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RINGS WHOSE ADDITIVE ENDOMORPHISMS
ARE RING ENDOMORPHISMS

GARY BIRKENMEIER AND HENRY HEATHERLY

A ring R is said to be an A E-Ting if every additive endomorphism is a ring endo-
morphism. In this paper further steps are made toward solving Sullivan's Problem
of characterising these rings. The classification of AE-lings with .R3 / 0 is com-
pleted. Complete characterisations are given for A£-rings which are either: (i)
subdirectly irreducible, (ii) algebras over fields, or (iii) additively indecomposable.
Substantial progress is made in classifying AE-rings which are mixed - the last
open case - by imposing various finiteness conditions (chain conditions on special
ideals, height restricting conditions). Several open questions are posed.

INTRODUCTION

A ring is said to be an AE-ring if every additive endomorphism is a ring endomor-
pbism [4]. Sullivan [10] posed the problem of classifying AE-rings. Kim and Roush
[8] classified finite AE-rings and Feigelstock [4] classified torsion .A.E-rings and gave
several useful properties of .A.E-rings in general. Dhompongsa and Sanwong consid-
ered nonnil AE-rings [3]. In this paper we finish the characterisation of AS-rings with
R3 ^ 0 and turn to AE-rings with R3 = 0 , R2 ^ 0, and which are not torsion, but
which do have an element of order two. This is the last remaining open part of the
Sullivan Problem. Necessary conditions are given for such rings under various finiteness
hypotheses (chain conditions and height conditions). Complete classifications are given
for j4.E-rings which are (i) subdirectly irreducible (ii) algebras over a field or (iii) addi-
tively indecomposable. An example is given which answers in the negative a question
raised by Feigelstock [4]. It is shown that the class of .A.E-rings is properly contained in
the class of self distributive rings [2, 9]. It is of interest to note that the concept of an
-A.E-ring has been generalised along two completely different lines [5, 1]. We conclude
the paper with four open questions.

The notation and terminology used herein will be that found in Fuchs [6], unless
otherwise noted. We use C(m) to denote the cyclic group of order m and C(p°°) for
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the quasicyclic group for prime p. The ring of integers is denoted by Z and the ring
of integers modulo m by Z/{m). For any ring R, we use R+ for the additive group of
R, Rp for the set (ideal) of all elements whose orders are a power of the prime p, and
T(R+) for the torsion subgroup of R+. The ring of rational real numbers is denoted
by Q. For any set S, \S\ is the cardinality of 5 .

Useful in the sequel are the following results for an AE-ring R, each found in
Feigelstock [4].

(1) If R+ = H+ © K+, then R = H @K and each of the ideals H and K
are AE-rings.

(2) 2R2 = 0 and if R2 £ 0, then R+ is reduced.

From (1) we immediately have that the maximal divisible subgroup D of R+ is an
AE-ting and R = D ffi A, where A+ is reduced. From (2) we see that the elements of
odd order are in Ann R, the two-sided annihilator of R; and if R2 = 0, then R2 = 0.

MAIN RESULTS

LEMMA 1 . Let R be an AE-ring and f,g£ End (R+).

(i) Ifx,yeR, then f{x)g(y) = g(x)f(y).

(ii) (Im/)(ker/) = 0 = (ker/)(Im/).

PROOF: (i)

f(x)f(y) + g{x)g(y) = f(xy) + g(xy) = [/ + g](xy)

- ([/ + </](*))([/ + 9)(y)) = (/(*) + *(*))(/(») + 9(V))

= /(*)/(») + f(x)g{v) + 9(*)f(y) + g(x)g(y).

So 0 = /

and f{x)g(y) = g(x)f(y)

since 2il2 = 0.

(ii) Let a; G ker/ and y £ R. Then /(y)z = f(y)i(x) = i(y)f{x) = 0 where i is
the identity endomorphism. Similarly, (ker/)(Im/) = 0. U

LEMMA 2 . Let R be an AE-ring; i? = B © X, and g: X -* B is an additive
homomorphism. Then

(i) 5(X).JR = 0 = i?.<7(X);
(ii) if 5 is onto, then B2 = RB = BR = 0;

(iii) if g is one-to-one, then X2 = XR = RX = 0.
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PROOF: Define / , TT G End(.R+) by f(b + x) = g(x), ir(b + x) = b, where b G B

and x G X.

