Huber

a = b = 0.14 N(0,1)

50 0.2 0.2 1.4 2.5 0.6 1.1 4.9 4.8 4.3

200 9.9 4.4 12.7 22.8 8.3 18.6 33.5 17.7 27.8

1,000 95.0 67.4 94.8 97.4 80.8 96.9 98.1 84.8 98.1

Laplace(0,1)

50 0.2 0.6 4.4 3.4 1.7 3.3 8.1 8.7 6.4

200 8.5 22.7 37.8 23.7 33.9 41.1 34.9 44.6 51.4

1,000 94.0 99.9 100.0 96.8 100.0 100.0 97.5 99.9 99.9

0.9N(0,1)+0.1N(0,102)

50 12.3 5.9 28.4 2.4 0.8 1.3 6.1 3.7 3.4

200 1.3 15.3 37.7 0.8 1.8 2.5 3.3 5.9 5.9

1,000 3.9 66.5 89.2 1.4 16.5 18.3 2.7 23.8 25.1

t2

50 0.5 0.5 5.2 1.9 0.7 1.4 5.3 4.3 3.8

200 2.9 12.4 25.4 9.1 17.8 21.7 15.9 25.4 29.7

1,000 20.3 80.1 88.5 36.3 81.2 87.3 40.6 83.1 88.0

a = b = 0.39 N(0,1)

50 20.0 7.6 32.0 35.2 10.9 25.2 47.8 23.2 38.7

200 100.0 95.7 100.0 100.0 98.3 100.0 100.0 97.5 100.0

1,000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Laplace(0,1)

50 45.2 47.4 84.9 60.2 54.8 67.1 68.9 59.7 75.3

200 99.8 100.0 100.0 99.8 99.9 100.0 99.7 99.7 100.0

1,000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.9N(0,1)+0.1N(0,102)

50 0.0 24.1 74.7 1.8 7.7 9.6 6.3 16.3 18.7

200 0.7 73.5 98.9 2.5 30.5 31.3 8.6 37.6 36.2

1,000 11.8 99.4 100.0 9.1 90.8 90.2 12.9 90.9 90.3

t2

50 6.5 17.3 50.7 20.0 23.5 30.1 27.9 33.1 36.7

200 51.5 95.0 99.3 64.1 96.7 98.6 66.4 95.4 98.0

1,000 93.3 99.9 100.0 93.8 100.0 100.0 92.9 100.0 100.0

Note: Note that the bold font indicates the maximal empirical power among the three estimators under one set of experimental conditions.

the 95% CIs constructed by the Sobel Z, PRCT and BCa methods. From the results, we note that the three
estimators produce similar and statistically significant indirect effects, whereas the Huber estimator
yields the shortest CI.
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Table 5. Skewness and kurtosis of two regression residuals

and the Kolmogorov-Smirnov test for the pathways to desis-

tance study-

Skewness Kurtosis KS test (p-value)

m− x 0.3965 2.6953 5.787×10−4

y−m,x 0.9056 4.9128 3.111×10−6

Normal 0 3

Table 6. The indirect effect estimates and their 95% CIs based on the LS, LAD and

Huber estimators for the pathways to desistance study

95% CI

Method âb̂ Sobel Z PRCT BCa

LS 0.0133 [0.0087, 0.0179] [0.0087, 0.0188] [0.0091, 0.0193]

0.0091 0.0101 0.0102

LAD 0.0113 [0.0067, 0.0160] [0.0051, 0.0180] [0.0058, 0.0188]

0.0092 0.0129 0.0130

Huber 0.0118 [0.0077, 0.0159] [0.0076, 0.0170] [0.0076, 0.0171]

0.0082 0.0094 0.0095

5.2. Action planning study
Our second study is to investigate the relationship between action planning and physical activity. In
psychology, it is known that the action planning can promote the physical activity, yet the underlying
mechanism between them is often unclear. To explore it, an illustrative study has recently been con-
ducted to investigate the action planning promoting the physical activity mediated by the automaticity
(Maltagliati et al., 2023), in which a total of 135 participants over 18 years from the tertiary industry
were recruited. Participants were asked to wear an accelerometer Actigraph GT3X+, which records their
physical activity behaviors and the time of these activities on a notebook for a total of seven days. More
specifically in their study, the action planning is the independent variable, measured by four-item Likert
scales ranging from 1 (completely disagree) to 6 (full agree). And the automaticity is the mediating
variable, measured by four-item of Self-Reported Habit Index ranging from 1 (strongly disagree) to 7
(strongly agree).

