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0. Notation

Let #[0,1] be the Banach space of continuous functions defined on [0,1] and let #
be the set of functions / e^ [0 ,1 ] mapping [0,1] into itself. If / e # , /* will denote the
fcth iterate of/ and we put <&k = {fk:fe%>}. The set of increasing (= nondecreasing) and
decreasing (= nonincreasing) functions in % will be denoted by J and 2, respectively.
If a function / is defined on an interval /, we let C{f) denote the set of points at which
/ is locally constant, i.e.

C(/) = {xe/: there is a <5>0 such that / is constant on (x — S, x + S) n / } .

We let Ĵ denote the set of positive integers and WN denote the Baire space of sequences
of positive integers.

1. Increasing iterates

In this section we prove that the sets #* and ^ l n i are analytic and non-Borel
subsets of #[0,1] for every k^.2. The fact that #* is analytic follows directly from the
continuity of the mapping fr->fk (feW). As J is closed in #[0,1], the set ^ ' n / is
also analytic. The goal of the next series of lemmas is to show that for each k ̂  2 and
for each Borel subset B<=NN there is a continuous map F:NN-*S such that F~1(*g"c) =
B. From this it easily follows that neither of the sets #* nor #* n J is Borel. Indeed
suppose #* or # * n / is Borel and is of Borel class a.<wl. We can choose a Borel set
Bc(^rj of class higher than a and construct a map F as above. Since F is continuous
and maps into f, F"'fif') = r ' ( ^ n / ) = B is of class a which is contrary to the
choice of B.

In order to construct this mapping, F, we introduce the following subclasses of J.
For any choice of numbers 0<a<b<c< 1 we let jVabc denote the set of functions feJ
satisfying the following conditions.

) = 0and / ( l ) = l.

*The work of both authors was supported in part by the Fulbright foundation.
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2. f(a) = b and f(b) = c.

3. / is linear on each of the intervals [0,o] and \_b, 1].

Our initial aim is to characterize the functions belonging to Jf abc n t>k in terms of the
set C(f). Throughout the remainder of this section we consider the numbers a, b, and c
fixed and simply use Jf to denote J/~abc.

We begin with the following simple lemma whose proof is omitted.

Lemma 1. Let hx and h2 be increasing and continuous functions defined on the closed
interval [_x,y] such that C(/J1) = C(/I2). Then there is a strictly increasing continuous
function j defined on [h^x),h^yj] such that h2=j°hl.

Lemma 2. Let / e / n ^ 1 , /eg;2. Then there exists a geJ and points a = x o <x 1 <
•••<xk = b such that f=gk, g(0) = 0 and g(l) = l, g(x,) = x1 + 1, i = 0, l , . . . , f c - l and g is
strictly increasing on each of the intervals [0,xk_1] and [b, 1].

Proof. As / e # \ there is a. geW such that f=gk. Since / has no fixed point in (0,1),
neither does g. Consequently, either g(x)<x holds for every xe(0,1) or g(x)>x holds
for every xe(0,1). The former entails that f(x)=gk(x)^gk~1(x)^ ••• ^g(x)<x for every
xe(0,1) which is not the case. Then g(x)>x for each xe(0,1) and this fact implies that
g( 1) = 1; as /(0)=0 we also deduce that g(0) = 0. Also, as /(x) < 1 for x < 1 it follows that
g(x) < 1 for x < 1. We have

x<g(x)<---<gk(x) = f(x) for xe(0,l). (2.1)

Define x,=g'(a), i = 0, l,...,k. By (2.1) and the fact that f(a) = b we have a =
x o <x 1 <- - -<x k = b. Now, gk~1{0)=0 and/~1(a) = xk_1 so that io,xk.i]c:gk~1{lO,a]).
But f(x)=gk(x)=g(gk~i(x)) and / is injective on [0,a]. Hence, g is injective on [0,x t_J
and as g(0) = 0, g is strictly increasing there. Similarly, as / = g t is injective on [b, 1], g is
strictly increasing on \b, 1]. What remains is to prove that g is increasing on [_xk-l,b].
As gk~l(a) = xk-1 and / " 1 (x 1 ) = fe it follows that gk~\[.a,xl']) = [xk-1,b']. But then the
result follows by noting that g*"1 is strictly increasing on [a,Xj] and f=g(gk~i) is
increasing on [a, x t] .

