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Abstract

In this paper we consider the first passage process of a spectrally negative Markov additive
process (MAP). The law of this process is uniquely characterized by a certain matrix
function, which plays a crucial role in fluctuation theory. We show how to identify this
matrix using the theory of Jordan chains associated with analytic matrix functions. This
result provides us with a technique that can be used to derive various further identities.
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1. Introduction

Continuous-time Markov additive processes (MAPs) with one-sided jumps have proven to be
an important modelling tool in various application areas, such as communications networking
[19, Chapters 6–7] and finance [5], [14]. Over the past decades a vast body of literature has
been developed; see, for instance, [2, Chapter XI] for a collection of results. A MAP can be
thought of as a Lévy process whose Laplace exponent depends on the state of a (finite-state)
Markovian background process (with additional jumps at transition epochs of this background
process). It is a nontrivial generalization of the standard Lévy process, with many analogous
properties and characteristics, as well as new mathematical objects associated to it, posing new
challenges. Any Lévy process is characterized by a Laplace exponent ψ(α); its counterpart for
MAPs is the matrix exponent F(α), which is essentially a multidimensional analogue of ψ(α).

In this paper we consider the first passage process τx defined as the first time the process
exceeds level x. We concentrate on the case of a spectrally negative MAP (that is, all jumps
are negative), so that the first passage process is a MAP itself. Knowledge of the matrix
exponent of this process, which in the sequel we denote by the matrix function �(q), is of
crucial interest when addressing related fluctuation theory issues. Indeed, it can be considered
as the multidimensional generalization of −�(q), where �(q) is the (one-dimensional) right
inverse of ψ(α), as given in [15, Equation (3.15)]. Our main result concerns the identification
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First passage of a MAP 1049

of the matrix function �(q) in terms of the matrix exponent F(α) of the original MAP. We
provide the Jordan normal form of�(q), relying on the theory of Jordan chains associated with
analytic matrix functions.

The problem of identification of �(q) received a lot of attention in the literature. It is
known that �(q) is a unique (admissible) solution of a certain matrix integral equation. This
result in different degrees of generality appears in [1], [6], [8], [17], [18], [20], and [21].
Alternatively, we can use an iterative method to compute �(q); see, for example, [6]. Some
spectral considerations (under the assumption that�(q) has distinct eigenvalues) can be found
in [1], [6], and [20]. It is plausible that an iterative method is preferable if the aim is to compute
�(q) numerically. Our result, however, provides a better understanding of how�(q) is related
toF(α), and can be used to prove various further identities. As an example, we provide a simple
proof of the fact that �(q) is the unique solution of the abovementioned integral equation.

It has been realized before that the 0s of det(F (α)) with positive real parts and the corre-
sponding null spaces of F(α) play an important role in many problems concerning fluctuations
of MAPs; see, for example, [3], [4], and [13]. The problem is that we have to assume that
det(F (α)) has a sufficient number of distinct 0s. The number of 0s was determined in [13],
and in [12] it was shown that if a MAP is time reversible then the 0s are semi-simple, that is,
they can be treated as distinct. In general though, this is not the case. In this paper we provide
a final answer to the above problem through the use of generalized Jordan chains associated to
F(α). A number of examples are given in the extended version of this paper [7].

This paper is organized as follows. In Section 2 we review some main results from analytic
matrix function theory, while in Section 3 we identify the matrix exponent �(q) by relating
the Jordan pairs of the matrix functions F(α) − qI and αI + �(q) for a fixed q ≥ 0, with I

being the identity matrix,. This result, which is Theorem 1 and which can be considered as the
main contribution of our work, is explicit in the sense that it is given in terms of computable
quantities associated with F(α). Finally, in Section 4 we discuss applicability of our results.

The remainder of this section is devoted to the definitions of the quantities of interest, with
a focus on spectrally negative MAPs and their first passage process. Throughout this work, we
use bold symbols to denote column vectors unless otherwise specified. In particular, 1 and 0
are the vectors of 1s and 0s, respectively, and ei is a vector with a 1 in the ith element and 0s
elsewhere.