(i) Let g(x) G s p Q . From Lemma 1, g(x)b = f{x)n(b) = ir(x)f(b) = 0.
Thus g{X) B = 0 = g(X) • R. Similarly, R • g(X) = 0.

(ii) This part follows from (i).

(iii) Let x, y G X. Then g{xy) = f(xy) = / ( * ) / (» ) = g(x)f(y) G g{X) • R =
0. Thus xy — 0.

D
Crucial to the theory developed herein (and in [4]) is the following class of rings.

EXAMPLE 3. On the additive group of order 2 n , n > 0, with generator y, define
multiplication via (miy)(m.2y) = 2n~1m\m2y. We call this ring the fundamental AE-
ring of type n and denote it by FS{n). Note F 5 ( l ) S Z/(2) and for n > 1, (FS(n))3 =

0.

THEOREM 4 . Let R be a ring with R2 ^ 0 and -R2 a direct summand of R.
Then R is an AE-ring if and only if:

(i) R2 = C®S, where C =* ^5(11) and 2 n - 1 5 = 0 = S2, n > 1.
(ii) R = R2 ® N, as a ring direct sum, with N2 = 0, and

(iii) i / 5 £ Horn (N+, Rf) , then (g(N)) -R2=0.

PROOF: Assume (i)-(iii) hold. Note R is commutative. Let / G End( i2 + ) . Since
R2 is fully invariant in R+ and R2 is an .A.E-ring [4, Theorem 6], we have that /
restricted to R2 is a ring endomorphism. For convenience, let B = R2. For each
n,n' G N, 6 g B , w e have:

b • f{n) = b • (nBf(n) + *Nf(n)) = 0,

and

/ (n ) • /(n') = f(n) • {nBf(n') + nNf(n')) = f(n) • nNf(n')

= ( T B / ( T I ) + 7rN/(n)) • nNf{n') = 0,

where ng and 7TJV are the projection mappings onto B and N, respectively. For each

ni, n2 £ N, 61, 62 G B , we have:

+ n2)) = fi^h + nin2) =

and

https://doi.org/10.1017/S0004972700028252 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028252


148 G. Birkenmeier and H. Heatherly [4]

Conversely, assume R is an AE-ring. From [4, Lemma 3 and Theorem 6], we have
(i) and (ii), while (iii) follows from Lemma 2 above. D

COROLLARY 5 . Let R be an AE-ring such that R2 ^ 0. The following are
equivalent:

(i) R2 is a direct summand;

(ii) R2 is an AE-iing and R\ ^ 0;
(iii) R% is bounded;

(iv) every endomorphism on R£ extends to an endomorphism on if1" and

PROOF: (i) => (ii) =S> (iii) => (i) with the last implication holding because a
bounded, pure subgroup is a direct summand [6, Theorem 27.5]. Then (i) =>• (iv) =>•
(ii) to complete the equivalences. D

COROLLARY 6 . Let R be a ring with R3 ^ 0. TJien R is an AE-ring if and

only if:

(i) R = B ® N, as a ring direct sum, with B = FS(1),
(ii) N2 = 0 = N2, and
(iii) Horn (iV+, C(2)) = 0. (Equivalent^: N+ is 2-divisible.)

PROOF: If R is an AE-ring, then (i) and (ii) follow from [4, Theorem 5] and (iii)
follows from Theorem 4 (iii). The converse is an immediate consequence of Theorem
4. D

Feigelstock [4, Theorem 5] showed that an AE-ring R with R3 ^ 0 satisfies (i)
and (ii) of the above corollary. The authors have an alternate proof of this using a
decomposition of self distributive rings [2, 9].

EXAMPLE 7. Let R = B © N (ring direct sum).

(i) If B is an FS(n)-ring and JV+ is a divisible group such that N2 — 0,

then R is an .A.E-ring.
(ii) If B ^ Z/(2), N+ =* C(4), and N2 = 0, then ii is a self distributive,

torsion, direct sum of j4.E-rings which is not an yl.E-ring.