Lemma 3. For every feJf and k^.2, f s^k if and only if there are points
a = xo<Xi< — <xk = b and a function </> defined on [xo,xt_!] such that for each
i= l,2,...,/c— 1, (j) is an increasing homeomorphism mapping [X-^x,] onto [x,-,xI + 1]
satisfying

_ 1; xj)) = C(f I [x(>xl+ J). (3.1)

Proof. If / e / n ^ ' then there are points a = x o < x 1 < - < x k = b and a function
which satisfy the conclusion of Lemma 2. Let 4>=g\[xo,xk-i]. It follows directly
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from Lemma 2 that for each i=l,2,...,k—l, <t> is an increasing homeomorphism
mapping [x . -^x , ] onto [x,,xI + 1 ] . As g is strictly increasing on each of the intervals
[x,_j,x,] /= 1,2,...,k — 1 and on [6,1] we have

This completes the proof of the necessity and we now turn to the sufficiency proof.
Suppose that the numbers x;, i = 0,l,...,k and the function <p are given and satisfy the

conditions of the lemma. We prove that 0 can be extended to a continuous function g
defined on [0,1] such that f=gk. First note that / ( x , - j )< / (x j ) (i=l,...,k). Indeed, if
/ (x ,_1)=/(x , ) then C ( / | [x,_1,xj]) = [x1_1,xi]. This implies, by (3.1) that / is constant
on the entire interval [_a,b~\. This, of course, contradicts the fact that f(a) = b<c = f(b).

Next, we extend the sequence {xo ,Xi , . . . ,xJ by defining xn = /(xB_t) for n>k and
xn = /~ 1 (x n + t ) for n<0. Since / is strictly increasing on each of the intervals [0,a] and
\b, 1], and xk<xfc + 1 < ••• <x2fe_1 (our prior remark) it is easy to verify that x n < x n + 1 for
every integer n. If v = \\mn_<Dxn then f(v) = v and as u>0, v = l. Similarly, limB-oox_n = 0.

We inductively define a function <pn on the interval [x n _ t ,x n ] such that

An. <)>„ is increasing and continuous on [ x ^ u x j .

Bn. 4>n maps !>„_! ,x j onto [x n ,x n + 1 ] .

Cn. If n/fc, then <pn is strictly increasing.

We begin by defining <j>n = 4>\ [xn_!,xn] for n= l,2,...,k— 1. By hypothesis, An, Bn, and
Cn are true for these n. Next we define </»k = /°</>r1 °</)2 l °'"°<l>k-i a n <i note that Ak

and Bk are satisfied. Suppose now that nSiO and that for each i=l,2,...,n + k, 4>t has
been defined and satisfies At, B{, and C,. We prove that

+ 1 ,x n + 2 ] ) . (3.2)

There are two cases. First suppose that n^k — 2. Then, as the functions
<pk+l,(l>k + 2,...,(pk+n are strictly increasing (property C,), the left hand side of (3.2)
reduces to C(<pko<pk-lo--o(j)n+2). Using (3.1) and the definition of </>k it is easy to check
that C(<t>ko(j)k_l o---o(j)n + 2) = C(f\ [xn + 1,xn + 2]). If n>k — 2 then all of the functions
extant in (3.2) are strictly increasing so that both sides of (3.2) are empty. We apply
Lemma 1 with /i, = 4>n+k°<t>n+k_l o---°</>n+2, h2 = f\[xn + 1,xn+2]. Thus we obtain a
strictly increasing continuous function, ^>n+k + l, defined on /ii([xn + 1,xn + 2]) =
[x n + t , x n + t + 1] such that

+l,Xn + 2]- (3-3)

Again, conditions An+k + l, Bn+k + 1, and Cn+k+l are satisfied. Hence </>„ has been defined
for every n > 0 and we now turn to the case when n^O.

