THE BOREL STRUCTURE OF ITERATES OF CONTINUOUS FUNCTIONS

by PAUL D. HUMKE* and M. LACZKOVICH*

(Received 11th October 1988)

0. Notation

Let $\mathscr{C}[0,1]$ be the Banach space of continuous functions defined on [0,1] and let \mathscr{C} be the set of functions $f \in \mathscr{C}[0,1]$ mapping [0,1] into itself. If $f \in \mathscr{C}$, f^k will denote the kth iterate of f and we put $\mathscr{C}^k = \{f^k : f \in \mathscr{C}\}$. The set of increasing (\equiv nondecreasing) and decreasing (\equiv nonincreasing) functions in \mathscr{C} will be denoted by \mathscr{I} and \mathscr{D} , respectively. If a function f is defined on an interval I, we let C(f) denote the set of points at which f is locally constant, i.e.

 $C(f) = \{x \in I: \text{there is a } \delta > 0 \text{ such that } f \text{ is constant on } (x - \delta, x + \delta) \cap I \}.$

We let \mathbb{N} denote the set of positive integers and $\mathbb{N}^{\mathbb{N}}$ denote the Baire space of sequences of positive integers.

1. Increasing iterates

In this section we prove that the sets \mathscr{C}^k and $\mathscr{C}^k \cap \mathscr{I}$ are analytic and non-Borel subsets of $\mathscr{C}[0,1]$ for every $k \ge 2$. The fact that \mathscr{C}^k is analytic follows directly from the continuity of the mapping $f \mapsto f^k$ ($f \in \mathscr{C}$). As \mathscr{I} is closed in $\mathscr{C}[0,1]$, the set $\mathscr{C}^k \cap \mathscr{I}$ is also analytic. The goal of the next series of lemmas is to show that for each $k \ge 2$ and for each Borel subset $B \subset \mathbb{N}^N$ there is a continuous map $F: \mathbb{N}^N \to \mathscr{I}$ such that $F^{-1}(\mathscr{C}^k) =$ B. From this it easily follows that neither of the sets \mathscr{C}^k nor $\mathscr{C}^k \cap \mathscr{I}$ is Borel. Indeed suppose \mathscr{C}^k or $\mathscr{C}^k \cap \mathscr{I}$ is Borel and is of Borel class $\alpha < \omega_1$. We can choose a Borel set $B \subset \mathbb{N}^{\mathbb{N}}$ of class higher than α and construct a map F as above. Since F is continuous and maps into \mathscr{I} , $F^{-1}(\mathscr{C}^k) = F^{-1}(\mathscr{C}^k \cap \mathscr{I}) = B$ is of class α which is contrary to the choice of B.

In order to construct this mapping, F, we introduce the following subclasses of \mathscr{I} . For any choice of numbers 0 < a < b < c < 1 we let \mathscr{N}_{abc} denote the set of functions $f \in \mathscr{I}$ satisfying the following conditions.

1. f(0) = 0 and f(1) = 1.

*The work of both authors was supported in part by the Fulbright foundation.

- 2. f(a) = b and f(b) = c.
- 3. f is linear on each of the intervals [0, a] and [b, 1].

Our initial aim is to characterize the functions belonging to $\mathcal{N}_{abc} \cap \mathscr{C}^k$ in terms of the set C(f). Throughout the remainder of this section we consider the numbers a, b, and c fixed and simply use \mathcal{N} to denote \mathcal{N}_{abc} .

We begin with the following simple lemma whose proof is omitted.

Lemma 1. Let h_1 and h_2 be increasing and continuous functions defined on the closed interval [x, y] such that $C(h_1) = C(h_2)$. Then there is a strictly increasing continuous function j defined on $[h_1(x), h_1(y)]$ such that $h_2 = j \circ h_1$.

Lemma 2. Let $f \in \mathcal{N} \cap \mathcal{C}^k$, $k \ge 2$. Then there exists a $g \in \mathcal{J}$ and points $a = x_0 < x_1 < \cdots < x_k = b$ such that $f = g^k$, g(0) = 0 and g(1) = 1, $g(x_i) = x_{i+1}$, $i = 0, 1, \dots, k-1$ and g is strictly increasing on each of the intervals $[0, x_{k-1}]$ and [b, 1].

Proof. As $f \in \mathscr{C}^k$, there is a $g \in \mathscr{C}$ such that $f = g^k$. Since f has no fixed point in (0, 1), neither does g. Consequently, either g(x) < x holds for every $x \in (0, 1)$ or g(x) > x holds for every $x \in (0, 1)$. The former entails that $f(x) = g^k(x) \le g^{k-1}(x) \le \cdots \le g(x) < x$ for every $x \in (0, 1)$ which is not the case. Then g(x) > x for each $x \in (0, 1)$ and this fact implies that g(1) = 1; as f(0) = 0 we also deduce that g(0) = 0. Also, as f(x) < 1 for x < 1 it follows that g(x) < 1 for x < 1. We have

$$x < g(x) < \dots < g^{k}(x) = f(x)$$
 for $x \in (0, 1)$. (2.1)

Define $x_i = g^i(a)$, i = 0, 1, ..., k. By (2.1) and the fact that f(a) = b we have $a = x_0 < x_1 < \cdots < x_k = b$. Now, $g^{k-1}(0) = 0$ and $g^{k-1}(a) = x_{k-1}$ so that $[0, x_{k-1}] \subset g^{k-1}([0, a])$. But $f(x) = g^k(x) = g(g^{k-1}(x))$ and f is injective on [0, a]. Hence, g is injective on $[0, x_{k-1}]$ and as g(0) = 0, g is strictly increasing there. Similarly, as $f = g^k$ is injective on [b, 1], g is strictly increasing on [b, 1]. What remains is to prove that g is increasing on $[x_{k-1}, b]$. As $g^{k-1}(a) = x_{k-1}$ and $g^{k-1}(x_1) = b$ it follows that $g^{k-1}([a, x_1]) = [x_{k-1}, b]$. But then the result follows by noting that g^{k-1} is strictly increasing on $[a, x_1]$ and $f = g(g^{k-1})$ is increasing on $[a, x_1]$.

