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Abstract. In this work we propose an approach to the calculation of secular perturbations on a 
comet, valid for any eccentricity (less than unity) and any inclination (not zero). The effect of 
several planets is discussed, but we suppose that there are no significant close approaches to any 
planet. 

1. Disturbing Function 

The force function due to a planet - considered to be moving in a circular orbit 
around the Sun - corresponds in the secular sense to the force exerted upon the comet 
by a loaded ring. It is therefore necessary to obtain the potential of such a ring, giving 
an expression valid for distances less than or greater than the radius of the ring. The 
classical development in spherical harmonics has therefore to be abandoned. 

According to Figure 1, let a! be the radius of the ring, 8 the latitude of the comet P, 
a its longitude, r its distance from the Sun (center of the ring), A the distance between 
P and P' (a point on the ring with longitude a) and $ their mutual elongation. 

Fig. 1. Geometry of the problem. 

* On leave from the University of Sao Paulo and University of Campinas, Sao Paulo, Brazil. 

Chebotarev et at. (eds.), The Motion, Evolution of Orbits, and Origin of Comets. 66 80. All Rights Reserved. 
Copyright C 1972 by the IAU. 

https://doi.org/10.1017/S007418090000629X Published online by Cambridge University Press

https://doi.org/10.1017/S007418090000629X


SECULAR PERTURBATIONS ON PERIODIC COMETS 67 

It follows that 

COS I/J = COS & COS (a — a) 

A2 = r2 + a'2 — 2tf7 cos ifj 

and, using osculating elements, 

r = a(\ — ecos E), 

where E is the eccentric anomaly of the comet, a the semimajor axis and e the eccen­
tricity. The maximum value of A is, at any instant, 

A=a' + a(\ + e), (1) 

so that we write 

A2 = A2{\ - [B + Ccos(«' - cc)]/A2}, (2) 

where 

B = P - r2 

P = a(l + e)[a(\ + e) + 2a'] (3) 

C = 2a'r cos 8. 

Evidently, unless J = 0 , the expansion by the binomial formula of A'1 will con­
verge for all values of r, so that one can write the series 

A-1 = A'1 J (~^]{-\)kA-2k[B + Ccos(«' - a)]k 

or 

(4) J - i = ,4-1 J J ( ^\^\-\YA-2kBk-jO QO%i {a' - a). 

The force function of the loaded ring (mass m') is given by 

U= ( GA-Wa'd(a' - a), (5) 

where X' = m'/27ra' and G is the gravitational constant. 
Since now 

cos2y + 1 x dx 
0 

2n 

cos2; x dx = 

= 0 

2«GL - 1)!! 
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it follows that 

where [k/2] is the integer part of k/2. 
Now let v = a)+fbe the argument of the latitude (a> the argument of perihelion,/ 

the true anomaly) and SI the longitude of the ascending node. We have the relations 

cos 8 cos (a — SI) = cos v 
cos 8 sin (a — SI) = sin v cos /, 

where / is the inclination of the osculating orbit. Therefore 

C2; = 4VV' (cos 2 / + sin2 /cos2 v)\ 
and also 

k^j ik - ?/\ 
Dk-2j _ / „ „2^ - 2; _ \ / a r/ | 

p=0 \ P ' 

so that one finds 

i 

\ 4 fc=0 i = 0 p = 0 s = 0 

x cos2 ( y" s ) / sin2s / cos2s v, (7) 
where 

,* (-l)p(2/:)?(2/+ 1) 
4*k\p\(k - 2j - p)\j\s\(j - s)l 

We change the index notation by setting 

P + j = #> ^fc/ps = Kkj,q-j,S = ^WflS ( 9 ) 

so that 

^ = ̂ r2 2 2 2 w v - ' - v 
x cos2( '"s) 7sin2s Ir2q cos2s 0. (10) 

The long period and secular perturbations on the comet are generated by the average 
U over the mean anomaly of the comet, that is 

