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Steady, quasi-one-dimensional, internal
compressible flow with area change, heat
addition and friction
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A closed-form solution is presented for internal compressible flows with an arbitrary
combination of area change, heat addition, friction and non-uniform flow. The
approach assumes steady flow of a calorically perfect ideal gas using the integral
form of the governing equations. It is shown that the equations reduce to a
simple, bi-quadratic equation in exit Mach number. This solution is compared to
previously known solutions for Rayleigh flow, Fanno flow, isentropic flow and normal
shock relations. Theoretical solutions for sudden expansion, sudden contraction, and
supersonic–supersonic two-stream constant area mixing are also presented. These
solutions were found to be in agreement with data available in the literature.
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1. Introduction

Internal flow represents an important class of fluid dynamics problems involving flow
through an object or device with one or more inflows and exit flows. Many exact or
approximate analytical solutions are known for certain simplified conditions that provide
the basis for understanding internal flow physics. These solutions are also important
in design for many applications, including flow-network modelling (Sultanian 2018),
gas-turbine engines (Farokhi 2014; Sultanian 2018), gas pipelines (John & Keith 2006),
rockets (Sutton & Biblarz 2010) and industrial air systems (Taheri & Gadow 2017). The
present paper describes a new, closed-form solution for steady, compressible internal flow
problems that includes arbitrary forces (including friction), heat transfer, area change, flow
non-uniformity and multiple inlet/exit flows.
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The simplest internal flows can be considered as steady, with a single inlet and a
single exit. Flow non-uniformity is generally ignored, hence these are often referred to as
‘one-dimensional’ or ‘quasi-one-dimensional’ solutions. These solutions are derived from
either the differential form or the integral form of the governing equations. Examples of
solutions derived from the differential form include Fanno flow (constant area flow with
friction), Rayleigh flow (constant area flow with heat transfer) and isentropic flow with
area change. The normal shock relations are an example of a solution derived from the
integral form. In each of these examples, the analysis provides a one-dimensional solution
where the effect of a single physical parameter is modelled.

Many texts provide analysis of one-dimensional, internal flow problems that involve
some combination of friction, heat transfer and area change. Numerical methods are often
provided, but closed-form solutions are less common. Shapiro (1953) studied general
compressible flow with friction, heat addition and area change using the differential
form of the governing equations. However, no exact, closed-form solution was identified,
although some approximations and simplifications were discussed in detail.

Recently, Ferrari (2021a,b) presented two closed-form solutions to the one-dimensional
differential equations. The first is the case of constant area with combined heat transfer
and friction, and the second is for conical area change with friction. The former was
shown to agree with the classical Rayleigh and Fanno solutions. Numerical simulations
for combined friction and heat transfer were shown to agree with the closed-form solution.
Additionally, the assumption of constant heat transfer could be replaced with a wall
temperature boundary condition, but the solution procedure would become iterative rather
than closed-form. The solution for area change with friction was shown to agree with
numerical solutions.

The control volume approach, using the integral form of the governing equations,
is more common in the literature for solving quasi-one-dimensional, compressible flow
problems. Crocco (1958) studied compressible flow with friction, heat addition and area
change using the integral form of the governing equations. A pressure–area power-law
relationship was assumed, where the static pressure ratio was assumed to be a function
of the area ratio with some constant exponent. This allowed the wall pressure force
to then be evaluated in the integral form of the momentum balance. This particular
approach has seen use in scramjet combustors (Curran, Heiser & Pratt 1996). Dobrowolski
(1966) used Crocco’s pressure–area relationship to solve the problem of one-dimensional,
compressible flow with simultaneous area change and heat transfer. Loh (1970) expanded
this approach to include the effect of friction. Later, Greitzer, Tan & Graf (2004) also
discussed many solutions to various one-dimensional flows, including incompressible
sudden expansions, incompressible sudden contractions, and mixing of two compressible
flows. John & Keith (2006) discussed simultaneous friction, heat transfer and area change,
but solved the problem using a numerical approximation. Similarly, Farokhi (2014) used
the integral form of the governing equations and found a quadratic solution in exit Mach
number squared to the problem of heat transfer and drag in a constant area duct. Kundu,
Cohen & Dowling (2015) also used the integral form of the governing equations and found
a quadratic solution in exit Mach number squared to the problem of heat transfer and
friction in a constant area duct; however, the friction force was not coupled to the dynamic
pressure.

Denton (1993) applied the integral form of the governing equations to flows involving
turbomachinery. An iterative solution procedure was derived for the mixing of two streams,
but a closed-form solution was not obtained. Denton (1993) also studied the diffusion of
aerofoil wakes in axial turbines and compressors. Trends and qualitative behaviour were
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Steady, quasi-one-dimensional, internal compressible flow

identified based on boundary-layer quantities at the aerofoil trailing edge. Rose & Harvey
(1999) studied a similar problem involving the mixing of a wake in a turbine that had a
non-uniform total temperature. They used the control volume approach and the integral
form of the governing equations in order to obtain a quadratic solution in exit velocity.