Suppose n % 0 and that for each i > n, $, has been defined and satisfies the conditions
Ah Bh and C,. We put
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X.- 1, X J). 0.4)

As in the previous cases, An, Bn, and Cn are transparent. In this way, <j>n has been
defined for every integer n and we define

W if xe [xn_!,*„], neZ
0 if x=0 and 1 if x = l.

It follows from the conditions An and Bn that g is increasing and continuous on [0,1].
Now, if XE(0, 1) then there is an integer n such that xe[xn_x,xn~]. If n^O then
f(x)=gk(x) by (3.4); if n^2 then /(x)=g*(x) by (3.3). Then sole remaining case is that
when n = 1 and the fact that f{x)=gk(x) for xe[xo,x,] follows from the definition of <j>k.
The proof of Lemma 3 is completed by noting that 0 and 1 are fixed points of both g
and /

A family of subsets of U, {Iy:yeT}, is said to be discrete if there is a family of pairwise
disjoint open sets {Uy:yeT} such that /y£C/y (A = A closure) for every yeF. A family of
pairwise disjoint intervals will be considered ordered according to the usual ordering of

Lemma 4. Let ft be an infinite countable ordinal, e>0 and k^.2. Suppose that
{Ix:a<pk} is a discrete set of open intervals contained in (a + e,b — e) such that Ix<Iyfor
<x<y<pk. Then there are points a = xo<xt<--- <xk = b and a homeomorphism
(/>:[xo,xfc_1]-+[x1,xt] such that //),• + „ <=[xj,xi + 1] (i = 0,...,/c-l,a</?), <f> maps [x.-i,*,]
onto [ x ; , x , + i ] and / p ( i _ 1 ) + a onto Ipi+Xfor each i= 1 ,2 , . . . , k— 1 and each a<fi.

Proof. For every a < fik let lx = (ux, vx) and define w,- = lima^p; vx for each i = 1,2,..., k.
As {lx\a<pk] is discrete, w(<Upi for i^k—l and wk^b — e. Let xo = a, X1- = (W1. + M/,J)/2

( i = l , 2 , . . . , / c - l ) and xk = b. Then define 4>{xk_l) = b; </>(x,) = xI + 1, </>(Mp,+J = u w + 1)+tI

and <t>(vi)i+x) = Vp{i+i)+x for i = 0, l,...,/c — 2 and a</?. As </> is strictly increasing on its
domain and {Ix.a.<flk} is discrete, <p can be extended to a strictly increasing continuous
function defined on the closure of its domain. We further extend <f> to the entire interval
[xo^ j t . j ] by defining the extension to be linear on each component of the complement
of this closure. This completes the proof of Lemma 4.

Let £ s [ 0 , 1 ] x [0,1] and x,ye[0,1]. We denote the vertical and horizontal sections
of E by Ex = {y:(x,y)eE} and Ey = {x:(x,y)eE}. Now let {Jy:yer} be a discrete family
of open intervals in [a,fe] and let K = [a,b~\\[JyerJr Then each portion of K has
positive Lebesgue measure. Let {Iy:yer} be a family of subintervals of [0,1] with
rational endpoints, and define G = [Jysr(Jyx Iy). We define a map T:[0, l]-»#[a, b] as
follows (/ = Lebesgue measure).

and xe[fl>*]. (5.1)
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Lemma 5. The map T defined above has the following properties.