Us 

assuming, of course, no commensurability exists between the mean motion of the 
comet and that of the planet. It has long been known, for example, that the ratio of 
the periods of P/Encke and Jupiter is very close to 5/18 (Whipple, 1940). Although of 
very high degree, this commensurability may produce a large coefficient in the per­
turbations because of the excessive eccentricity of the comet (about 0.85). On the 
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other hand, no attempt has been made to determine the average of U analytically 
because, in the classical sense, it would require an expansion in powers of e, making 
any results invalid. Brouwer (1947) did obtain a good approximation to the secular 
variations of P/Encke by evaluating a numerical average of the disturbing function 
over the period of the system (five revolutions of Jupiter), and he obtained good 
agreement with Whipple's empirical results. This indicates that, at least in this case, 
Jupiter perturbations would suffice to give a good first approximation for the orbit. 

The force function U we have obtained is valid everywhere except on the ring it­
self - which would imply the possibility of collision. The excluded cases are therefore 
those which correspond to the condition A = 0 or 

r — a\ \js = 0 
or 

r = a\ 5 = 0, a = a . 

For the ring potential this reduces to 

r = a\ 8 = 0. 

The first of these gives the equation 

1 — e cos E = a!/a, 

which can be satisfied in the cases when 

|1 -a'la\ < e. 

2. Average Disturbing Function 

Next, in order to avoid any expansion in powers of the eccentricity, the function 
Us will be obtained using the eccentric anomaly as independent variable. 

Let 
271 

e2,.2S = ^ | ' - 2 , C O S 2 s ( / + a > ) d / ) (11) 
o 

where 
0 = 0 , 1 , 2 , . . . , * - 2/ 
s = 0,1,2, ...,j 
j = 0,l,...,[k/2] 
A: = 0 , 1 , 2 , . . . 

Considering the relation 

d/ = - dE, a 
2a 

Q2q.2s = ^ j (^)2< + 1 c o s 2 s ( / + co)dE. (12) 
0 
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If we let e = exp (iE), we find that 
2s 2(s ~ ;') fc + 2q + 1 k 7 - fc 

^Y"^cos-v = ±2 2 2 2 2 .̂2v.a„ 
u' ^ 7 = 0 fc = 0 v = /c a = 0/? = 0 

1 

x ^ ( s - Z c - ^ + y ^ _ ^)fc-«( l -f- ^)« 

x exp [ - 2 / ( J - 7 > y - 2 ^ + >̂, (13) 

where 77 = V\—e2 and 

Contributions to the integral Q2q,2s come from even values of 7, so that the corre­
sponding terms are 

r/t.\2q + l -1 1 2s 2(s-j) [(k+l+2q)!2] h 2y-k 

- cos-, = 4 2 2 2 2 m%%.«.» 
L W J even ^ j = o fc = 0 y = [(fc+l) /2] a = 0 0 = 0 

X ^ ( s - f c - y + y ) ^ _ jjf-c^l + ^ ) a 

x exp [-2/(5 -y>> 2 ( y -" -*>, 

and therefore, setting y = a + p, 
2s 2 ( s - ; ) [(fc + 1 + 2 Q ) / 2 ] fc 

2 S(?2q,2s = # Q 2^ A* 2* 2, Lj%JytCCty-a 
j = 0 k=0 y = [ ( fc+l) /2] a = 0 

x e2(s-k-j + v\\ - r))k-a(\ + 7y)aexp [-2/(5 - y > ] 
s 

= 22sa2q 2 M|Q.2s cos 2]8co, (15) 
fl = 0 

where 

9 2 s r / 0 _ n2q V T2Q.2S / 92y 
z IVI2q,2s — a /^ ^ s . 0 , 2 y , 0 , y ^ 

y = 0 

and, for j8#0, 
1 20 [ ( f c + l + 2qV2] k 

Mt - V V V I2**28 
lvl2q,2s — ^ 2 s - l Z, Z* Z* ^ s - / ? , f c , 2 y , a , y - a 