Lemma 3. For every $f \in \mathcal{N}$ and $k \ge 2$, $f \in \mathcal{C}^k$ if and only if there are points $a = x_0 < x_1 < \cdots < x_k = b$ and a function ϕ defined on $[x_0, x_{k-1}]$ such that for each $i = 1, 2, \ldots, k-1, \phi$ is an increasing homeomorphism mapping $[x_{i-1}, x_i]$ onto $[x_i, x_{i+1}]$ satisfying

$$\phi(C(f \mid [x_{i-1}, x_i])) = C(f \mid [x_i, x_{i+1}]).$$
(3.1)

Proof. If $f \in \mathcal{N} \cap \mathcal{C}^k$ then there are points $a = x_0 < x_1 < \cdots < x_k = b$ and a function $g \in \mathcal{C}$ which satisfy the conclusion of Lemma 2. Let $\phi = g | [x_0, x_{k-1}]$. It follows directly

from Lemma 2 that for each i=1,2,...,k-1, ϕ is an increasing homeomorphism mapping $[x_{i-1},x_i]$ onto $[x_i,x_{i+1}]$. As g is strictly increasing on each of the intervals $[x_{i-1},x_i]$ i=1,2,...,k-1 and on [b,1] we have

$$\phi(C(f \mid [x_{i-1}, x_i])) = \phi(C(g \circ f \mid [x_{i-1}, x_i])) = \phi(C(f \circ \phi \mid [x_{i-1}, x_i])) = C(f \mid [x_i, x_{i+1}]).$$

This completes the proof of the necessity and we now turn to the sufficiency proof.

Suppose that the numbers x_i , i=0, 1, ..., k and the function ϕ are given and satisfy the conditions of the lemma. We prove that ϕ can be extended to a continuous function g defined on [0,1] such that $f=g^k$. First note that $f(x_{i-1}) < f(x_i)$ (i=1,...,k). Indeed, if $f(x_{i-1}) = f(x_i)$ then $C(f | [x_{i-1}, x_i]) = [x_{i-1}, x_i]$. This implies, by (3.1) that f is constant on the entire interval [a, b]. This, of course, contradicts the fact that f(a) = b < c = f(b).

Next, we extend the sequence $\{x_0, x_1, \dots, x_k\}$ by defining $x_n = f(x_{n-k})$ for n > k and $x_n = f^{-1}(x_{n+k})$ for n < 0. Since f is strictly increasing on each of the intervals [0, a] and [b, 1], and $x_k < x_{k+1} < \cdots < x_{2k-1}$ (our prior remark) it is easy to verify that $x_n < x_{n+1}$ for every integer n. If $v = \lim_{n \to \infty} x_n$ then f(v) = v and as v > 0, v = 1. Similarly, $\lim_{n \to \infty} x_{-n} = 0$. We inductively define a function ϕ_n on the interval $[x_{n-1}, x_n]$ such that

- A_n . ϕ_n is increasing and continuous on $[x_{n-1}, x_n]$.
- B_n . ϕ_n maps $[x_{n-1}, x_n]$ onto $[x_n, x_{n+1}]$.
- C_n . If $n \neq k$, then ϕ_n is strictly increasing.

We begin by defining $\phi_n = \phi | [x_{n-1}, x_n]$ for n = 1, 2, ..., k-1. By hypothesis, A_n , B_n , and C_n are true for these *n*. Next we define $\phi_k = f \circ \phi_1^{-1} \circ \phi_2^{-1} \circ \cdots \circ \phi_{k-1}^{-1}$ and note that A_k and B_k are satisfied. Suppose now that $n \ge 0$ and that for each i = 1, 2, ..., n+k, ϕ_i has been defined and satisfies A_i , B_i , and C_i . We prove that

$$C(\phi_{n+k} \circ \phi_{n+k-1} \circ \cdots \circ \phi_{n+2}) = C(f \mid [x_{n+1}, x_{n+2}]).$$
(3.2)

There are two cases. First suppose that $n \le k-2$. Then, as the functions $\phi_{k+1}, \phi_{k+2}, \dots, \phi_{k+n}$ are strictly increasing (property C_i), the left hand side of (3.2) reduces to $C(\phi_k \circ \phi_{k-1} \circ \dots \circ \phi_{n+2})$. Using (3.1) and the definition of ϕ_k it is easy to check that $C(\phi_k \circ \phi_{k-1} \circ \dots \circ \phi_{n+2}) = C(f | [x_{n+1}, x_{n+2}])$. If n > k-2 then all of the functions extant in (3.2) are strictly increasing so that both sides of (3.2) are empty. We apply Lemma 1 with $h_1 = \phi_{n+k} \circ \phi_{n+k-1} \circ \dots \circ \phi_{n+2}$, $h_2 = f | [x_{n+1}, x_{n+2}]$. Thus we obtain a strictly increasing continuous function, ϕ_{n+k+1} , defined on $h_1([x_{n+1}, x_{n+2}]) = [x_{n+k}, x_{n+k+1}]$ such that

$$\phi_{n+k+1} \circ \phi_{n+k} \circ \cdots \circ \phi_{n+2} = f | [x_{n+1}, x_{n+2}].$$
(3.3)

Again, conditions A_{n+k+1} , B_{n+k+1} , and C_{n+k+1} are satisfied. Hence ϕ_n has been defined for every n > 0 and we now turn to the case when $n \leq 0$.