1.1. Spectrally negative MAP

A MAP is a bivariate Markov process (X(t), J (t)) defined as follows. Let J (·) be an
irreducible continuous-time Markov chain with finite state space E = {1, . . . , N}, transition
rate matrix Q = (qij ), and a (unique) stationary distribution π . For each state i of J (·), let
Xi(·) be a Lévy process with Laplace exponent ψi(α) = log(E eαXi(1)). Letting Tn and Tn+1
be two successive transition epochs of J (·), and given that J (·) jumps from state i to state j at
Tn, we define the additive process X(·) in the time interval [Tn, Tn+1) through

X(t) = X(Tn−)+ Unij + [Xj(t)−Xj(Tn)],
where (Unij ) is a sequence of independent and identically distributed random variables with
moment generating function

G̃ij (α) = E eαU
1
ij , where U1

ii ≡ 0,

describing the jumps at transition epochs. To make the MAP spectrally negative, it is required
that U1

ij ≤ 0 (for all i, j ∈ {1, . . . , N}) and that Xi(·) is allowed to have only negative jumps
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1050 B. D’AURIA ET AL.

(for all i ∈ {1, . . . , N}). As a consequence, the moment generation functions G̃ij (α) are well
defined for α ≥ 0.

A Lévy process is called a downward subordinator if it has nonincreasing paths almost surely
(a.s.). We denote the subset of indices of E corresponding to such processes by E↓. Also, let
E+ = E\E↓,N↓ = |E↓|, andN+ = |E+|. It is convenient to assume thatE+ = {1, . . . , N+},
which we do throughout this work. We use v+ and v↓ to denote the restrictions of a vector v to
the indices from E+ and E↓, respectively. Finally, in order to exclude trivialities, it is assumed
that N+ > 0.

Define the matrix F(α) through

F(α) = Q ◦ G̃(α)+ diag[ψ1(α), . . . , ψN(α)],
where G̃(α) = (G̃ij (α)); for matrices A and B of the same dimensions, we define A ◦ B =
(aij bij ). We can see that in the absence of positive jumps F(α) is analytic on C

Re>0 = {α ∈
C : Re(α) > 0}. Moreover, it is known that

Ei[eαX(t); J (t) = j ] := Ei[eαX(t)1{J (t)=j}] = (eF(α)t )ij (1)

(cf. [2, Proposition XI.2.2]), where Ei (·) denotes expectation given that J (0) = i and 1{·}
denotes the indicator function. We also write E[eαX(t); J (t)] to denote the matrix with ij th
element given in (1). Hence, F(α) can be seen as the multidimensional analog of a Laplace
exponent, defining the law of the MAP. In the following we call F(α) the matrix exponent of
the MAP (X(t), J (t)).

An important quantity associated to a MAP is the asymptotic drift:

κ = lim
t→∞

1

t
X(t) =

∑
i

πi

(
ψ ′
i (0)+

∑
j �=i

qij G̃
′
ij (0)

)
,

which does not depend on the initial state i of J (t) [2, Corollary XI.2.7]. Finally, for q ≥ 0,
we define Fq(α) = F(α)− qI, which can be seen as the matrix exponent of the MAP ‘killed’
at random time eq :

E[eαX(t); t < eq, J (t)] = e(F (α)−qI)t ,

where eq is an exponential random variable of rate q independent of everything else and e0 ≡ ∞
by convention.

1.2. First passage process

Define the first passage time over level x > 0 for the (possibly killed) process X(t) as

τx = inf{t ≥ 0 : X(t) > x}.
It is known that on {J (τx) = i} the process (X(t + τx) − X(τx), J (t + τx)), t ≥ 0, is
independent from (X(t), J (t)), t ∈ [0, τx], and has the same law as the original process
under Pi . Therefore, in the absence of positive jumps the time-changed process J (τx) is a
time-homogeneous Markov process and, hence, is a Markov chain. Letting {∂} be an absorbing
state corresponding to J (∞), we note that J (τx) lives on E+ ∪ {∂}, because X(t) cannot hit
a new maximum when J (t) is in a state corresponding to a downward subordinator; see also
[16]. Let�(q) be the (N+ ×N+)-dimensional transition rate matrix of J (τx) restricted to E+,
that is,

P(J (τx) = j, τx < eq | J (τ0) = i) = (e�(q)x)ij for i, j ∈ E+. (2)
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This, in fact, shows that the first passage process (τx, J (τx)), x ≥ 0, is a MAP itself, and
�(−q) is its matrix exponent: EJ (τ0)[e−qτx ; J (τx)] = e�(q)x.