An internal flow in which two supersonic streams mix together has been studied by
Fabri & Paulon (1958), Chow & Addy (1964) and Dutton, Mikkelsen & Addy (1982).
Each work used experimental results compared to theoretical predictions in order to draw
conclusions about the flow physics. Fabri & Paulon (1958) saw reasonable agreement
between predictions and experimental results using a steady one-dimensional approach
using the integral form of the governing equations. Chow & Addy (1964) noted some
limitations with the Fabri & Paulon (1958) approach. They improved the prediction by
including detailed computer calculations of the inviscid interactions of the two-streams
and viscous effects using the differential form of the governing equations. Dutton et al.
(1982) showed a closed-form solution in exit Mach number squared based on a similar
approach by Fabri & Paulon (1958). However, the prediction neglected viscous effects,
including wall friction, and was shown to have significant differences compared to data.

The problem of compressible internal flow undergoing a sudden expansion (also called
sudden enlargement) was shown to have an exact, closed-form solution by Hall & Orme
(1955). This approach used the integral form of the governing equations and found an exact
solution in the form of a quadratic in exit Mach number squared. This prediction was then
compared to experimental data, and the agreement was found to be excellent. The choice
of positive or negative root in the sudden expansion quadratic solution was explored in
additional detail by Woods & Daneshyar (1965). The similar problem of compressible
internal flow undergoing sudden contraction was investigated by Benedict, Carlucci &
Swetz (1966) and Marjanovic & Djordjevic (1994). Theoretical predictions were found to
deviate appreciably from experimental data. Empirical relations were found to be required
in order to improve the accuracy of predictions.

Heiser et al. (1994) studied hypersonic external flows using a control volume with area
change, heat addition and a wall force, where one of the control surfaces was a streamline.
This approach also used the integral form of the governing equations. It was found that
the solution was a quadratic in exit velocity. The wall force included both viscous and
wall pressure effects. However, the intent of that solution was for external flows. Hence
guidance was not provided on how to approximate the wall forces. Additionally, the
solution did not include the ability to accommodate non-uniform profiles at the boundaries.

The intent of the present work was to combine the effects of arbitrary area change, heat
transfer, friction and flow non-uniformity into a single, closed-form analytical solution. It
is the inclusion of all of these effects that makes this approach unique and distinct from
the cited literature. The subsequent sections of this paper will develop a control volume
formulation with a closed-form solution. Example problems will then be used to first show
consistency with known solutions. This is followed by a description of several unique
internal flow solutions that will be compared with data available in the literature.

2. Set-up

The approach uses a control volume with a combination of heat transfer, friction and
area change. A control volume that illustrates this combination is shown in figure 1. The
surface of the control volume is divided into the inlet, the outlet and an impermeable wall.
Additionally, there is no mass flow or velocity component normal to the wall. The flow
properties are not assumed uniform across any control surface.
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Flow Flow
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Figure 1. Control volume with simultaneous heat transfer, friction and area change.

The problem considers the x-direction momentum equation only. Further, the problem
is assumed to be steady with only the x-component of velocity being non-zero at the inlet
and exit locations. Additionally, the calorically perfect ideal gas assumption is used, which
implies that the specific heats cP and cV are constant, and the ideal gas law P = ρRT
applies. The Mach number is given as M = √

γ RT . The ratio of the stagnation enthalpy
(ho ≡ h + V2/2) to the static value for a calorically perfect gas is

ho

h
= To

T
= 1 + γ − 1

2
M2 ≡ f (M), (2.1)

where the function f (M) is defined for convenience as it appears frequently in the analysis.
An important aspect of the analytical solution presented below is the ability to

consider components in which the inflow or exit flow has non-uniform conditions. This
non-uniformity could apply to any flow field variable, including velocity, density and
temperature. Fluid variables at the inlet and exit of the control volume will be represented
by appropriate average values. This will include conditions where more than one inflow
stream is present, by considering a single inflow boundary with non-uniform conditions.