^ /c = 0 y = [ ( fc+l ) /2] a = 0 

x ^tf-fc + y)^ _ ,y)fc-«(l + ^ (16) 

We finally arrive at the average disturbing function U8, given by 
r™f °° tfc/2] k-j j s 

^ = ^-2 2 2 2 2 ^ -
x / " j ~ qa'2,a2q cos2° "s) / sin2s / cos Ifa, (17) 

where 

W&,2,.2s = KkjqsM"2q^ (18) 
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the factors on the right-hand side being defined in Equations (8), (9) and (16). 
We also remember that 

A = a' + a{\ + e), p = (A - a'){A + a') = A2 - a'2. 

3. An Example 

As an example we develop Us up to k = 4. Rearranging terms properly, we find 

s A\\ ^2 A2 + 8 A* + 16 A6 + 128 ^ V 

2A2\^2A2^ 8 A* + 16 W l 2 / 

+ 8 ,44 \ 2 ^ 2 8 ^V I 16 / 

16 ^ 6 \ + 2 , W \ 2 + 8 + 16 ) 

35 a8 / , ] 0 , 189 . 105 e 315 8\ 

+ 4 *̂ I + 2 ^ 2 + 8 W l \ 2 j 

-¥£K*)[('+ * + £') 

105 a V 2 r / , 21 „ 105 , 35 R\ 

M' /3a_V_2 / 5 A 35 j A £ / 3 \ 
^4 ^ + 2 ^ 2 + 8 Ai)2 \ + 2e) S m 

''* / . 7 p \ e t, 17 21 ,\ . „ . 
r ( 1 + 2 f 2 ) 2 ( 1 + T e + T e 3 ) s , n ' 
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+ (l -2e2-lei) sin4 71} cos 2<° 
^ r i 0 5 o v ; n / 23 i_5 \ 

+ A\64 A8 | 2 \ 8 e + 8 * / 

— = 11 — -r e2 — j ei) s'n2 I s m 2 ^ f c o s 4w. 

For the specific case of Encke's Comet, assuming 

a' = 5.2028 AU (Jupiter) 

a = 2.217 AU 

e = 0.847 

M' = GW' = 0.28253 x lO"6 (AU)3d"2 

/ = J3?9, 

it follows that the basic parameters of the problem have the values 

A = 9.2976 AU 

P= -25.8374 (AU)2 

PIA2 = -0.29889 

li IA = 0.30388 x 10 "7 (AU)2 d"2 

a/A = 0.23845 

a'j A = 0.55959 

sin / = 0.2402 

cos / = 0.9707. 

The maximum powers kept in the previous development correspond to reasonably 
small values: 

(a/A)8 = 1.0451 x lO"5 

(a3a'A44)2 = 5.7561 x 10 "5 

(aa'/A2)* = 3.1698 x 10"4, 

as compared with the main term, which is equal to unity. Of course, the real advantage 
of the new method is for orbits of high eccentricity which lie partly inside and partly 
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outside the orbit of a 'primary'. The only method available up to now to solve this 
problem was that of 'partial anomalies' introduced by Hansen. 

4. Variation of Elements: Many Planets 

The equations for the long-period and secular variations of the elements to be con­
sidered are 

* _ cot / dR 
~ na2{\ - e2)112 d«> 

. = cot / dR (1 - e2)1'2 dR 
w na\\ - e2)112 dl + na2e de 

while e is obtained through the integral \/{\-e2) cos / = C, and / and SI can be ob­
tained by direct integration of the respective equations - since they are not present 
in R. The disturbing function R is defined by the secular part of U, for all planets 
under consideration, so that it may be written 

N ^ J 

R = 2 7 2 M*fc> 7> ai> a> f>i> Ai) c ° s 2 >> 

where i refers to the particular planet, TV is the number of planets considered and the 
maximum value J of j is 2[k/2], twice the integer part of half the maximum power 
reached by Af1 in the development. Evidently this maximum power does not need 
to be the same for all planets. Also, in this simple formulation, we have assumed all 
planets in the same plane, a condition which can easily be removed. 