Another matrix of interest is the N ×N+ matrix 	(q) defined by

	(q)ij = Pi (J (τ0) = j, τ0 < eq) for i ∈ E and j ∈ E+.

This matrix specifies initial distributions of the time-changed Markov chain J (τx), so that
E[e−qτx ; J (τx)] = 	(q)e�(q)x. Note also that	(q) restricted to the rows in E+ is the identity
matrix, because τ0 = 0 a.s. when J (0) ∈ E+ [15, Theorem 6.5]. We note that the case in which
q = 0 is a special case corresponding to no killing. In order to simplify the notation, we often
write � and 	 instead of �(0) and 	(0).

It is noted that if q > 0 or q = 0, κ < 0, then �(q) is a transient transition rate matrix:
�(q)1+ ≤ 0+, with at least one strict inequality. If, however, κ ≥ 0 then � is a recurrent
transition rate matrix: �1+ = 0+; also, 	1+ = 1. These statements follow trivially from [2,
Proposition XI.2.10]. Finally, note that � is an irreducible matrix, because so is Q. Hence,
if � is recurrent then, by the Perron–Frobenius theory [2, Theorem I.6.5], the eigenvalue 0 is
simple, because it is the eigenvalue with maximal real part.

It is instructive to consider the ‘degenerate’ MAP, i.e. the MAP with dimension N = 1.
Such a MAP is just a Lévy process, and �(q) = −�(q), where �(q) is the right inverse of
ψ(α), α ≥ 0. Note also that� being recurrent (and, hence, singular) corresponds to�(0) = 0.

2. Preliminaries

In this section we review some basic facts from analytic matrix function theory. Let A(z)
be an analytic matrix function ((n× n)-dimensional), defined on some domain D ⊂ C, where
it is assumed that det(A(z)) is not identically 0 on this domain. For any λ ∈ D, we can write

A(z) =
∞∑
i=0

1

i!A
(i)(λ)(z− λ)i,

where A(i)(λ) denotes the ith derivative of A(z) at λ. We say that λ is an eigenvalue of A(z) if
det(A(λ)) = 0.

Definition 1. We say that the vectors v0, . . . , vr−1 ∈ C
n with v0 �= 0 form a Jordan chain of

A(z) corresponding to the eigenvalue λ if

j∑
i=0

1

i!A
(i)(λ)vj−i = 0, j = 0, . . . , r − 1. (3)

Note that this definition is a generalization of the well-known notion of a Jordan chain for a
square matrix A. In this classical case A(z) = zI − A, and (3) reduces to

Av0 = λv0, Av1 = λv1 + v0, . . . , Avr−1 = λvr−1 + vr−2. (4)

The following result is well known [10] and is an immediate consequence of (4).

Proposition 1. Let v0, . . . , vr−1 be a Jordan chain of A(z) corresponding to the eigenvalue λ,
and letC(z) be a (m×n)-dimensional matrix. IfB(z) = C(z)A(z) is r−1 times differentiable
at λ then

j∑
i=0

1

i!B
(i)(λ)vj−i = 0, j = 0, . . . , r − 1.
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Note that ifB(z) is a square matrix then v0, . . . , vr−1 is a Jordan chain ofB(z) corresponding
to the eigenvalue λ. It is, however, not required that C(z) and B(z) be square matrices.

Let m be the multiplicity of λ as a 0 of det(A(z)), and let p be the dimension of the null
space of A(λ) = A0. It is known (see, for example, [10]) that there exists a canonical system
of Jordan chains corresponding to λ,

v
(k)
0 , v

(k)
1 , . . . , v

(k)
rk−1, k = 1, . . . , p,

such that the vectors v
(1)
0 , . . . , v

(p)
0 form the basis of the null space of A0 and

∑p
i=1 ri = m.

We write such a canonical system of Jordan chains in matrix form:

V = [v(1)0 , v
(1)
1 , . . . , v

(1)
r1−1, . . . , v

(p)
0 , v

(p)
1 , . . . , v

(p)
rp−1], � = diag[�(1), . . . , �(p)], (5)

where �(i) is the Jordan block of size ri × ri with eigenvalue λ, i.e. a square matrix having 0s
everywhere except along the diagonal, whose elements are equal to λ, and the superdiagonal,
whose elements are equal to 1.