Consider the linear mediation model,

Autoi = β2+aPlani+δ1Sexi+δ2BMIi+δ3Illi+ ε2,i, (9)

PAi = β3+ c′Plani+δ4Sexi+δ5BMIi+δ6Illi+bAutoi+ ε3,i, (10)

where Auto, Plan, Sex, BMI, Ill, and PA represent the automaticity, action plan of exercise, gender, body
mass index, illness, and physical activity of the respondent, respectively.

To assess the normality assumption for the errors, we also compute the skewness and kurtosis of the
two residuals, and then report them in Table 7. These values, together with the KS test, suggest a serious
violation of the normality assumption for the y−m,x regression residuals. Based on this, we also apply
the proposed method to the dataset and then report the result in Table 8. First of all, the three methods
produce positive indirect effects from 0.6600 to 0.7594. While for the CIs, only the LAD method shows
insignificant outcome in the PRCT CI. At the same time, the Huber loss also yields the shortest CI
among the three methods.
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Table 7. Skewness and kurtosis of two regression residuals

and the Kolmogorov–Smirnov test in action planning study

Skewness Kurtosis KS test (p-value)

m− x 2.6095 −0.1855 0.3582

y−m,x 9.7279 2.0349 0.0047

Normal 0 3

Table 8. The indirect effect estimates and their 95% CIs based on the LS, LAD, and

Huber losses for the action planning study

95% CI

Method âb̂ Sobel Z PRCT BCa

LS 0.7594 [0.2351, 1.3927] [0.2714, 1.3755] [0.3258, 1.4967]

1.1576 1.1041 1.1709

LAD 0.6619 [0.1796, 1.2521] [−0.1183, 1.3755] [0.1487, 1.9636]

1.0725 1.4938 1.8149

Huber 0.6600 [0.4199, 0.9347] [0.0676, 1.0417] [0.1470, 1.1820]

0.5148 0.9741 1.035

6. Discussion

This article proposed a novel M-regression for mediation analysis that minimizes the Huber loss
function with the optimal tuning constant. The Huber loss can produce a more robust estimator
compared to the LS loss when facing outliers and non-normal data, and on the other hand, it can produce
a more efficient estimator compared to the LAD loss. Moreover, since the M-estimator may not have
an explicit expression for a general loss function, we further proposed an IRLS algorithm for obtaining
the numerical solutions. Under some mild conditions on the error distribution, the consistency of the
mediation model was also established. Lastly, simulation studies and real data analysis showed that the
Huber estimator has a better performance than the LS and LAD estimators.

In the literature, there are two methods commonly used to improve the estimation efficiency. The first
method is the M-regression by selecting an optimal loss function from the loss function family. Besides
the Huber loss that is among the most commonly used, other popular loss functions include, but not
limited to, the Hampel loss (Hampel et al., 1986), the generalized Gauss-weight and linear quadratic
losses (Koller & Stahel, 2011), and other general losses (Barron, 2019; Tukey, 1977). When the error
distribution is skewed, it is appropriate to adopt the asymmetric Huber and Tukey’s biweight losses
for enhancing the estimation efficiency. In the field of microeconomics, the M-regression is done by
solving the estimating equations which can be incorporated in the generalized method of moments
(GMM), as also introduced in Chapter 6 of Cameron and Trivedi (2005). By making some additional
moment conditions, one can obtain more efficient estimators. The second method is to combine the
information of quantiles for improving the estimation efficiency, i.e., the composite quantile regression
(Zou & Yuan, 2008), the weighted quantile average regression (Zhao & Xiao, 2014), and the combination
of difference and robust methods (Wang et al., 2019). Hence as a further direction, it can be of interest
to investigate whether the estimation efficiency and power of our new method can be further improved.
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Appendix A. Comparing the product and difference estimators