Suppose $n \leq 0$ and that for each i > n, ϕ_i has been defined and satisfies the conditions A_i , B_i , and C_i . We put

P. D. HUMKE AND M. LACZKOVICH

$$\phi_n = \phi_{n+1}^{-1} \circ \phi_{n+2}^{-1} \circ \cdots \circ \phi_{n+k-1}^{-1} \circ (f \mid [x_{n-1}, x_n]).$$
(3.4)

As in the previous cases, A_n , B_n , and C_n are transparent. In this way, ϕ_n has been defined for every integer *n* and we define

$$g(x) = \begin{cases} \phi_n(x) & \text{if } x \in [x_{n-1}, x_n], n \in \mathbb{Z} \\ 0 & \text{if } x = 0 \text{ and } 1 \text{ if } x = 1. \end{cases}$$

It follows from the conditions A_n and B_n that g is increasing and continuous on [0, 1]. Now, if $x \in (0,1)$ then there is an integer n such that $x \in [x_{n-1}, x_n]$. If $n \le 0$ then $f(x) = g^k(x)$ by (3.4); if $n \ge 2$ then $f(x) = g^k(x)$ by (3.3). Then sole remaining case is that when n = 1 and the fact that $f(x) = g^k(x)$ for $x \in [x_0, x_1]$ follows from the definition of ϕ_k . The proof of Lemma 3 is completed by noting that 0 and 1 are fixed points of both g and f.

A family of subsets of \mathbb{R} , $\{I_{\gamma}: \gamma \in \Gamma\}$, is said to be *discrete* if there is a family of pairwise disjoint open sets $\{U_{\gamma}: \gamma \in \Gamma\}$ such that $\overline{I}_{\gamma} \subseteq U_{\gamma}$ ($\overline{A} \equiv A$ closure) for every $\gamma \in \Gamma$. A family of pairwise disjoint intervals will be considered ordered according to the usual ordering of \mathbb{R} .

Lemma 4. Let β be an infinite countable ordinal, $\varepsilon > 0$ and $k \ge 2$. Suppose that $\{I_{\alpha}: \alpha < \beta k\}$ is a discrete set of open intervals contained in $(a + \varepsilon, b - \varepsilon)$ such that $I_{\alpha} < I_{\gamma}$ for $\alpha < \gamma < \beta k$. Then there are points $a = x_0 < x_1 < \cdots < x_k = b$ and a homeomorphism $\phi: [x_0, x_{k-1}] \rightarrow [x_1, x_k]$ such that $I_{\beta i+\alpha} \subset [x_i, x_{i+1}]$ $(i = 0, \dots, k-1, \alpha < \beta)$, ϕ maps $[x_{i-1}, x_i]$ onto $[x_i, x_{i+1}]$ and $I_{\beta (i-1)+\alpha}$ onto $I_{\beta i+\alpha}$ for each $i = 1, 2, \dots, k-1$ and each $\alpha < \beta$.

Proof. For every $\alpha < \beta k$ let $I_{\alpha} = (u_{\alpha}, v_{\alpha})$ and define $w_i = \lim_{\alpha \to \beta i} v_{\alpha}$ for each i = 1, 2, ..., k. As $\{I_{\alpha}: \alpha < \beta k\}$ is discrete, $w_i < u_{\beta i}$ for $i \le k-1$ and $w_k \le b-\varepsilon$. Let $x_0 = a$, $x_i = (w_i + u_{\beta i})/2$ (i = 1, 2, ..., k-1) and $x_k = b$. Then define $\phi(x_{k-1}) = b$; $\phi(x_i) = x_{i+1}$, $\phi(u_{\beta i+\alpha}) = u_{\beta(i+1)+\alpha}$ and $\phi(v_{\beta i+\alpha}) = v_{\beta(i+1)+\alpha}$ for i = 0, 1, ..., k-2 and $\alpha < \beta$. As ϕ is strictly increasing on its domain and $\{I_{\alpha}: \alpha < \beta k\}$ is discrete, ϕ can be extended to a strictly increasing continuous function defined on the closure of its domain. We further extend ϕ to the entire interval $[x_0, x_{k-1}]$ by defining the extension to be linear on each component of the complement of this closure. This completes the proof of Lemma 4.

Let $E \subseteq [0, 1] \times [0, 1]$ and $x, y \in [0, 1]$. We denote the vertical and horizontal sections of E by $E_x = \{y:(x, y) \in E\}$ and $E^y = \{x:(x, y) \in E\}$. Now let $\{J_y: y \in \Gamma\}$ be a discrete family of open intervals in [a, b] and let $K = [a, b] \setminus \bigcup_{y \in \Gamma} J_y$. Then each portion of K has positive Lebesgue measure. Let $\{I_y: y \in \Gamma\}$ be a family of subintervals of [0, 1] with rational endpoints, and define $G = \bigcup_{y \in \Gamma} (J_y \times I_y)$. We define a map $T: [0, 1] \rightarrow \mathscr{C}[a, b]$ as follows ($\lambda \equiv$ Lebesgue measure).

$$T(y)(x) = \frac{\lambda([a,x] \setminus G^{y})}{\lambda([a,b] \setminus G^{y})}, \quad y \in [0,1] \quad \text{and} \quad x \in [a,b].$$
(5.1)

Lemma 5. The map T defined above has the following properties.

- 1. T(y) is increasing and continuous for every $y \in [0, 1]$.
- 2. T(y)(a) = 0 and T(y)(b) = 1 for every $y \in [0, 1]$.
- 3. $C(T(y)) = G^{y}$ for every $y \in [0, 1]$.
- 4. T, as a map from [0,1] into $\mathscr{C}[a,b]$, is continuous at each irrational $y \in [0,1]$.