Two types of averaging will be considered here: the area average and the mass average.
The area average of a quantity ϕ is defined as

ϕ̄A ≡ 1
A

∫
ϕ dA. (2.2)

The mass average of a quantity ϕ is defined as

ϕ̄m ≡ 1
ṁ

∫
ρϕ(V · n̂) dA. (2.3)

Note that many other types of averages could be considered, as discussed in Cumpsty &
Horlock (2005), and the choice of a particular averaging type is based on how it helps
to simplify the analysis. Pressure, for example, most often appears in this analysis as
an area average, P̄A, as this replaces an integral quantity that occurs naturally in the
momentum equation (Cumpsty & Horlock 2005). Similarly, the mass-averaged value of
stagnation enthalpy, h̄m

o , replaces an integral that occurs in the control volume energy
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equation (Cumpsty & Horlock 2005). The mass-averaged stagnation temperature for a
calorically perfect ideal gas may then be calculated as

T̄m
o = h̄m

o

cP
. (2.4)

For the present work, a combination of area averaging and mass averaging will be used
most often. In cases where neither area or mass averaging is specified, a simple overbar
will be used: (·). Note that for uniform flows, the use of averaging is not required since
all relevant quantities are constant along that particular control surface, and the overbar
notation can be neglected, i.e. ϕ̄A = ϕ̄m = ϕ. Mass, area or any other averaging can be
used for the Mach number, so it is left as M̄. The solution will remain exact with this
arbitrarily chosen average M̄ by using ‘flux correction factors’, which are discussed later.
Thus one should choose an averaging technique for M̄ that provides convenience for the
problem of interest.

The use of area-averaged static pressure, mass-averaged stagnation temperature, an
average Mach number, and flux correction factors allows the problem to be solved for both
uniform and non-uniform quasi-one-dimensional flow problems. The following quantities
are defined so that integral forms of mass, momentum and energy conservation are
visually similar to their uniform flow counterparts. The function f̃ is analogous to the
stagnation-to-static enthalpy ratio and is defined as

f̃ ≡ 1 + γ − 1
2

M̄2. (2.5)

Note that f̃ is not an average quantity itself; rather, it is defined using other average
quantities. A representative static temperature can then be defined as

T̃ ≡ T̄m
o

f̃
. (2.6)

A representative static density can then be defined as

ρ̃ ≡ P̄A

RT̃
= P̄A

R
f̃

T̄m
o

. (2.7)

A representative velocity can then be defined as

Ṽ ≡ M̄
√

γ RT̃ = M̄

√
γ R

T̄m
o

f̃
. (2.8)

Similar to f̃ , the quantities T̃ , ρ̃ and Ṽ are not average quantities themselves; rather, they
are representative quantities defined in terms of other averages, i.e. P̄A, T̄m

o and M̄. They
are analogous to their uniform-flow counterparts f , T , ρ and V . The use of these definitions
allows the formulation to be mathematically exact while maintaining a familiar form to the
equations.

Conventionally, integral quantities in the control volume formulations with non-uniform
profiles are represented using flux correction factors (also called non-uniformity
coefficients). These are scalars that serve to modify values computed from spatially
averaged quantities in order to preserve an integrated quantity of interest, e.g. momentum
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flux. Correction factors for compressible flow are discussed in Crocco (1958). For
incompressible flow, these factors are described in more detail in White (2006) and
Munson et al. (2015).

The mass flux correction factor is defined here as

α ≡

∫
ρ(V · n̂) dA

ρ̃ṼA
. (2.9)

This term is equal to unity for constant density flows when using an area-averaged velocity.
However, when the density is not spatially uniform, it is possible for α to be greater than or
less than unity. For example, if spatial variations in ρ and V are positively correlated over
the inlet surface, then the mass flow rate is ṁ > ρ̃ṼA, hence α > 1. Similarly, if density
and velocity variations are negatively correlated over the area, then α < 1. Inserting the
definitions of ρ̃ and Ṽ shows its dependence on normalized profiles of static pressure,
stagnation temperature, Mach number and stagnation-to-static enthalpy:

α = 1
A

∫
P

P̄A

(
To

T̄m
o

)−1/2 M
M̄

√
f

f̃
dA. (2.10)

This provides a useful method to estimate α values if there is knowledge regarding the
shapes of the relevant dimensionless profiles.

The momentum flux correction factor is defined as

β ≡

∫
ρV(V · n̂) dA

ρ̃Ṽ2A
. (2.11)

This follows from the classical definition given in White (2006) and Munson et al. (2015).
Substituting the definitions of ρ̃ and Ṽ shows its dependence on the normalized profiles of
static pressure and Mach number:

β = 1
A

∫
P

P̄A

(
M
M̄

)2

dA. (2.12)

Thus the momentum flux correction factor can be evaluated as the area average of a
combination of the normalized profiles over the control surface.

These flux correction factors allow for any averaging method to be used for M̄. It requires
only consistent use throughout the equations. Careful selection of the averaging method
can guarantee certain properties of β. For example, using Schwarz’s inequality, it can be
shown that if M̄ = M̄A, then β ≥ 1.