To compare the efficiency of the product and difference estimators, we follow the same simulation design as that for Simulation
A in Section 4. Table A shows the MSE (×103) and SD (×103) of the product and difference estimators based on the Huber
loss. It is evident that the MSE and SD of the product estimator are smaller than those of the difference estimator. We hence
recommend to adopt the product estimator for the subsequent hypothesis testing.
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Table A. MSE (×103) and SD (×103) for the product and difference estimators based

on the Huber loss

a = b = 0.14 a = b = 0.39 a = b = 0.59

n MSEP MSED MSEP MSED MSEP MSED

N(0,1)

50 1.52 2.79 7.52 10.21 16.41 20.27

(3.58) (6.59) (12.61) (17.26) (25.41) (30.80)

200 0.27 0.49 1.85 2.45 4.17 4.88

(0.54) (1.04) (2.87) (3.66) (6.22) (6.86)

1,000 0.04 0.05 0.32 0.33 0.74 0.75

(0.06) (0.08) (0.46) (0.46) (1.05) (1.05)

Laplace(0,1)

50 0.81 2.14 4.65 8.44 10.31 16.38

(1.73) (4.50) (7.21) (13.03) (15.18) (25.10)

200 0.14 0.40 1.06 2.06 2.41 4.06

(0.24) (0.64) (1.51) (2.97) (3.40) (5.78)

1,000 0.02 0.07 0.18 0.39 0.41 0.78

(0.03) (0.11) (0.25) (0.52) (0.58) (1.04)

0.9N(0,1)+0.1N(0,102)

50 18.20 22.04 71.08 72.33 150.04 150.36

(58.27) (57.54) (169.64) (149.64) (317.91) (287.81)

200 2.49 3.52 13.45 14.77 29.50 30.84

(7.72) (9.05) (26.57) (28.12) (52.20) (52.54)

1,000 0.31 0.40 2.29 2.56 5.24 5.57

(0.48) (0.67) (3.21) (3.63) (7.31) (7.85)

t2

50 1.52 6.53 8.74 20.79 19.41 39.02

(3.29) (12.91) (13.76) (31.75) (29.78) (58.49)

200 0.25 1.31 1.86 5.16 4.25 9.19

(0.39) (2.17) (2.52) (7.20) (5.70) (12.76)

1,000 0.04 0.23 0.31 0.91 0.70 1.59

(0.06) (0.34) (0.43) (1.31) (0.97) (2.33)

Appendix B. An R procedure for selecting of the Tuning constant

From the likelihood perspective, the optimal loss function is given as LS (or LAD) when the error distribution is Normal (or
Laplace). Incorporating the relationship of the Huber loss with the LS and LAD losses, the optimal tuning constant is∞ (or 0)
for the Normal (or Laplace) distribution. For other error distributions, the optimal tuning constant minimizes the asymptotic
variance of the Huber estimator. More specifically, we can compute τ̂(k) = σ̂2

ψ/B̂2
ψ with a sequence of k, and then the optimal

k, which corresponding to the minimum value of τ̂, can be located. In what follows, we provide the R code for two examples,
one for the mixed normal distribution 0.9N(0,1)+0.1N(0,32) and the other for the t1 distribution.
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1 # 0.9N(0,1) + 0.1N(0,9)
2 df1 <− function(x){
3 0.9 / sqrt (2*pi ) * exp(−x^2/2) + 0.1 / sqrt (2*pi*9) * exp(−x^2/(2*9))
4 }
5