Proof. Statements 1 and 2 are obvious and 3 follows from the fact that every portion of $[a,b] \setminus \bigcup_{y \in \Gamma} J_y$ has positive Lebesgue measure. To prove 4, first note that Γ is countable. Let $y_0 \in [0, 1]$ be irrational, and let $\{\gamma_1, \gamma_2, \ldots, \gamma_n\} \subset \Gamma$ be an arbitrary finite set of indices. As the endpoints of the I_y are rational, there is a $\delta > 0$ such that if $y \in (y_0 - \delta, y_0 + \delta)$ then $y \in I_{\gamma_j}$ if and only if $y_0 \in I_{\gamma_j}$ for $j = 1, 2, \ldots, n$. The continuity of T at y_0 easily follows from this observation.

Lemma 6. If $B \subset [0, 1]$ is Borel, then there is a set $M \subseteq [0, 1] \times [0, 1]$ consisting of a countable union of vertical line segments with rational endpoints and a countable ordinal β such that:

- 1. If $y \in B$, then M^y is well ordered with order type less than β ;
- 2. if $y \notin B$, then M^y is not well ordered, but every decreasing sequence in M^y converges to the same real number.

Proof. For $i \in \mathbb{N}$ and $\sigma \in \mathbb{N}^{\mathbb{N}}$ we denote the restriction of σ to its first *i* coordinates by $\sigma | i$. The desired set *M* is a Lusin sieve for $\mathbb{R} \setminus B$ and the special characteristics of *M* are derived from the fact that *B* is Borel. Specifically, there is a set of closed intervals with rational endpoints, $\{I_r: \tau \in \mathbb{N}^i, i = 1, 2, ...\}$ satisfying the following conditions:

- (i) $\mathbb{R}\setminus B = \bigcup_{\sigma \in \mathbb{N}^N} \bigcap_{i=1}^{\infty} I_{\sigma|i}$.
- (ii) If n > m and $\sigma \in \mathbb{N}^{\mathbb{N}}$, then $I_{\sigma \mid n} \subset I_{\sigma \mid m}$.
- (iii) For every $y \in \mathbb{R} \setminus B$ there is a unique $\sigma \in \mathbb{N}^N$ such that $\{y\} = \bigcap_{i=1}^{\infty} I_{\sigma_i i}$.

We form a Lusin sieve for $\mathbb{R}\setminus B$ by assigning to each finite sequence of natural numbers $\tau = (n_1, n_2, \ldots, n_i)$ the binary fraction $x_\tau = 1 - 2^{-n_1} - \cdots - 2^{-n_1 - \cdots - n_i}$ and the closed interval I_τ . The set M is defined as $M = \bigcup \{\{x_\tau\} \times I_\tau\}$ where the union is taken over all finite sequences of natural numbers. It follows directly from the definition of the sieve that M^y is well ordered if and only if $y \in B$. The fact that there is a countable ordinal β bounding the ordinals of the sections M^y , $y \in B$ is the substance of Corollary 5a of Section 39, VIII in [1]. Finally, suppose $y \in \mathbb{R}\setminus B$. Then there is a unique sequence $\sigma = (n_1, n_2, \ldots)$ such that $y \in \bigcap_{i=1}^{\infty} I_{\sigma_i i}$. We prove that every decreasing sequence in M^y converges to the point 1-x where $x = 2^{-n_1} - 2^{-n_1 - n_2} + \ldots$.

Suppose $\{x_{\tau_i}\}$ is an increasing sequence of binary fractions such that $1 - x_{\tau_i} \in M^y$ for every *i*. For each *j* we denote the *j*th coordinate of τ_i by $\tau_i(j)$. It is easily verified that for each fixed *j*, the sequence $\{\tau_i(j): i=1, 2, ...\}$ is eventually decreasing and hence, is eventually stationary at a natural number which we denote by $\tau(j)$. If $\tau = (\tau(1), \tau(2), ...)$

then $y \in \bigcap_{i=1}^{\infty} I_{\tau|i}$ and as σ is unique, $\sigma = \tau$. Hence, $\{x_{\tau_i}: i=1,2,\ldots\}$ converges to $x = 2^{-n_1} + 2^{-n_1-n_2} + \ldots$

Lemma 7. For every Borel set $B \subset \mathbb{N}^N$ and every $k \ge 2$ there is a continuous function $F: \mathbb{N}^N \to \mathcal{N}$ such that $F(y) \in \mathcal{C}^k$ if and only if $y \in B$.

Proof. For convenience, we identify the space \mathbb{N}^N with the irrational numbers in [0, 1] (see [1], Section 3). We fix three numbers p, q, and r such that a . Let <math>K denote a nowhere dense perfect subset of [a, p]. As the set of bounded intervals contiguous to K has order type η (dense, unbordered, countable) there is a 1-1 order preserving mapping, H, from the binary fractions onto this set of intervals. If x_{τ} is a binary fraction, we let J_{τ} denote the open interval concentric with $H(x_{\tau})$ but of half the length. Next we apply Lemma 6 for the Borel set B and obtain the set

$$M = \bigcup_{\tau} \left(\{ x_{\tau} \} \times I_{\tau} \right)$$

and the countable ordinal β satisfying 1. and 2. of Lemma 6. We define

$$G_1 = \bigcup (J_\tau \times I_\tau)$$

where the union is taken over all finite sequences of natural numbers. Let $\{L_{\alpha}: \alpha < \beta \omega k\}$ be a discrete set of open subintervals of [q, r] of order type $\beta \omega k$. Then we define

$$G_2 = \bigcup_{\alpha > \beta \omega k} \left(L_{\alpha} \times [0, 1] \right)$$