Definition 2. A pair of matrices (V , �) given by (5) is called a Jordan pair of A(z) corre-
sponding to the eigenvalue λ.

We note that, unlike in the classical case, the vectors forming a Jordan chain are not
necessarily linearly independent; furthermore, a Jordan chain may contain a null vector.

We conclude this section with a result on entire functions of matrices defined through

f (M) =
∞∑
i=0

1

i!f
(i)(0)Mi

for an entire function f : C → C and a square matrix M . The next lemma will be important
for applications and is immediate from [9, Theorem 6.6].

Lemma 1. Let f : C → C be an entire function, and let � be a Jordan block of size k with λ
on the diagonal. Then, for an arbitrary set of vectors v0, . . . , vk−1, the (j + 1)th column of the
matrix [v0, . . . , vk−1]f (�) equals

j∑
i=0

1

i!f
(i)(λ)vj−i , j = 0, . . . , k − 1.

3. Jordan normal form of �(q)

In this section we consider a spectrally negative MAP (X(t), J (t)) with matrix exponent
F(α) and asymptotic drift κ . Let λ1, . . . , λk be the eigenvalues of Fq(α), to be understood as
the 0s of det(F q(α)) for a given q ≥ 0, in its region of analyticity C

Re>0. Let (Vi, �i) be a
Jordan pair corresponding to the eigenvalue λi . Define the matrices V and � in the following
way:

V = [V1, . . . , Vk] and � = diag[�1, . . . , �k] if q > 0 or q = 0, κ < 0;
V = [1, V1, . . . , Vk] and � = diag[0, �1, . . . , �k] if q = 0, κ ≥ 0.

(6)

Let the matrices V+ and V↓ be the restrictions of the matrix V to the rows corresponding toE+
and E↓, respectively.
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Theorem 1. It holds that � and V+ are (N+ × N+)-dimensional matrices, V+ is invertible,
and

�(q) = −V+�V −1+ , 	(q) = VV −1+ .

This theorem extends the results of [1, Section 5], [6, Section 7], and [20, Section 8].
Importantly, it is no longer necessary to assume that the eigenvalues of Fq(α) are semi-simple,
which is not always the case, as shown in [13, Example 2.1]. The generality of Theorem 1 allows
us to prove a number of further identities, as alluded to and then demonstrated in Section 4.

We start by establishing a lemma, which can be considered as a weak analog of Theorem 1.

Lemma 2. If v0, . . . , vr−1 is a Jordan chain of Fq(α) corresponding to the eigenvalue λ ∈
C

Re>0 then v0+, . . . , vr−1+ is a Jordan chain of αI+�(q) corresponding to the eigenvalue α = λ

and 	(q)vi+ = vi for i = 0, . . . , r − 1.

Proof. It is known from [3, Theorem 2.1] that, for α ∈ C
Re>0,

Mα(t) =
[∫ t

0
eαX(s)e�

J (s)ds

]
· F(α)+ e�

k − eαX(t)e�
J (t),

is a row vector valued local martingale under the probability measure Pk . Furthermore, the
stopped processMα(t ∧ τx ∧ eq) is a martingale, which yields Ek Mα(t ∧ τx ∧ eq) = 0�. Note
that

Ek[eαX(eq)1{t∧τx>eq }e�
J (eq )

] = q Ek

[∫ t∧τx∧eq

0
eαX(s)e�

J (s)ds

]
,

to obtain
C(α)F q(α) = B(α), (7)

where

C(α) = Ek

[∫ t∧τx∧eq

0
eαX(s)e�

J (s)ds

]
, B(α) = Ek[eαX(t∧τx)1{t∧τx<eq }e�

J (t∧τx)] − e�
k .

Noting that X(·) ≤ x on [0, τx] and using the usual dominated convergence argument, we
conclude that B(α) is infinitely differentiable in α ∈ C

Re>0. Apply Proposition 1 to (7) to see
that, for all j = 0, . . . , r − 1, the following holds true:

j∑
i=0

1

i! Ek[Xi(t ∧ τx)eλX(t∧τx)1{t∧τx<eq }e�
J (t∧τx)]vj−i − e�

k vj = 0.