Introducing C instead of e, we find 

* cos2 / 1 dR 
sin / Cna2 da> 

cos2 / 1 dR C 1 dR 

sin / Cna2 dl na2 cos Ie de' 

where, after differentiation, e has to be substituted by 

e = {l - (?2sec2/}1/2. 
The geometrical behavior of the orbit can be obtained by considering the fact that 
R, as a function of e and w with parameters C and a, is constant along an orbit (ex­
cept for short periodic variations), so that one can find R = const, curves in the 
(o>, e) plane. The time dependence is obtained by integrating the above system, 
and owing to the very complex form of R this is, in general, best done numerically. 

5. The Eccentricities of the Planets 

It has been shown by several authors that the eccentricity of the orbit of the planet 
plays an important role in the long-term behavior of cometary orbits. In order to 
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modify the disturbing function accordingly, it is necessary to substitute r' for a'; 
that is, the ring has to be considered elliptical. Again, one can proceed by considering 
the identity 

A2 = A2 - (A2 - A2), 

where now 

A = a(\ + e) + a\\ + e') (19) 
and 

COS ip = COS 8 COS (a — a), 

with the difference that now the integral over the ring is not circular but elliptic. 
Since 

A2 = r2 + r'2 — 2rr' cos 0, 

it follows that 

J - i = A'1 2 2 2 ' W P ' 4 " 2 ^ 2 ~ r 2 ) k - 'cos p 8 
fc = 0 ;' = 0 t> = 0 

x r,2i-pcosp(af - a), (20) 
where 

a - a = / ' - 0, 

/ ' being the true anomaly of the point P' on the ring, 

0 = ft - a/ + w, 

with Co' the longitude of perihelion of the ring and u = a— ft, 

g ( l ~ g ) 
1 + e co s / 

and 

/ ,-=C)(.)(-2)p("/)(-i)fc- (21) 
The integral over the elliptic ring can be performed using the eccentric anomaly 

E'\ that is, introducing the transformation 

df _ g'Vl - e'2 

dE' r' 

so that, fo ry /0 , 
271 

/,P = ^JV2 ' -pcos»(/ '- 0)df 
2.1 

f r'2j p~ 1cos p( / ' - 0)d£'. 
fl'Vl - g'2 
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On the other hand, 

cosp ( / ' - 6) = 2 (P) co sQ ° s inP~" e C 0 S V sinp~q/ ,
J 

and therefore 

a'Vl - e'2 -* 
IjP = ^ > r I cos* 0sinp-« 6 -10 

In 

0 

The integration can be easily performed f o r y / 0 , p = 0, 1 , . . . , /—1, for in 
2j-2p-l>0. 

Forj=0(p = 0), 
271 

1 
' 0 0 

Z77 
6 

For ; /o , / ?=y , 

2 ^ 

2K 2K 

I f , f l „ _ , d £ ' afj'Y~q C(cosE' - e')qsinf-«E' ,_, j , r - . - . -^_p 2TT J " ' r' 2TT J 1 - e' cos E' 
0 0 

which is zero for j—q odd. For j-q even, lety —# = 2.y. Then, since 

cosp x = 2l~p 2, I I £n cos [(/? - 2n)x] 

en = 1 (/> Odd) 

en = 1, /i = 0, 1 , . . . , ^ - 1 (/?even) 

£
P/2 = ~ (/> even) 

and 

we obtain 

2K 

■f — J l -
0 

I f cos nx _ (Vl - e2 - l)n 

2TTJ 1 - ecosx ( - e ) V 0 " e2) 

2;i 
J_ f (cos E'_ - e')q sin; ~q E' J_ f (cos £ ' - e 
2TT) \ - e' cos £ ' 

q s [(a+ 20)12] q s [(a + 20)/2] / x / x / , ^ o \ 
- 2 / S 
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so that 
ry/2i 