1. T(y) is increasing and continuous for every ye[0 ,1] .

2. T(y){a) = 0 and T{y)(b) = 1 for every y e [0,1].

3. C{T(y)) = Gy for every ye[0 ,1] .

4. T, as a map from [0,1] into <$[a,b~], is continuous at each irrational ye[0 ,1] .

Proof. Statements 1 and 2 are obvious and 3 follows from the fact that every
portion of [a, b~\\\JyerJy has positive Lebesgue measure. To prove 4, first note that F is
countable. Let y o e[0 ,1] be irrational, and let {yi,y2,---,yn}

c^' be an arbitrary finite set
of indices. As the endpoints of the Iy are rational, there is a <5>0 such that if
yeCVo — <5>yo + 8) then yely. if and only if yoe/Vj. for7 = 1,2,...,n. The continuity of Tat
y0 easily follows from this observation.

Lemma 6. / / B c [ 0 , 1 ] is Borel, then there is a set M s [ 0 , 1 ] x [0,1] consisting of a
countable union of vertical line segments with rational endpoints and a countable ordinal /?
such that:

1. If yeB, then My is well ordered with ordertype less than /?;

2. if y$B, then M" is not well ordered, but every decreasing sequence in My converges
to the same real number.

Proof. For ie M and aeNN we denote the restriction of a to its first i coordinates by
a I i. The desired set M is a Lusin sieve for U\B and the special characteristics of M are
derived from the fact that B is Borel. Specifically, there is a set of closed intervals with
rational endpoints, {/t:TeN', 1 = 1,2,...} satisfying the following conditions:

(i) U [ T |
(ii) If n > m a n d aeMN, then Ia{n<=Ia{m.

(iii) For every yeU\B there is a unique ffel^N such that {y} = f)?Li la\i-

We form a Lusin sieve for U\B by assigning to each finite sequence of natural numbers
r = (nun2,...,«,) the binary fraction xx= 1 - 2 " " ' - ••• - 2 " " 1 "' and the closed
interval / t . The set M is defined as M = u({xJ x/T) where the union is taken over all
finite sequences of natural numbers. It follows directly from the definition of the sieve
that My is well ordered if and only if yeB. The fact that there is a countable ordinal /?
bounding the ordinals of the sections My, y e B is the substance of Corollary 5a of
Section 39, VIII in [1]. Finally, suppose y e R \ B . Then there is a unique sequence
(T = («1,«2»---) such that ye f)F=i /„(,•. We prove that every decreasing sequence in My

converges to the point 1 — x where x = 2~"'+ 2~ni~"2+
Suppose {xz.} is an increasing sequence of binary fractions such that 1 — xu e My for

every /. For each j we denote the yth coordinate of T; by T,(/ ). It is easily verified that for
each fixed j , the sequence {T/U)U = 1,2,...} is eventually decreasing and hence, is
eventually stationary at a natural number which we denote by x(j). If T = (T(1) ,T(2) , . . . )
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then yef)?=ilx\i and as a is unique, a=x. Hence, {xt.:i=l,2,...} converges to

Lemma 7. For every Borel set BcN N and every fc^2 there is a continuous function
F:N"^>JV such that F(y)e(#k if and only ifyeB.

Proof. For convenience, we identify the space NN with the irrational numbers in
[0,1] (see [1], Section 3). We fix three numbers p, q, and r such that a<p<q<r<b. Let
K denote a nowhere dense perfect subset of [_a,p~\. As the set of bounded intervals
contiguous to K has order type r\ (dense, unbordered, countable) there is a 1-1 order
preserving mapping, H, from the binary fractions onto this set of intervals. If xx is a
binary fraction, we let Jx denote the open interval concentric with H(xz) but of half the
length. Next we apply Lemma 6 for the Borel set B and obtain the set

and the countable ordinal /? satisfying 1. and 2. of Lemma 6. We define

where the union is taken over all finite sequences of natural numbers. Let {Lct:a<jScofc}
be a discrete set of open subintervals of [q, r] of order type ficok. Then we define

G2= U a.x[0,l])
x>fiiok

and

G = Gl u G2.