Letting t → ∞ we obtain

j∑
i=0

1

i!x
ieλx Pk(J (τx), τx < eq)v

j−i − e�
k vj = 0, (10)

where Pk(J (τx), τx < eq) denotes a row vector with �th element given by Pk(J (τx) = �,

τx < eq). Note that the case when q = 0 and Pk(τx = ∞) > 0 should be treated with care.
In this case κ < 0 and, thus, limt→∞X(t) = −∞ a.s. [2, Proposition XI.2.10], so the above
limit is still valid.
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Considering (10) for all k ∈ E and choosing x = 0, we indeed obtain 	(q)vj+ = vj . If,
however, we pick k ∈ E+ then

j∑
i=0

1

i!x
ie(λI+�(q))xvj−i+ − v

j
+ = 0+.

Take the right derivative in x at 0 of both sides to see that

(λI +�(q))v
j
+ + v

j−1
+ = 0+,

which shows that v0+, . . . , vr−1+ is a Jordan chain ofαI+�(q) corresponding to the eigenvalueλ.

We are now ready to give a proof of our main result, Theorem 1.

Proof of Theorem 1. Lemma 2 states that v0+, . . . , vr−1+ is a classical Jordan chain of the
matrix −�(q). Recall that if q = 0 and κ ≥ 0, then �(q)1+ = 0+ and 	(q)1+ = 1.
Therefore, the columns of V+ are linearly independent [11, Proposition 1.3.4] and

−�(q)V+ = V+�, 	(q)V+ = V.

Consider the case when q > 0. Now [13, Theorem 1] states that det(F q(α)) has N+
zeros (counting multiplicities) in C

Re>0, so the matrices V+ and � are of size N+ × N+ by
construction (6). Note that there is a one-to-one correspondence between the 0s of det(F q(α))
in C

Re>0 and the eigenvalues of −�(q) when q > 0.
Assume now that q = 0. We need to only show that det(F (α)) has N+ − 1{κ≥0} zeros

(counting multiplicities) in C
Re>0. Pick a sequence of qn converging to 0 and consider a

sequence of matrix exponents Fqn(α) = F(α) − qnI and transition rate matrices �(qn).
From (2), it follows that e�(qn) → e�; hence, the eigenvalues of �(qn) converge to the
eigenvalues of � (preserving multiplicities) as n → ∞. Moreover, all the eigenvalues of
� have negative real part except a simple one at 0 if κ ≥ 0. The abovementioned one-to-one
correspondence and the convergence statement of [13, Theorem 9] complete the proof.

The above proof strengthens [13, Theorem 2]; we remove the assumption that κ is nonzero
and finite.

Corollary 1. It holds that det(F (α)) hasN+ −1{κ≥0} zeros (counting multiplicities) in C
Re>0.

4. Applications

A number of applications of our result is discussed in detail in the extended version of this
paper [7]. These applications include finding the stationary distributions of a one-sided MAP
reflected at 0, and a Markov-modulated Brownian motion (MMBM) reflected to stay in the
strip [0, B]. Moreover, we solve a two-sided exit problem for an MMBM. It is noted that an
MMBM is a MAP with continuous paths and, hence, our result can be applied to bothX(t) and
−X(t), which hints why the two-sided problems become tractable.

The approach to the above problems consists of the following steps:

• use a martingale argument to arrive at an initial equation involving the unknown quantities
and F(α),

• use the properties of Jordan chains, such as Proposition 1 and Lemma 1, to rewrite the
initial equation in terms of (V , �),
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• use the special structure of (V , �), such as the invertibility of V , to simplify the equation,

• eliminate the Jordan pair by introducing � and 	 using Theorem 1 to recover the
probabilistic interpretation of the involved matrices and claim uniqueness of the solution.

It is noted that this approach can be seen as an extension of the ideas known as ‘martingale
calculations for MAPs’ [2, Chapter XI, 4a] to its final and general form. It is important that
no assumptions about the number and simplicity of the eigenvalues are needed. For some
problems, certain eigenvalues are inherently nonsimple. For example, the special but important
case of an MMBM with zero drift immediately leads to a nonsimple eigenvalue 0. In this case
an additional equation associated to the null Jordan chain is required to obtain the solution; see
also [21]. In our framework, this equation comes out in a natural way.

4.1. Matrix integral equation

In this section we demonstrate how our result can be used to show in a simple way that a pair
(	(q),�(q)) is a unique solution of a certain matrix integral equation. This equation under
different assumptions appears in [1], [6], [8], [17], [18], [20], and [21].