(iii) If B =* Z/{2), N2 = 0, and N+ 3 Z+, then ii is a self distributive,

mixed, direct sum of AE-iings which is not an AE-ring.

This particular example shows that Feigelstock's characterisation of torsion .AiS-rings
does not carry over to the nontorsion case, thus answering, in the negative, the "Ques-
tion" posed in [4].

THEOREM 8 . Let R be an AE-ring such that R3 =0 and R2 ^0. Then either:

(i) R= R2@H, where H2 = 0 and R2 = S 0 4 ( i ) , i = 1, . . . , n, where
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the additive group of each A^ is a cyclic 2-group, (-4 ) = 0 and
|A« | < |A(")| for each i < n, and A™ ^ FS{m) for m > 1; or

(ii) there is an ideal X of R which is the direct sum of a countably infinite
collection of ideals A^, where the additive group of each A^ is a finite
cyclic 2-group, XR = 0 = RX, and every finite sum of the A*-1' is a
direct summand of R.

PROOF: Since R2 ^ 0, we have R% is reduced [4, Theorem 4]. Using Corollary
27.3 of [6] repeatedly, we obtain R = (S © A&) © H<-n\ i = 1, ...,n, where the
additive group of each A^ is a finite cyclic 2-group. If for some n, Hj, — 0, the
process terminates and R2 = £ © A^l\ i = 1, . . . , n. In this case, using R2 ^ 0,
R3 = 0, and Theorem 6 in [4], yields that exactly one of the A^ is a fundamental
-A-E-ring, FS(m) , and all the other A^ are square zero. Rearrange the terms in the
direct sum so that the summand isomorphic to FS(m) is the nth one. Lemma 2 then
forces all the other A^ to have order less than 2m.

If #2 ^ 0 for each n, then we obtain a countably infinite collection of A^. If
one of the .A^ is isomorphic to some FS(m), remove it from the collection. (There is
at most one A^ isomorphic to a fundamental AE-iing by [4, Theorem 6].) The sum
of the remaining collection is a direct sum of ideals; call it X. Observe that X2 = 0.
Any element in X is in a finite sum of A^ and hence is in a direct summand, which
forces X C Annii.

Note that if R is an 4.E-ring with R3 = 0 and R2 ^ 0,if R = A® G © M, where
A S FS(n) and G+ S C(2m), then n > m and G2 = 0, by Lemma 2. D

COROLLARY 9 . Let R be an AE-ring satisfying

(i) R3 = 0 and R2 ^ 0, and
(ii) either R has a.c.c. on finite ideals contained in R2, or R has d.c.c. on

ring direct summands.

Then R is as in (i) of Theorem 8.

LEMMA 10. Let R be an AE-ring with R3 = 0.

(i) If y 6 R2 and y has nonzero height in R%, then y 6 Ann R.
(ii) If y £ i?2 and y2 ^ 0, then y has height zero in .Rj.
(iii) If y € R has order two, then y 6 Annii.

PROOF: (i) If y = 26, then yR = 2bR = 0; similarly Ry = 0.

(ii) Similar.
(iii) If y £ Ann-R, then y has height zero. By [6, Corollary 27.2], R = C@A,

where C + = (y). But this contradicts Rs = 0.

https://doi.org/10.1017/S0004972700028252 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028252


150 G. Birkenmeier and H. Heatherly [6]

THEOREM 1 1 . Let R be an AE-ring satisfying:

(i) R* = 0, R2 ^ 0, R+ is reduced;
(ii) if u £ R2 and u £ AnnR, then every element in (u) has finite height in

R+.

Then either T(R+) C Annfl; or R = C ffi A, where C =* FS(n), n > 1, C + is
generated by an element of height zero in R% , and T(A+) C Ann R. In the latter case,
if 0 ^ x G A2 and (x) has no elements of infinite height in A%, then x has order less
than 2 n .