6 df2 <− function(x){
7 x^2 * (0.9 / sqrt (2*pi ) * exp(−x^2/2) + 0.1 / sqrt (2*pi*9) * exp(−x^2/(2*9)))
8 }
9

10 i <− 0
11 tau <− numeric(0)
12 for (k in seq (0, 4, 0.001)) {
13 i <− i+1
14 B <− integrate (df1 , −Inf , k)$value − integrate (df1 , −Inf , −k)$value
15 Sig2 <− integrate (df2 , −k, k)$value + k^2 * (1 − B)
16 tau[ i ] <− Sig2 / B^2
17 }
18

19 k <− seq (0, 4, 0.001)
20 plot (k, tau , type = "l")
21 k[which.min(tau)]
22

23 # t1
24 df1 <− function(x){ 1 / (pi * (1 + x^2)) }
25 df2 <− function(x){ x^2 / (pi * (1 + x^2)) }
26 # Run lines 10−21 again .

Table B. The values of Mean, SD and Median for the selected tuning constant

k1 k2

n Mean SD Median Mean SD Median Optimal

N(0,1)

50 1.001 0.715 0.840 0.980 0.703 0.810

200 1.539 0.841 1.660 1.529 0.836 1.630 ∞

1,000 2.380 0.509 2.470 2.367 0.515 2.460

Laplace(0,1)

50 0.426 0.296 0.310 0.441 0.303 0.330

200 0.321 0.163 0.260 0.327 0.165 0.260 0

1,000 0.253 0.075 0.220 0.256 0.075 0.230

0.9N(0,1)+0.1N(0,102)

50 0.671 0.466 0.510 0.770 0.590 0.570

200 0.749 0.447 0.700 0.783 0.477 0.730 1.222

1,000 0.931 0.365 1.005 0.951 0.365 1.030

t2

50 0.612 0.470 0.430 0.611 0.466 0.430

200 0.558 0.359 0.440 0.562 0.358 0.450 0.692

1,000 0.558 0.279 0.530 0.551 0.274 0.520
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Appendix C. Selection of the Tuning constant

To evaluate the performance of Algorithm 2, we follow the same simulation design as that for Simulation A in Section 4. Table B
presents the Mean, SD, and Median of the selected tuning constant. As the sample size increases, the k values are very close to
those from the theoretical results. This shows that Algorithm 2 provides a good performance for selecting the tuning constant
for practical use. These findings also coincide with the conclusion in Wang et al. (2007). Note that k1 and k2 correspond to
the chosen tuning constant from Equations (2) and (3), respectively. In practice, when the value of k is small, the value of the
efficiency factor τ is very unstable. So we set the k value ranging from 0.2 to 3σ̂MAD by 0.01.

Appendix D. Asymptotic relative efficiency of the Huber estimator

We first prove that the Huber loss with k = 1.345 produces a 95% efficiency for the normal errors. We focus on Equation (1):
Y = β1 + cX+ ε1, where ε1 ∼ N(0,σ2). When k = k0, the efficiency factor of the Huber estimator is computed by τH = σ2

ψ/B2
ψ ,

where

Bψ(k0) = ∫
k0

−k0

1
√

2πσ
exp{− x2

2σ2
}dx =Φ( k0

σ
)−Φ(− k0

σ
),

σ2
ψ(k0) = ∫

k0

−k0

x2
√

2πσ
exp{− x2

2σ2
}dx+k2

0[1−Bψ(k0)]

= ∫
k0/σ

−k0/σ

σ2x2
√

2π
exp{− x2

2
}dx+k2

0[1−Bψ(k0)]

= σ2{G( k0

σ
)−G(− k0

σ
)+Φ( k0

σ
)−Φ(− k0

σ
)}+k2

0[1−Bψ(k0)],

with G(x) = −x(
√

2π)−1 exp{−x2/2} and Φ(x) being the cumulative distribution function of the standard normal distribu-
tion. Then

τH =
σ2

ψ(1.345σ)
B2

ψ(1.345σ)
= 0.7101645σ2

0.6746565
= 1.052361σ2

and so

τLS

τH
= σ2

1.05236σ2
= 0.9500003.