Now we define the map T by (5.1). We define F:[0, l]-»#[0,1] by
F(y)(x) = (c-b)T(y)(x) + b for ye[0,1] and xe[a,6]. We then set F(y)(0)=0, F(j)(l)=l
and complete the definition by insisting F(y) be linear on each of the intervals [0, a] and
[ft, 1]. It is evident from this definition that F(y)ejV for every ye[0,1] and it follows
directly from Lemma 5 that F is continuous at each irrational y. Finally, for each y,
C{F(y)) = Gy = G\ u G\. The set of components for G\ is precisely {La:a<Pcok} and has
order type flak. The nature of the components of G\ depends on whether y e B or not
and we consider these cases separately.

Case 1. y$B.

It follows from Lemma 6 that the components of G\ contain a decreasing sequence of
intervals converging, say, to x*, and that every decreasing sequence of components
converges to x*. If F(y)eCk, then there are points a = xo<x1<-- <xk = b satisfying the
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conditions of Lemma 3. As a^x*<b there is a unique «e{0, l,...,k— 1} such that
x*e[xn,xn+1). But then the components of C(F(y)\\_xn,xn+l)) are not well ordered and
for each i^n the components of C(F(>>)| [x;,x1 + 1)) are well ordered. Such a situation
bodes ill for the homeomorphism guaranteed by Lemma 3. This contradiction entails
thatify^B then F(y)$Ck.

Case 2. y e B.

In this case, Lemma 6 yields that the components of G\ are well ordered and of order
type a < p. As a + flak = Peak, the order type of G\ u G"2 is Peak. Further, as each set of
components G\ and G\ is discrete and the two sets are separated by the interval (p,q),
the entire collection of components of Gy is discrete. But then, Lemma 4 establishes the
existence of the requisite points a = xo<Xj < ••• <xk = b and the increasing homeomor-
phism 4>'-[xo,xk-1^-^\_xl,xk] which guarantee, via Lemma 3, that F(y)e'£k. This
completes the proof of Lemma 7.

As we saw in the introduction to this section Lemma 7 can now be used to prove the
following theorem.

Theorem 8. Each of the sets <tfk and J n %>k is analytic and non-Borel in #[0 ,1] for

Remark 9. As we saw at the beginning of this section, Lemma 7 actually proves the
slightly stronger result that J^n^7* is analytic and non-Borel in #[0,1] for k = 2,3,....

Although this completes the proof of the main result of Section 1, there are some
additional facts which we will need in the subsequent sections.

Proposition 10. IffzjYabc, then for each i = 2,3,..., fleJ^A.bCl where Ai = aijbi~y and

Proof. For each i= 1,2,3,... the facts that / ' is increasing, /'(0) = 0, and / ' (1)=1
follow directly from the hypothesis that / e / ^ . Further, as / is linear and increasing
on [0,a] and [b, 1] it follows that / ' is linear on [0,/I,] and [b, 1]. An easy computation
shows that f'\A,) = b and f\b) = Ct.

Proposition 11. Suppose BaNH is Borel, F is as in Lemma 7, and y$B. Then
F'(y) e W if and only ifj divides i.

Proof. The sufficiency is obvious; for the necessity we again rely on the structure of
the intervals of local constancy. As y$B, every decreasing sequence of components of
C(F{y)) converges to the same real number. As F(y)eNabc, F(y)(a) = b, F(y)(b) = c, and
F(y) is linear on each of the intervals [0,a] and [6,1]. From these it follows that any
decreasing sequence of components of C(F'(y)) converges to one of exactly i points, one
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in each of the intervals [_a,b), [A2,a), and [/4n,/ln-i) n = 2,3,...,i. From Proposition 10
we know that F'(y) e jVA.bCi. If F'(y) e c€i then these i points must be equally distributed
among the j intervals guaranteed by Lemma 3. This completes the proof of Proposition
11.