and

$$G = G_1 \cup G_2.$$

Now define the map T by (5.1). We define $F:[0,1] \rightarrow \mathscr{C}[0,1]$ we by F(y)(x) = (c-b)T(y)(x) + b for $y \in [0, 1]$ and $x \in [a, b]$. We then set F(y)(0) = 0, F(y)(1) = 1and complete the definition by insisting F(y) be linear on each of the intervals [0, a] and [b, 1]. It is evident from this definition that $F(y) \in \mathcal{N}$ for every $y \in [0, 1]$ and it follows directly from Lemma 5 that F is continuous at each irrational y. Finally, for each y, $C(F(y)) = G^y = G_1^y \cup G_2^y$. The set of components for G_2^y is precisely $\{L_a: \alpha < \beta \omega k\}$ and has order type $\beta \omega k$. The nature of the components of G_{λ}^{y} depends on whether $v \in B$ or not and we consider these cases separately.

Case 1. $y \notin B$.

It follows from Lemma 6 that the components of G_1^y contain a decreasing sequence of intervals converging, say, to x^* , and that every decreasing sequence of components converges to x^* . If $F(y) \in C^k$, then there are points $a = x_0 < x_1 < \cdots < x_k = b$ satisfying the

conditions of Lemma 3. As $a \le x^* < b$ there is a unique $n \in \{0, 1, \dots, k-1\}$ such that $x^* \in [x_n, x_{n+1})$. But then the components of $C(F(y) \mid [x_n, x_{n+1}))$ are not well ordered and for each $i \ne n$ the components of $C(F(y) \mid [x_i, x_{i+1}))$ are well ordered. Such a situation bodes ill for the homeomorphism guaranteed by Lemma 3. This contradiction entails that if $y \notin B$ then $F(y) \notin C^k$.

Case 2. $y \in B$.

In this case, Lemma 6 yields that the components of G_1^y are well ordered and of order type $\alpha < \beta$. As $\alpha + \beta \omega k = \beta \omega k$, the order type of $G_1^y \cup G_2^y$ is $\beta \omega k$. Further, as each set of components G_1^y and G_2^y is discrete and the two sets are separated by the interval (p,q), the entire collection of components of G^y is discrete. But then, Lemma 4 establishes the existence of the requisite points $a = x_0 < x_1 < \cdots < x_k = b$ and the increasing homeomorphism $\phi: [x_0, x_{k-1}] \rightarrow [x_1, x_k]$ which guarantee, via Lemma 3, that $F(y) \in \mathscr{C}^k$. This completes the proof of Lemma 7.

As we saw in the introduction to this section Lemma 7 can now be used to prove the following theorem.

Theorem 8. Each of the sets \mathcal{C}^k and $\mathcal{I} \cap \mathcal{C}^k$ is analytic and non-Borel in $\mathcal{C}[0,1]$ for $k = 2, 3, \ldots$

Remark 9. As we saw at the beginning of this section, Lemma 7 actually proves the slightly stronger result that $\mathcal{N} \cap \mathcal{C}^k$ is analytic and non-Borel in $\mathcal{C}[0, 1]$ for k = 2, 3, ...

Although this completes the proof of the main result of Section 1, there are some additional facts which we will need in the subsequent sections.

Proposition 10. If $f \in \mathcal{N}_{abc}$, then for each $i = 2, 3, ..., f^i \in \mathcal{N}_{A_i b C_i}$ where $A_i = a^i/b^{i-1}$ and $C_i = 1 - (1-c)^i/(1-b)^{i-1}$.

Proof. For each i=1,2,3,... the facts that f^i is increasing, $f^i(0)=0$, and $f^i(1)=1$ follow directly from the hypothesis that $f \in \mathcal{N}_{abc}$. Further, as f is linear and increasing on [0, a] and [b, 1] it follows that f^i is linear on $[0, A_i]$ and [b, 1]. An easy computation shows that $f^i(A_i)=b$ and $f^i(b)=C_i$.

Proposition 11. Suppose $B \subset \mathbb{N}^{\mathbb{N}}$ is Borel, F is as in Lemma 7, and $y \notin B$. Then $F^{i}(y) \in \mathscr{C}^{j}$ if and only if j divides i.

Proof. The sufficiency is obvious; for the necessity we again rely on the structure of the intervals of local constancy. As $y \notin B$, every decreasing sequence of components of C(F(y)) converges to the same real number. As $F(y) \in N_{abc}$, F(y)(a) = b, F(y)(b) = c, and F(y) is linear on each of the intervals [0, a] and [b, 1]. From these it follows that any decreasing sequence of components of $C(F^i(y))$ converges to one of exactly *i* points, one

in each of the intervals [a, b), $[A_2, a)$, and $[A_n, A_{n-1})$ n=2, 3, ..., i. From Proposition 10 we know that $F^i(y) \in \mathcal{N}_{A_i b C_i}$. If $F^i(y) \in \mathcal{C}^j$ then these *i* points must be equally distributed among the *j* intervals guaranteed by Lemma 3. This completes the proof of Proposition 11.

2. Decreasing iterates of odd exponent

In this section we show that if $k \ge 3$ is odd and \mathscr{D} denotes the set of decreasing functions in \mathscr{C} , then the set $\mathscr{D} \cap \mathscr{C}^k$ is analytic and non-Borel. The fact that $\mathscr{D} \cap \mathscr{C}^k$ is analytic is obvious as \mathscr{D} is closed in $\mathscr{C}[0,1]$. Our method is to prove that for every odd $k \ge 3$ and every Borel set $B \subset \mathbb{N}^N$ there exists a continuous map $W: \mathbb{N}^N \to \mathscr{D}$ such that if $y \in \mathbb{N}^N$ then $W(y) \in \mathscr{C}^k$ if and only if $y \in B$. As we saw in Section 1, the existence of such a map proves that $\mathscr{D} \cap \mathscr{C}^k$ is non-Borel. We shall define W as $\Phi \circ F$, where Φ maps a certain subclass of \mathscr{C} (containing \mathscr{N}) into \mathscr{D} and F is the map found in Lemma 7.