This shows that the asymptotic relative efficiency of the Huber estimator relatived to the LS estimator is 95% (Serfling, 2001).
At the same time, using Equation (4.52) on page 84 in Huber and Ronchetti (2009), we have

2ϕ(k)
k
−2Φ(−k) = ε

1− ε
,

where ϕ = Φ′ is the probability density function of the standard normal distribution. This implies that, when k = 1.345, the
Huber estimator is resistant to outliers with a breakdown point of ε = 5.8%.

Appendix E. Simulation study for Huber loss Sobel test

We conduct a new simulation to investigate the effect of the optimizer’s curse on the standard error used for the Sobel test,
which is denoted by ŜESobel . To achieve this, we consider various tuning constants as alternatives, specifying the number of
alternatives as 6, 30, and 291. These numbers correspond to step lengths of 0.5, 0.1, and 0.01, respectively, within the tuning
constants’ value range of [0.1,3]. Concentrating on the type I error rates, we set the sample size to be 50, 200, 1,000, or 2,000. We
also employ the same true values for the regression parameters and the error distributions as those specified in Section 4. Under
1,000 simulated experiments, we then compute the mean standard error used for the Sobel test (ŜESobel) for the Huber loss
with the selected tuning constant (Huber-SEL) under the different alternatives, the Huber loss with the fixed tuning constant
(Huber-FIX), and the Huber loss with the optimal tuning constant (Huber-OPT).

Table E shows the mean standard error used for the Sobel test (ŜESobel) of the Huber-SEL, Huber-FIX, and Huber-OPT
estimators under various designs. First of all, the simulation results reveal that the Huber-SEL estimator is indeed affected by
the optimizer’s curse, yet this effect diminishes as the sample size increases. For example, let us look at the change in ŜESobel
between different number of alternatives. With a = 0,b = 0.14, N(0,1), and n = 50, the ŜESobel of the Huber-SEL estimator
exhibits a gradual decline away from the ŜESobel of the Huber-OPT estimator, i.e., 31.50, with the values shifting from 27.90
to 27.66, and then to 26.95, as the number of alternatives increases. But when the sample size is 1,000 or 2,000, these values
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Table E. Mean standard error (×103) used for the Sobel test for the Huber-SEL, Huber-FIX and Huber-OPT

estimators under various designs

Huber-SEL Huber-FIX Huber-OPT

n A = 6 A = 30 A = 291 k = 0.8 k = 1.345 k = 2.2 k = k∗

a = 0,b = 0.14 N(0,1)

50 27.90 27.66 26.95 35.09 32.92 31.55 31.50

200 11.12 10.97 11.10 12.52 11.84 11.27 11.22

1,000 4.47 4.54 4.56 4.90 4.66 4.58 4.58

2,000 3.18 3.17 3.16 3.43 3.25 3.19 3.14

Laplace(0,1)

50 17.59 16.86 16.62 24.56 26.30 29.24 18.80

200 7.47 7.30 7.09 9.07 9.58 10.58 7.71

1,000 3.23 3.18 3.15 3.76 4.01 4.34 3.26

2,000 2.29 2.27 2.22 2.61 2.79 2.99 2.27

0.9N(0,1)+0.1N(0,102)

50 19.44 18.70 17.26 26.54 26.52 28.01 25.65

200 11.13 10.90 10.57 12.18 12.17 13.13 12.12

1,000 5.32 5.27 5.23 5.45 5.42 5.83 5.40

2,000 3.80 3.77 3.76 3.85 3.83 4.13 3.82

t2

50 24.22 23.27 23.11 33.95 34.51 40.41 34.45

200 12.13 11.87 11.33 13.65 14.23 15.57 13.51

1,000 5.69 5.63 5.55 5.86 6.09 6.60 5.86

2,000 4.07 4.02 3.98 4.13 4.27 4.62 4.11

a = 0,b = 0.39 N(0,1)