I„ = a" 2 ( • _7
 9 ) cos'"2s 0 sin2s 0 T/2S 

j-2s s [(a+ 20)12] • /% v / v / , ^ D \ 

>2 2 2 r.%0( r'V-"-'2--
x ^ - « - + « + '- '>(i _ v y + 2ifi-r\ (23) 

ForyV0,/7 = 0, l , . . . , y - l , 

Ijp = fl'*-y J M cos« flsin*-* fl V* 
q = 0 W / 

2;r 

- ^ f (cos £ ' - e')* sinp"« £"(1 - *' cos E,)2j-2p~1 dE'. 

fP-Q 
/ I I t U 5 * (7 Sill* * V T] 

2n 

1 
X 

0 

Again, this is zero if p-q is odd, so that, setting/?—q=Is, 
[fc/2] / n \ 

'» = *'2'~ v 2 o [p I 2,) cosP"2s e sin2s*v" 

0 

which we write as 
[fc/2] 

x i - f (cos£' - O p _ 2 s ( l ~ ScosE')2*-2"-^ - cos2 E')s dE', 

(24) 

jjp = a'2j~p ^ ^ ; P S ( 0 cosp"2s 6 sin28 0 
s = 0 

x (— iy' + ^2 1 - a - 2 ^' y _ 2 ( s + a + / i~y)(l — yi^a + a^-y) 

^ooo = I? (25) 

andfor /?#y0V0) , 

^ ,23 + 1 I P \ 
G»° = ri \p-2s) 

2n 

x i - f(cos£" - e'y-2s{\ - e' cosE')2j'-2p-1(l - cos2 EJ dE' 
o 

( D \ P-2s s [(a-DI2] + j-p i _ 2„ \ /2j _ 9/7 — 1 \ 

P-W71
 a?ov?o , - K » I W M V « M 20 - « ) 

x /^ (_i r + J + p(2P + 2 y - l ) ! ! t t >-2 ( . . , . , 
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We thus arrive at the force function for the elliptical ring: 

^ = ¥ 1 2 I PkjpA-2k(A2 - r2)fc->cos* 8 

[p/2] 

x a2j~p 2 Gyps(e') cosp~2s 0 sin2s 0. (27) 
s = 0 

But now, 

0 = (SI - a/) + w 

where 

cos 8 cos w = cos (o> + / ) 

cos 8 sin w = sin (OJ + / ) cos /. 

We have that 

cos p8cos p" 2 s0sin 2 s0 

p-2s a + 2s / 9 c\ / 9c \ 

= z z( ' - . )(,_>-■)■ «**--«-«.•) 
x sin2(s+a)- f l (ft - a/) cosp~« 8 cosp-<3f w cosQ 8 sin* w, 

and therefore 
p-2s a + 2s I 9 e \ / 9 c \ 

cos p8cos p - 2 s0sin 2 s0 = 2 2 I 1 K " 1 ) " 

x cosp + Q-2(s + a )(f t - a/)sin2(s + a )-*(ft - a/) 

x cos a /cosp-q(w +/)sinQ(co + / ) . 

The contribution to the secular part of U comes evidently from even values of q9 

so that we keep only those by writing 

[ c O S p 8 c O S p - 2 s 0 s i n 2 s 0 ] e V e n 

p-2s [«* + 2s)/2] / ^ v / O P \ = 2 2 ^ L^J(-Dacos—>w-c') 
a = 0 <z = [(a + l ) / 2 ] \ a / \**i «/ <Z = [(a + l ) / 2 ] 

x sin2(s + a - 9 ) ( f t - a/)cos2 < ?/cosp-2*(" + /)sin2«(«> + / ) . 