Let \mathcal{M} denote the set of functions $f \in \mathcal{C}$ such that f(1)=1 and f(x) < 1 for $x \in [0, 1)$. For $f \in \mathcal{M}$ we define

$$\Phi(f)(x) = \begin{cases} 1 - \frac{1}{2}f(2x), & x \in [0, \frac{1}{2}] \\ \frac{1}{2}f(2 - 2x), & x \in (\frac{1}{2}, 1]. \end{cases}$$

Lemma 12. The map Φ defined above has the following properties:

- (i) $\Phi(f) \in \mathscr{C}$ for every $f \in \mathscr{M}$.
- (ii) $\Phi(f) \in \mathcal{D}$ for every $f \in \mathcal{I} \cap \mathcal{M}$.
- (iii) $\Phi(f) \circ \Phi(g) = 1 \Phi(f \circ g)$ for every $f, g \in \mathcal{M}$.
- (iv) $\Phi(\mathcal{N} \cap \mathcal{C}^k) \subset \mathcal{C}^k$ for every odd k.
- (v) If k is odd, then $f^2 \in \mathscr{C}^k$ whenever $f \in \mathscr{M}$ and $\Phi(f) \in \mathscr{C}^k$.

Proof. Property (i) follows from the fact that f(1)=1 for every $f \in \mathcal{M}$ and (ii) is obvious from the definition of Φ . An easy computation gives (iii). To prove (iv) let k be odd and $f \in \mathcal{N} \cap \mathscr{C}^k$. From Lemma 2 we deduce that $f = g^k$ where $g \in \mathcal{I}$, g(1)=1 and g is strictly increasing on [b, 1]. These imply that $g \in \mathcal{M}$. It now follows easily from (iii) and the fact that k is odd that $\Phi(f) = \Phi(g^k) = (\Phi(g))^k \in \mathscr{C}^k$.

To prove (v) suppose that $f \in \mathcal{M}$ and $\Phi(f) = g^k$ where $g \in \mathcal{C}$. It follows from the definitions of \mathcal{M} and Φ that $\Phi(f)$ has a unique fixed point at $x = \frac{1}{2}$ and that $\Phi(f)$ attains the value of $\frac{1}{2}$ only at $\frac{1}{2}$. Therefore g has the same two properties. Consequently, either $g(x) < \frac{1}{2}$ for every $x \in [0, \frac{1}{2})$ or $g(x) > \frac{1}{2}$ for every $x \in [0, \frac{1}{2})$. The former is impossible since $\Phi(f) = g^k$ and $\Phi(f)(x) > \frac{1}{2}$ on $[0, \frac{1}{2})$. Hence $g(x) > \frac{1}{2}$ on $[0, \frac{1}{2})$ and the same argument shows that $g(x) < \frac{1}{2}$ on $(\frac{1}{2}, 1]$. This, together with the definition of Φ , implies that there are functions $g_1, g_2 \in \mathcal{M}$ such that $\Phi(g_1) | [0, \frac{1}{2}] = g | [0, \frac{1}{2}]$ and $\Phi(g_2) | [\frac{1}{2}, 1] = g | [\frac{1}{2}, 1]$. Then for $x \in [\frac{1}{2}, 1]$, $g(x) = \Phi(g_2)(x) \in [0, \frac{1}{2}]$ and hence, $g^2(x) = \Phi(g_1) \circ \Phi(g_2)(x) \in [\frac{1}{2}, 1]$. This implies that

$$g^{2k}(x) = (\Phi(g_1) \circ \Phi(g_2))^k(x) \text{ for } x \in [\frac{1}{2}, 1].$$
 (12.1)

By (iii), $1 - \Phi(f^2) = (\Phi(f))^2 = g^{2k}$. On the other hand, (iii) implies that whenever *m* is even and $f_1, f_2, \ldots, f_m \in \mathcal{M}$, we have

$$\Phi(f_1) \circ \Phi(f_2) \circ \cdots \circ \Phi(f_m) = 1 - \Phi(f_1 \circ f_2 \circ \cdots \circ f_m).$$

Hence

$$(\Phi(g_1) \circ \Phi(g_2))^k = 1 - \Phi((g_1 \circ g_2)^k).$$

By (12.1), we have

$$\Phi(f^2) \left| \left[\frac{1}{2}, 1 \right] = \Phi((g_1 \circ g_2)^k) \right| \left[\frac{1}{2}, 1 \right].$$
(12.2)

But, if $f_1, f_2 \in \mathcal{M}$ and $\Phi(f_1) | [\frac{1}{2}, 1] = \Phi(f_2) | [\frac{1}{2}, 1]$ then $f_1 = f_2$. Hence, it follows from (12.2) that $f^2 = (g_1 \circ g_2)^k \in \mathscr{C}^k$.

Lemma 13. For every Borel set $B \subset \mathbb{N}^N$ and odd $k \ge 3$, there is a continuous map $W: \mathbb{N}^N \to \mathcal{D}$ such that $W(y) \in \mathscr{C}^k$ if and only if $y \in B$.