PROOF: If R2 C AnnR, then T(R+) C AnnR. Suppose y € R2 and y £ AnnR.
Then (y) is contained in a finite direct summand of R+ which is generated by an
independent set of elements from R2 [6, Corollary 27.9, Lemma 16.1]. At least one of the
elements in this independent set is not in Ann R; so R = C ffi A, where C = FS(n), [4,
Theorem 6]. Lemma 10 (i) yields this generator of C+ has height zero. If u £ AnnR,
u G A2 , then in a similar manner to the above, we obtain A = E ffi A', where E+

is a cyclic 2-group generated by an element not in Ann-R. But R = C ffi E © A' \ so
by Theorem 6 of [4], E2 — 0, a contradiction. Thus A2 C Ann R and consequently
T(A+)C AnnR.

If 0 ^ x 6 A2 and (x) has no elements of infinite height in A2, then R =
C ffi K © A", where K+ is a finite direct sum of cyclic 2-groups [6, Corollary 27.9].
Each of these summands is a ring direct summand of R and hence by Theorem 6 of [4]
must have order less than \C\ = 2n. Consequently x has order less than 2™. U

COROLLARY 12 . Let R be an AE-ring satisfying:

(i) R3 = 0, R2 ^ 0, and R+ is reduced;
(ii) R% has no elements of infinite height;

(iii) R2 is not contained in AnnR.

Then R= C ®A as in Theorem 11 and K% - C+ ® F+, where F+ is the direct sum
of cyclic groups each of order less than 2".

PROOF: TO see that F+ has the desired properties, note that using Theorem 11
we have every element in R2 has order less than or equal to 2" and hence R% is a
direct sum of cyclic groups and each summand other than C has order less than 2™. U

THEOREM 1 3 . Let R be an AE-ring.

(i) R is an algebra over a field K if and only if either R2 -0 or R^ Z/(2).
(ii) R is indecomposable if and only if either

(a) R2 = 0 and R+ is indecomposable, or
(b) R ^ FS(n), for some n > 1.

(iii) ii is subdirectly irreducible if and only if either
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(a) R2 = 0 and R+ = C(pk), 1 ^ p < oo, for some prime p, or

(b) R =* FS(n), for some n > 1.

PROOF: Each part follows immediately from previous results and well-known prop-

erties of the additive groups involved. U

THEOREM 14 . Let R be an AE-ring such that R3 ^ 0 . If S is a homomorphic

image of R such that S2 is reduced, then S is an AE-ring.

PROOF: Let f:R —> S be a surjective ring homomorphism. From Corollary 6

5 = f(B) + f{N). Either f(B) C / (N) , in which case S2 = 0 and hence 5 is an

.A.E-ring, or f(B) fl f(N) — 0, in which case 5 satisfies conditions (i) and (iii) of

Corollary 6 and (f(N)) — 0. If f{N) contains an element of order two, then its

additive group has a cyclic 2-group as a direct summand [6, Corollary 27.3], and hence

N+ maps homomorphically onto C(2), a contradiction to (iii) of Corollary 6. Thus

5 = f{B) © f(N) satisfies the hypotheses of Corollary 6 and 5 is an Si?-ring. U

Observe that if R is an AE-ivng with R3 = 0 and 5 is a homomorphic image of

R, then S3 = 0 and 2S2 = 0. A ring with the latter two properties need not be an

AE-ring even if it is subdirectly irreducible, as the following example illustrates.

EXAMPLE 15. Let S be the vector space of 3-tuples over the field Z/{2) and define

multiplication by (aj, 61, Cj) • (02, 62> ci) = (0, 0, 0162 + 6102)- Then S3 = 2S2 = 0,

s2 = 0 for each x £ S, and S is a commutative, subdirectly irreducible ring (algebra

over Z/(2)). But S2 ± 0 and 5 is not an 4.E-ring.

We close with some open questions and some observations.

QUESTION I. Are all AE-ri-n%s commutative?

QUESTION II. Is every subdirectly irreducible homomorphic image of an AE-ring also

an AE-ring?

QUESTION III. Is every homomorphic image of an AE-ring an .4..E-ring?

QUESTION IV. If R is an AE-ring in which x2 = 0 for each x e R, is R2 = 0?

Feigelstock's Theorem 6 [4] and several of our results herein show that for a wide

class of AE-rings the answer to Question IV is "yes". An affirmative answer to any one

of Questions I, II, III yields an affirmative answer to any prior question in the list.
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