50 49.63 49.15 47.46 63.74 61.20 59.88 59.24

200 27.04 26.62 26.77 30.44 28.93 28.10 27.94

1,000 12.31 12.34 12.35 13.29 12.70 12.45 12.43

2,000 8.75 8.73 8.72 9.40 8.95 8.77 8.70

Laplace(0,1)

50 36.00 34.75 33.65 49.91 52.23 55.87 39.55

200 19.45 18.92 18.41 23.25 24.69 26.49 20.03

1,000 8.87 8.76 8.66 10.23 10.94 11.76 8.96

2,000 6.33 6.26 6.17 7.20 7.73 8.25 6.30

0.9N(0,1)+0.1N(0,102)

50 51.66 49.63 46.52 69.66 70.56 74.90 68.72

200 30.96 30.37 29.44 33.91 33.90 36.57 33.73

1,000 14.82 14.69 14.58 15.18 15.08 16.25 15.03

2,000 10.58 10.51 10.48 10.74 10.66 11.50 10.64
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Table E. Continued

Huber-SEL Huber-FIX Huber-OPT

n A = 6 A = 30 A = 291 k = 0.8 k = 1.345 k = 2.2 k = k∗

t2

50 54.39 52.37 50.59 75.99 78.89 86.58 76.38

200 32.62 31.70 30.80 36.56 38.11 41.37 36.39

1,000 15.73 15.56 15.35 16.24 16.83 18.24 16.22

2,000 11.29 11.16 11.07 11.46 11.88 12.86 11.45

are all close to the optimal value. Secondly, we found that the Huber estimator with the fixed k = 1.345 performs better than
the Huber-SEL estimator in the case of small sample sizes. However, as the sample size increases, the Huber-SEL estimator is
more close to the Huber-OPT estimator than the Huber-FIX estimator. Combined with the conclusions drawn from Table B,
two plausible explanations for the poor performance of the Huber loss Sobel tests in n = 50 or n = 200 are that there is a
potential gap between the optimal tuning constant and the one determined by Algorithm 2 and the ŜESobel is influenced by
the optimizer’s curse. For practical applications, when the Huber-SEL estimator fails to yield satisfactory results, we suggest to
take a moderate tuning constant, i.e., k = 1.345, as an alternative.
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Appendix F. Measures of interesting variables in the PTD study

Table F. Measures of interesting variables in the pathways to desistance study

Interesting variable Data type Measures

Key variable

Violent offending Continuous The proportion of 11 violent offenses committed during the last 6

months. The example items included beating up somebody

badly needing a doctor, being in a fight, and killing someone.

The higher the value, the greater variety of offenses the youth

engaged in.

Mental health Continuous Brief Symptom Inventory consists of 9 subscales. The larger the

value, the worse the mental health of the respondents.

Experienced victimization Continuous A total 6 items and example questions included “In the past 6

months, have you been chased where you thought you might

be seriously hurt?”. The larger value, the more victimizations are

experienced.

Control variables

Age Continous 14–19.

Ethnicity Discrete White, Black, Hispanic, Other.

Gender 0–1 Male = 1, Female = 0

Family structure Discrete Single Biological Parent live with the youth, Two Biological Parent

with the youth, Other

Gang membership 0–1 The status of the participant’s gang membership for last 6 months.

Parental monitoring Continuous Parental Monitoring inventory (9 items) range from “never” to

“always”.

Parental warmth Continuous Responses ranged from 1 (never) to 4 (always), with higher scores

representing more parental warmth.

Parental hostility Continuous There are a total of 42 items, 21 items for maternal and paternal,

respectively, and responses ranged from 1 (never) to 4 (always),

with higher scores indicating greater hostility.

Unsupervised routine activities Continous The higher score indicates more unsupervised routine activities.

Alcohol Continous The frequency of alcohol drink consumption in the recall period.

Marijuana Continuous The frequency of using marijuana in the recall period.
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