2. Decreasing iterates of odd exponent

In this section we show that if k ̂  3 is odd and 3> denotes the set of decreasing
functions in (€, then the set 3) n <g* is analytic and non-Borel. The fact that Qi n #* is
analytic is obvious as 9t is closed in #[0,1]. Our method is to prove that for every odd
/c^3 and every Borel set BcWN there exists a continuous map W:NN-*@ such that if
yeNN then W(y)ec£k if and only if yeB. As we saw in Section 1, the existence of such a
map proves that 3) n #* is non-Borel. We shall define W as OoF, where $ maps a
certain subclass of # (containing Jf) into 3> and F is the map found in Lemma 7.

Let Jl denote the set of functions fe'tf such that /(1) = 1 and / (x )< l for xe[0,1).
For / £ Jl we define

U/(2-2x),

Lemma 12. 77ie map O defined above has the following properties:

(i) Q(f)e<& for every feJK.
(ii) O ( / ) e ^ / o r eyery / ' e J r\Jt.

(iii) * ( / ) o <t>(g) = 1 - $ ( / o g) /or euerj; fgeJf.
(iv) <D(>" n <!?*) c 'g'* /or eyery odd k.
(v) //fc is odd, then /2e<£* whenever feJf and

Proof. Property (i) follows from the fact that /(1) = 1 for every feJt and (ii) is
obvious from the definition of <&. An easy computation gives (iii). To prove (iv) let k be
odd and / e / n ' i ' * . From Lemma 2 we deduce that f=gk where geJ, g(l) = l and g
is strictly increasing on [6,1]. These imply that geJf. It now follows easily from (iii)
and the fact that k is odd that <&(/) = <P(gk) = (<P(g))1' e c€k.

To prove (v) suppose that feJt and <!>(/)=gk where get?. It follows from the
definitions of Jl and <5 that <&(/) has a unique fixed point at x = \ and that <D(/) attains
the value of \ only at \. Therefore g has the same two properties. Consequently, either
g(x)<-j f°r every xe[0,^) or g(x)>^ for every xe[0,j). The former is impossible since
®(f)=gk an<* ®(f)(x)>i o n [0,i)- Hence g(x)>% on [0,^) and the same argument
shows that g\x)<\ on (£, 1]. This, together with the definition of 4>, implies that there
are functions gltg2eJf such that O(g1)|[0,i]=g|[0,i] and 4>fe2) |[ i l]=?g|[i l] .
Then for x e [ | , l ] , g(x) = d)(g2)(x)e[0,i] and hence, g2(x) = 0 ( ^ ) o % 2 ) ( x ) e [ i 1], This
implies that
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" * ( * ) for x e [ i , l ] . (12.1)

By (iii), 1 — <t>(f2)=(®(f))2=g2k. On the other hand, (iii) implies that whenever m is
even and fuf2,...,fmeJ(, we have

Hence

By (12.1), we have

fc(/2)|[il] = <J>(Gri°S2)k)|[il]- (12.2)

But, if fuf2eJ( and <D(/i) | [ i 1] = <D(/2)| [i, 1] then / , = /2. Hence, it follows from
2 * ^

Lemma 13. For every Borel set BczNN and odd /c^3, there is a continuous map
W: NN->S> such that W(y)e<tfk if and only ifyeB.

Proof. We put W = <S>oF, where <D is the mapping described above and F is the
function defined for the Borel set B in Lemma 7. If yeB then, by Lemma 7,
F{y)ejV n<gk and hence W(y) = <S>(F(y))e3n<€k by (ii) and (iv) of Lemma 12. On the
other hand, if ye NN and W(y) = <S>{F(y))e^k then, by (v) of Lemma 12, (F(y))2e^k. But
2 does not divide k and hence Proposition 11 implies that yeB.

As we saw at the beginning of this section, Lemma 13 establishes the following result.

Theorem 14. / / k ̂  3 is odd, then S> n #* is analytic and non-Borel in #[0,1].

3. Decreasing iterates of even exponent

Our goal in this section is to prove the following characterization of the class 3> n #*,
k even.

Theorem 15. For each even k, 3inc6k = 3>r\<€2. Moreover, if feS) and k is even then
k if and only ifC(f) contains the range off.