Proof. We put $W = \Phi \circ F$, where Φ is the mapping described above and F is the function defined for the Borel set B in Lemma 7. If $y \in B$ then, by Lemma 7, $F(y) \in \mathcal{N} \cap \mathscr{C}^k$ and hence $W(y) = \Phi(F(y)) \in \mathcal{D} \cap \mathscr{C}^k$ by (ii) and (iv) of Lemma 12. On the other hand, if $y \in \mathbb{N}^N$ and $W(y) = \Phi(F(y)) \in \mathscr{C}^k$ then, by (v) of Lemma 12, $(F(y))^2 \in \mathscr{C}^k$. But 2 does not divide k and hence Proposition 11 implies that $y \in B$.

As we saw at the beginning of this section, Lemma 13 establishes the following result.

Theorem 14. If $k \ge 3$ is odd, then $\mathcal{D} \cap \mathcal{C}^k$ is analytic and non-Borel in $\mathcal{C}[0, 1]$.

3. Decreasing iterates of even exponent

Our goal in this section is to prove the following characterization of the class $\mathscr{D} \cap \mathscr{C}^k$, k even.

Theorem 15. For each even k, $\mathcal{D} \cap \mathcal{C}^k = \mathcal{D} \cap \mathcal{C}^2$. Moreover, if $f \in \mathcal{D}$ and k is even then $f \in \mathcal{C}^k$ if and only if C(f) contains the range of f.

From this we can immediately infer that for even $k, \mathcal{D} \cap \mathcal{C}^k$ is Borel and indeed, is F_{σ} .

Corollary 16. For every even $k, \mathcal{D} \cap \mathcal{C}^k$ is an F_{σ} subset of $\mathcal{C}[0, 1]$.

Proof. It is easy to see that if p < q < r < s then the set of functions $f \in \mathcal{D}$ such that f

is constant on $[p,s] \cap [0,1]$ and the range of f is contained in [q,r] is closed in $\mathscr{C}[0,1]$. By Theorem 15, $\mathscr{D} \cap \mathscr{C}^k$ is the union of all such sets where p,q,r, and s are rational.

We turn now to the proof of Theorem 15 which is accomplished via a series of results.

Theorem 17. If $f \in \mathcal{C}$ and C(f) contains the range of f, then $f \in \mathcal{C}^k$ for every k = 1, 2, ...

Proof. The range of f is a closed interval while C(f) is relatively open in [0, 1]. Let I denote the component of C(f) containing the range of f and set $u \equiv f \mid I$. If I = [0, 1], f is constant on I and the conclusion follows as $f = f^k$. Therefore we may assume $I \neq [0, 1]$, and we first assume I = (a, b) where 0 < a < b < 1. If $m = \min\{f(x): x \in [0, 1]\}$ and $M = \max\{f(x): x \in [0, 1]\}$ then the hypothesis implies $a < m \le u \le M < b$.

Let $k \ge 2$ be fixed, and choose points x_i , $i=1,2,\ldots,k$ such that $0=x_1 < a < x_2 < \cdots < x_k < m$. We define the function g to be the increasing linear map from $[x_{i-1}, x_i]$ onto $[x_i, x_{i+1}]$, $i=2,3,\ldots,k-1$. Then g^{k-2} maps $[0, x_2]$ onto $[x_{k-1}, x_k]$. Let

$$c = g^{k-2}(a) \in (x_{k-1}, x_k).$$

Define g to be linear and increasing on each of the intervals $[x_{k-1}, c]$ and $[c, x_k]$, mapping them respectively onto $[x_k, m]$ and onto [m, f(0)]. Next define

$$g(x) = f\left(\frac{a}{m - x_k}(x - x_k)\right) \text{ if } x \in [x_k, m], \text{ and}$$
$$g(x) = u \text{ if } x \in [m, u].$$

At this point g has been defined on [0, u] and it is easy to check that g is continuous here using the fact that g(m) = f(a) = u. The definition of g on [u, 1] is analogous but using M and b in place of m and a respectively.

We prove that $f = g^k$. Since g^{k-1} maps [0, a] linearly onto $[x_k, m]$, we have, for $x \in [0, a]$,

$$g^{k-1}(x) = \frac{m-x_k}{a}x + x_k.$$

Therefore, by the definition of g in $[x_k, m]$ we deduce that $g^k(x) = f(x)$ for $x \in [0, a]$. Further, since g^{k-1} maps $[a, x_2]$ into $[m, f(0)] \subset [m, M]$ and $g([m, M]) = \{u\}$, we have $g^k(x) = u = f(x)$ whenever $x \in [a, x_2]$. Since $g([x_{k-1}, x_k]) = [x_k, f(0)]$ and

$$g([x_k, f(0)]) = g([x_k, m]) \cup g([m, f(0)]) \subset [m, M] \cup g([m, M]) = [m, M] \cup \{u\} = [m, M],$$

we have $g^{3}([x_{k-1}, x_{k}]) = \{u\}$. Therefore, if $3 \leq i \leq k$ then

THE BOREL STRUCTURE OF ITERATES

 $g^{k}([x_{i-1}, x_{i}]) = g^{i}([x_{k-1}, x_{k}]) = g^{i-3}(\{u\}) = \{u\}.$

Since f(x) = u for $x \in [x_2, x_k]$, this proves that $f(x) = g^k(x)$ on $[x_2, x_k]$. If $x \in [x_k, u]$, then $g(x) \in [m, M]$ so that $g^2(x) = g^k(x) = u = f(x)$. The same argument applies if $x \in [u, 1]$ and, as such, the proof that $f \in \mathscr{C}^k$ is complete.

Next consider the case I = (a, 1]. Then for each k, the function g is defined as above on the interval [0, u] but is defined to be the constant u on [u, 1]. The proof that $f(x) = g^k(x)$ for $x \in [0, u]$ is exactly as that given above while the fact that $g^k(x) = f(x)$ for $x \in [u, 1]$ now follows from the fact that f(x) = g(x) = u on [u, 1].

The case I = [0, b) is analogous and this completes the proof of Theorem 17.