Define two sets of matrices: let M be a set of all N+ × N+ irreducible transition rate
matrices and let P be a set ofN×N+ matrices P satisfying P+ = I. Furthermore, partition M
into two disjoint sets, M0 and M1, of transient and recurrent matrices, respectively. Clearly,
�(q) ∈ Mi , i = 1{q=0, κ≥0}, and 	(q) ∈ P . We use the following notation for arbitrary
matrices P ∈ P and −M ∈ M:

Fq(P,M) = aPM + 1

2
2

σPM
2 +

∫ 0

−∞
ν(dx)P (e

Mx − I −Mx1{x>−1})

+
∫ 0

−∞
Q ◦G(dx)P eMx − qP,

where (ai, σi, νi(dx)) are the Lévy triplets corresponding to the Lévy processes Xi(·), that is,
ψi(α) = aiα + σ 2

i /2α
2 + ∫ 0

−∞(e
αx − 1 − αx1{x>−1})νi(dx), and Gij (dx) is the distribution

of Uij . It will be clear from the following that the integrals converge for the above choices of
P and M .

We use O to denote the matrix of zeros of appropriate dimension.

Theorem 2. It holds that (	(q),�(q)) is the unique pair (P,M) ∈ P × Mi with i =
1{q=0,κ≥0} which satisfies Fq(P,−M) = O+.

Proof. In the proof we drop the superscript q to simplify notation. Let −M = V+�V −1+ be
a Jordan decomposition of the matrix −M . We can extend V+ to a N ×N+ matrix V through
V = PV+, because P+ = I. Also, let v0+, . . . , vr−1+ be the columns of V corresponding to
some Jordan block of size r and eigenvalue λ. Observe that λ ∈ C

Re>0 or λ = 0, in which
case it must be simple, because M ∈ M. Note that g(−M) = V+g(�)V −1+ for an entire
function g : C → C, and use Lemma 1 to see that the column of F(P,−M)V+ corresponding
to v

j
+, j = 0, . . . , r − 1, equals

j∑
i=0

1

i!F
(i)(λ)P v

j−i
+ =

j∑
i=0

1

i!F
(i)(λ)vj−i . (11)

We also used the fact that differentiation of F(α) at λ, Re(λ) > 0, can be done under the
integral signs and no differentiation is needed for a simple eigenvalue λ = 0, if such exists.
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IfM = � and P = 	, then according to Theorem 1 the matrices V and � can be chosen as
in (6). Hence, (11) becomes 0+, because v0, . . . , vr−1 is a Jordan chain of F(α); see (3). But
V+ is an invertible matrix and so F(	,−�) = O+.

Suppose now that F(P,−M) = O+ with M ∈ Mi and P ∈ P . Then the vectors
v0, . . . , vr−1 form a Jordan chain of F(α) corresponding to an eigenvalue λ ∈ C

Re>0 or λ = 0.
If q = 0, κ ≥ 0, and λ = 0, which is a simple eigenvalue of M , then F(0)v0 = Qv0 = 0
implies that v0 = c1, where c �= 0 is a constant. Combining this observation and Lemma 2 we
obtain �V+ = −V+� and 	V+ = V , and, hence, M = � and P = 	.

Remark 1. It is easy to see from the above proof that the sets M0 and M1 of respectively
transient and recurrent irreducible transition matrices can be enlarged so that Theorem 2 still
holds. Namely, we can enlarge M0 to include all N+ × N+ matrices with eigenvalues in
C

Re<0;M1 is taken to be a set of allN+ ×N+ matrices with eigenvalues in C
Re<0 and a simple

eigenvalue at 0.

From the above theorem we immediately obtain the following corollaries.

Corollary 2. If N = N+ then M = �(q) is the unique solution of Fq(I,−M) = O, where
M ∈ Mi , i = 1{q=0, κ≥0}.

For the case of an MMBM, i.e. a continuous MAP, we obtain a generalization of the results
in [1] and [21].

Corollary 3. If (X(t), J (t)) is an MMBM then (	(q),�(q)) is the unique pair (P,M) ∈
P × Mi with i = 1{q=0, κ≥0} which satisfies

1
2

2
σPM

2 −aPM + (Q− qI)P = O+.
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