From this we can immediately infer that for even k, 3)nt?k is Borel and indeed, is Fa.

Corollary 16. For every even k, 3)n<<?* is an F„ subset oft>[0,1].

Proof. It is easy to see that if p<q<r<s then the set of functions f &3) such that /
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is constant on [p,s] n [0,1] and the range of / is contained in [<j,r] is closed in #[0,1].
By Theorem 15, 3) n *8* is the union of all such sets where p,q,r, and s are rational.

We turn now to the proof of Theorem 15 which is accomplished via a series of
results.

Theorem 17. If fe<£ and C(f) contains the range of f, then / e # * for every

Proof. The range of / is a closed interval while C(/) is relatively open in [0,1]. Let
/ denote the component of C(/) containing the range of / and set u=f\l. If / = [0,1], /
is constant on I and the conclusion follows as / = /*. Therefore we may assume
'# [0 ,1 ] , and we first assume I=(a,b) where 0 < a < b < l . If m = min{/(x):xe[0,1]}
and M = max{/(x):xE[0,1]} then the hypothesis implies c<mgu$M<fe.

Let k^.2 be fixed, and choose points x,, i = l,2, ...,fc such that 0 = x 1 < a < x 2 < - <
xk<m. We define the function g to be the increasing linear map from [x.-^x,] onto
[Xj.Xj + i], i = 2,3,...,k— 1. Theng*"2 maps [0,x2] onto [xk_!,xt]. Let

c=gk-2(a)e(xk-i,xk).

Define g to be linear and increasing on each of the intervals [xk_j,c] and [c.xj ,
mapping them respectively onto [xt, ni] and onto [m,/(0)]. Next define

(x — xk)) if x e [xk, ni], and(
m — xk

g(x) = u if xe[m,u].

At this point g has been defined on [0, u] and it is easy to check that g is continuous
here using the fact that g(m) = f(a) = u. The definition of g on [w, 1] is analogous but
using M and b in place of m and a respectively.

We prove that f=gk. Since gk~l maps [0, a] linearly onto [x*, ni], we have, for
xe[0,a],

Therefore, by the definition of g in [x*,m] we deduce that g*(x) = /(x) for xe[0,a].
Further, since g*"1 maps [a,x2] into [m, /(0)] c [m, M] and g([m, M]) = {u}, we have
g*(x) = «=/(x) whenever xe[a ,x2] . Since g([xt_1,xt]) = [xfc,/(0)] and

*./(0)]) =*([*», m]) u g([m,/(0)]) c [m, M] u «([m, M]) = [m, M] u {u} = [m, M],

we have ^3([xfc_1,xfc]) = {u}. Therefore, if 3 ^ i g Ac then
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Since f{x) = u for xe[xz,xk], this proves that f(x)=gk{x) on [ x ^ x j . If xe[xt ,u], then
g(x) e [m, JVf] so that g2(x)=gk(x) = u = f(x). The same argument applies if xe[u, 1] and,
as such, the proof that / e #* is complete.

Next consider the case l = (a, 1]. Then for each k, the function g is defined as above
on the interval [0,u] but is defined to be the constant u on [u, 1]. The proof that
f(x)=gk(x) for xe[0, u] is exactly as that given above while the fact that g*(x) = /(x) for
xe[u, 1] now follows from the fact that /(x)=g(x) = u on [u, 1].

The case / = [0, b) is analogous and this completes the proof of Theorem 17.

Lemma 18. Let feSiri'g2 and let u denote the (unique) fixed point of f. Then
/(x) = u holds whenever xe[/(l) , /(0)].

Proof. Let / " 1({u}) = [a, y3]; we must prove that a g / ( l ) and 0^/(0). Suppose this
is not true and assume, for example, that / ( l )<a. Let f=g2, ge# . Since u is the sole
fixed point of/, u is also the only fixed point of g. As f=g2 is decreasing, this implies
that g(x)>x for x<u and g(x)<x for x>u. Set g(l) = w.