Lemma 18. Let $f \in \mathcal{D} \cap \mathcal{C}^2$ and let u denote the (unique) fixed point of f. Then f(x) = u holds whenever $x \in [f(1), f(0)]$.

Proof. Let $f^{-1}(\{u\}) = [\alpha, \beta]$; we must prove that $\alpha \leq f(1)$ and $\beta \geq f(0)$. Suppose this is not true and assume, for example, that $f(1) < \alpha$. Let $f = g^2$, $g \in \mathscr{C}$. Since *u* is the sole fixed point of *f*, *u* is also the only fixed point of *g*. As $f = g^2$ is decreasing, this implies that g(x) > x for x < u and g(x) < x for x > u. Set g(1) = w.

As a first case, suppose $w > \beta$. Then $g(w) = f(1) \le u$ and $g(1) = w > \beta \ge u$. Hence there is a $y \in [w, 1]$ such that g(y) = u. Then $f(y) = g^2(y) = g(u) = u$ which is impossible as $y \ge w > \beta$.

Next, suppose $w < \alpha$. Then g(g(w)) = f(w) > u and $g(w) = f(1) \le u$. Hence, there is a $y \in [w, g(w)]$ with g(y) = u. Again, f(y) = g(u) = u which is impossible since $y \le g(w) = f(1) < \alpha$.

Therefore, we may suppose $w \in [\alpha, \beta]$ and hence that f(w) = u. Now, $f^2(1) = g^4(1) = g^3(w) = g(f(w)) = g(u) = u$ which again is impossible as $f(1) < \alpha$. This final contradiction completes the proof of Lemma 18.

We now turn to the proof of Theorem 15.

Proof of Theorem 15. Let $f \in \mathcal{D}$. If C(f) contains the range of f then, by Theorem 17, $f \in D \cap C^k$ for every k. If $f \in \mathcal{D} \cap \mathscr{C}^k$ with k even then, obviously, $f \in \mathcal{D} \cap \mathscr{C}^2$ so that, by Lemma 18, f is constant on the interval [f(1), f(0)]. To complete the proof of Theorem 15 we must show that there is an $\varepsilon > 0$ such that f is constant on the interval $[f(1) - \varepsilon, f(0) + \varepsilon] \cap [0, 1]$. As in Lemma 18 we let u denote the only fixed point of f, let $[\alpha, \beta] = f^{-1}(\{u\})$, and let $g \in \mathscr{C}$ be such that $g^2 = f$. We must show that

- (i) either $\beta = 1$ or $f(0) < \beta$ and
- (ii) either $\alpha = 0$ or $f(1) > \alpha$.

Suppose, for example, that (i) is false, that is, $f(0) = \beta < 1$. We prove that this implies that g is not constant on [u, f(0)].

First we show f(0) > u. Indeed, if $u = f(0) = \beta$, then f(z) = u for every $z \in [0, u]$. Hence either $g \equiv u$ in [0, u] or g([0, u]) contains a one sided neighbourhood of u on which $g \equiv u$. In each of these cases, $g \equiv u$ in a one sided neighbourhood of u. If this is a right neighbourhood then $f \equiv u$ in that neighbourhood which is impossible since $f(0) = u = \beta$. We conclude that g is not constant in [u, 1] so that g([u, 1]) contains a one sided neighbourhood of u and g < u in this neighbourhood. Thus, there is a $\delta > 0$ such that g(z) < u for $z \in (u, u + \delta)$ which again is a contradiction. Hence, $f(0) = \beta > u$.

Suppose g is constant on [u, f(0)]. Then $g \equiv u$ on [u, f(0)]. Further, since $f(0) = \beta$, $g^2(z) = f(z) < u$ for $z \in (f(0), 1]$. But this entails that g is not constant on (f(0), 1] else this constant would be g(f(0)) = u which would imply that $g^2(z) = u$ on (f(0), 1]. Thus, g((f(0), 1]) contains a one sided neighbourhood of u and g < u on this neighbourhood. Since $g \equiv u$ on [u, f(0)] there is a $\delta > 0$ such that g(z) < u for $z \in (u - \delta, u)$. Then there is an $\eta > 0$ such that $f(z) = g^2(z) < u$ for $z \in (u - \eta, u)$ which is not the case. Hence g cannot be constant on [u, f(0)] as we claimed.

Now, set v = g(0) so that g(v) = f(0). We consider three cases.

Case 1. v > f(0).

In this case f(v) < u, g(f(0)) = f(v) < u, and $g(v) = f(0) \ge u$. Hence, there is a $y \in (f(0), v]$ with g(y) = u. But then f(y) = u which is impossible as $y > f(0) = \beta$.

Case 2. $f(1) \le v \le f(0)$.

Here we have f(v) = u and f(g(0)) = g(f(0)) = u. As g(v) = f(0), it follows that $g([v, f(0)]) \supset [u, f(0)]$. But $f \equiv u$ on [v, f(0)] and hence g is constant on [u, f(0)] which, as we saw above, is impossible.

Case 3. v < f(1).

In this case, $g(v) = f(0) \ge u$ and g(0) = v < u so that there is a $y \in [0, v]$ such that g(y) = u. Then f(y) = u and hence, as $y \le v < f(1)$, f(v) = u. Therefore $f \equiv u$ on [v, f(0)]. But $g([v, f(0)]) \supset [u, f(0)]$ and we again conclude that g is constant on [u, f(0)]. This final contradiction completes the proof.

REFERENCE

1. K. KURATOWSKI, Topology I (Academic Press, 1966).

DEPARTMENT OF MATHEMATICS St. Olaf College Northfield, MN, U.S.A.

Department of Analysis Eötvös Loránd University Budapest, Hungary