On the other hand, 

cosp-2«(" + / ) s i n 2 « ( " + / ) = > (£)(- l )«-*cosp-2*(a; + / ) 
0 = 0 \ P / 

and 
fc-y 

A2 r2\k-(A2 - r2)k 

y=0 \ Y / 
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so that, defining as before 

2n 

fiar.p-M = ~ J ^ COS"'2e (l° + / ) d / ' 
0 

we have, for an elliptic ring, 

^ = ^ " 2 2 2 2 rHpA-WGUe') 
k- ii -\ p-2s [(a + 2.s)/2] / 0 o \ / On \ 

x 2 ^ — f ;y(-D-2 2 ' ; L-« 
y = 0 \ 7 / a = 0 </ = [ < a + l ) / 2 ] \ a / \LH af 

x ( - l ) a cos 2 * /cos p + 2 ( q- s- f 0(f t - o>,)sin2(s + a- f l )(ft - a/) 

x i ( ^ ) ( - 1 ) ^ - ^ 2 ^ - 2 , . (28) 

It remains to determine Q2y,p-2p for /> odd, since for p even ( = 2v) we have, from 
Equation (15), 

(?2y.2<v-/J) = « 2" 2 ^2y,2(v-/?)COS2cTW. 
<r = 0 

Consider therefore p = 2v+\, then we require 02y,2(v-/?) + i» w^ obtain 

2;r 

22,,2 s + 1 = ^ J / - 2 " c o s 2 s + 1 ( ^ + / ) d / , 
0 

assuming, as is actually the case, that 0<s<q. Again, we introduce the eccentric 
anomaly as independent variable so that 

2n 
72<z 

Q2,,2S+l = ^ j (£)2Q + 1 COS2s + 1 («, + / ) d£. 
0 

As in Equation (13), we obtain 

(^2* + 1 C O S 2 s + 1(*> + / ) 

j 2s + 1 2s + 1 - 2 ; fc + 2q + 1 A; y - k 
= 92S +1 Z , Z , Z , Z , Z , Lj%,yX,($ 

^ j=0 k=0 y = fc a=0 p=0 

x ^ ( s - f c - ^ + y + i ^ _ ^ - " ( i + vy 

x exp [-/(2.v + 1 - 2j)a>]e'-2(-" + e\ 
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Isolating the even values of y, 

[(^* + 1 cos2-1 (/+«)], 
i 2s + 1 2s + 1 - 2j Wc + 1 + 2 Q ) / 2 ] 

= join Z, 2, 2, 
^ ; = o /c = 0 y = [(fc + l ) /2] 

cc = 0 0 = 0 

x exp [-/(2y + 1 - 2/>]c2[y- (a + «]. 

Finally one finds 

02,,2s + i = a2q 2 M2«,2S + i cos [(2, + 1 H , (29) 

where 

AAY _ . — _ 
2 

i 2v+ 1 [(fc + 2q+ l ) /2] k 

^ 2 Q , 2 S + 1 = ^2s 2 , 2* 2 , Ls-\,k,2y,a,y-a 
fc = o y = [<fc + l ) /2] a = 0 

X ^(v-fc + rt+l^ _ ^ - « ( 1 + ^ (30) 

which shows that the definition of the coefficients M is the same as in the previous 
(even) case; see Equation (16). As was to be expected, both even and odd multiples 
of (x) are now present in the Us, together with terms in SI -co'. The general argument 
is of the form 

2ka> + J{OJ + SI - a/), 

with kj any integers, positive, negative or zero. Evidently, the system has two degrees 
of freedom, and there is no simple way of describing its behavior except by numerical 
means. For a realistic model, the perihelion a/ of the perturbing planet should not 
be constant but move according to the theory of planetary secular perturbations. 

6. Conclusions 

The above derivations show that secular perturbations among bodies with arbitrary 
eccentricities and inclinations can be developed by analytical methods, provided that 
the possibility of collisions, or more realistically, of close approaches, is excluded. 
One can consider the secular perturbations by all the planets on the motion of a 
comet. An approximate calculation for the perturbations by the Earth on P/Encke 
shows that in order to keep terms (in the disturbing function) of the order of 0''01, 
it is necessary to manipulate series of about 400 terms. Of course, the motions of 
comets are also influenced by nongravitational forces, but since the precise form of 
these forces seems to be somewhat obscure, it is not practicable to include them in 
this analysis. 
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