As a first case, suppose w>/?. Then g(w) = / ( l ) ^ u and g(l) = w>/?2iu. Hence there is
a ye[w, 1] such that g(y) = u. Then f{y)=g\y)=g(u) = u which is impossible as

j g /
Next, suppose w<<x. Then g{g(w)) = /(w)>u and £(w) = / ( l )gu . Hence, there is a

ys[w,g(w)'] with g(y) = u. Again, f(y)=g{u) = u which is impossible since

Therefore, we may suppose we [a,/?] and hence that f(w) = u. Now, /2( l) = g4(l) =
g3(w)=s(f(w))=g{u) = u which again is impossible as / ( l )<a . This final contradiction
completes the proof of Lemma 18.

We now turn to the proof of Theorem 15.

Proof of Theorem 15. Let fe2>. If C(/) contains the range of / then, by Theorem
17, feDnCk for every k.UfeS>n^k with k even then, obviously, / e©n<^ 2 so that,
by Lemma 18, / is constant on the interval [/(l),/(0)]. To complete the proof of
Theorem 15 we must show that there is an e>0 such that / is constant on the interval
[/(I)—£,/(0) + e] n [0,1]. As in Lemma 18 we let u denote the only fixed point of/, let
[a.P] = f~HI"}), and let ge<€ be such that g2 = f. We must show that

(i) either )?= 1 or /(0) <0 and

(ii) either a = 0 or /(I)>a.

Suppose, for example, that (i) is false, that is, /(0) = /?<l. We prove that this implies
that g is not constant on [«,/(0)].

First we show / ( 0 ) > M . Indeed, if u = /(0) = /?, then f(z) = u for every ze[0,u]. Hence
either g = u in [0, M] or g([0, u]) contains a one sided neighbourhood of u on which
g=u. In each of these cases, g = u in a one sided neighbourhood of u. If this is a right
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neighbourhood then f = u in that neighbourhood which is impossible since /(0) = u = /?.
We conclude that g is not constant in [«, 1] so that g([u, 1]) contains a one sided
neighbourhood of u and g<u in this neighbourhood. Thus, there is a 5>0 such that
g(z)<u for ze(u,« + <5) which again is a contradiction. Hence, /(0) = P > u.

Suppose g is constant on [u,/(0)]. Then g=u on [u,/(0)]. Further, since /(0) = /?,
g2(z) = f(z)<u for ze(/(0), 1]. But this entails that g is not constant on (/(0), 1] else this
constant would be g(f(0)) = u which would imply that g\z) = u on (/(0), 1]. Thus,
g((/(0), 1]) contains a one sided neighbourhood of u and g<« on this neighbourhood.
Since g = u on [u,/(0)] there is a 5>0 such that g(z)<u for ze(u — S,u). Then there is
an r\>0 such that /(z)=g2(z)<u for ze(u — rj,u) which is not the case. Hence g cannot
be constant on [u,/(0)] as we claimed.

Now, set v=g(0) so that g(v) = f(0). We consider three cases.

Case 1. v>f(0).

In this case f(v)<u, g(f(0)) = f(v)<u, and g(v) = f(0)^u. Hence, there is a ye(/(0),D]
with g(y) = u. But then f(y) = u which is impossible as y > /(0) = /?.

Case 2.

Here we have. f(v) = u and /(g(0))=g(/(0)) = u. As g(u) = /(O), it follows that
£([>,/(0)])=>|>,/(0)]. But / = M on [f,/(0)] and hence g is constant on [u,/(0)] which,
as we saw above, is impossible.

Case 3. v<f{l).

In this case, g(u) =/(0)2;u and g(0) = v<u so that there is a ye[O,v) such that
g(y) = u. Then /(y) = w and hence, as y^v<f(l), f(v) = u. Therefore f = u on [i>,/(0)].
But ^([f,/(0)])=)[u,/(0)] and we again conclude that g is constant on [u,/(0)]. This
final contradiction completes the proof.
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