3. Derivation of control volume solution

The conservation of mass for a steady, single-inlet, single-exit control volume is given as

α2ρ̃2Ṽ2A2 − α1ρ̃1Ṽ1A1 = 0, (3.1)

where the subscript 2 represents exit conditions, and the subscript 1 indicates inlet
conditions.
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Steady, quasi-one-dimensional, internal compressible flow

Substituting the ideal gas law and the definition of the Mach number into (3.1), and
using (2.1), gives

P̄A
2 A2

P̄A
1 A1

α2

α1

√
T̄m

o1

T̄m
o2

M̄2

M̄1

(
f̃2
f̃1

)1/2

− 1 = 0. (3.2)

It should be noted that in (3.2), the static pressure is used rather than the stagnation
pressure. Further, the stagnation temperature is used rather than the static temperature.
The reason for this choice is that the static pressure and stagnation temperature occur in
the momentum and energy equations, respectively. Additionally, the pressure occurs with
an integer exponent. Thus those equations require no additional manipulation for all three
governing equations to contain the same set of unknown quantities.

The steady x-momentum balance equation is

β2ρ̃2Ṽ2
2 A2 − β1ρ̃1Ṽ2

1 A1 = P̄A
1 A1 − P̄A

2 A2 + P̄A
3 (A2 − A1) − Ffx, (3.3)

where P̄A
1 and P̄A

2 represent the area-averaged static pressure on inlet and outlet control
surfaces, respectively. Here, Ffx is the friction force acting on the control volume projected
in the x-direction. The term P̄A

3 (A2 − A1) represents the axial force on the fluid due to the
wall pressure. Therefore, P̄A

3 represents an average over the projected area of the walls of
the device.

The area-averaged wall pressure P̄A
3 will be of primary importance in the solution for

any problems that involve area change. In many cases, this term will be the only unknown
needed for closure of the equations, hence it must be specified in order to solve for the
control volume exit conditions. Without loss of generality, P̄A

3 may be prescribed as a linear
combination of the inlet static pressure P̄A

1 , the exit static pressure P̄A
2 , and an average inlet

stagnation pressure P̄o1:

P̄A
3

P̄A
1

= (1 − ξ − ν) + ξ
P̄A

2

P̄A
1

+ ν
P̄o1

P̄A
1

, (3.4)

where ξ and ν represent wall-pressure scaling coefficients. Note that the wall pressure
was prescribed in terms of the known inlet conditions and the unknown outlet static
pressure, similar to Shapiro (1953) and John & Keith (2006). Therefore, the wall pressure
is prescribed implicitly. This leads to a closed-form solution for the exit conditions rather
than an iterative solution. Determining the appropriate wall-pressure scaling coefficients
for various problems is discussed in later sections.

The net friction force per unit area is written as a friction coefficient multiplied by 1
2ρV2.

The net friction force is then calculated by integrating over the wall area and taking the
x-component of the resulting force. The integration of 1

2ρV2 cannot be performed directly,
thus the integral is approximated using the mean of the inlet and outlet ρV2 values:

Ffx ≡
∫ 2

1

cf

2
ρV2 cos(θ3) dA3 ≈ cf

4
γ (β1P̄A

1 M̄2
1 + β2P̄A

2 M̄2
2)A3f , (3.5)

where cf is the friction coefficient, θ3 is the angle from the x-direction to the wall, and A3f
is defined as

A3f ≡
∫ 2

1
cos(θ3) dA3. (3.6)
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The momentum equation then becomes

1 + β1γ

(
1 − cf

4
A3f

A1

)
M̄2

1 +
(

1 − ξ + ν

(
P̄o1

P̄A
1

− 1

))(
A2

A1
− 1

)

= P̄A
2 A2

P̄A
1 A1

(
1 + β2γ

(
1 + cf

4
A3f

A2

)
M̄2

2 + ξ

(
A1

A2
− 1

))
. (3.7)

The steady energy conservation equation without power transfer across the control
surface, consistent with figure 1, is

h̄m
o2 − h̄m

o1 = Q̇
ṁ

≡ q. (3.8)

This can be written in terms of stagnation temperature as

T̄m
o2

T̄m
o1

= q
h̄m

o1
+ 1. (3.9)

Substitution of (3.9) into (3.2), solving for (P̄A
2 A2)/(P̄A

1 A1), and substitution into (3.7)
results in

1 + β1γ

(
1 − cf

4
A3f

A1

)
M̄2

1 +
(

1 − ξ + ν

(
P̄o1

P̄A
1

− 1

))(
A2

A1
− 1

)

α1

α2
M̄1

√√√√f̃1

(
q

h̄m
o1

+ 1

)

=
1 + β2γ

(
1 + cf

4
A3f

A2

)
M̄2

2 + ξ

(
A1

A2
− 1

)
M̄2

√
f̃2

. (3.10)

All conditions at the inlet are assumed to be known, as well as the friction coefficient, heat
transfer and wall-pressure scaling coefficients for cases with area change. Equation (3.10)
thus contains only a single unknown: M̄2. Squaring both sides of (3.10) and simplifying
results in the quadratic equation

(M̄2
2)2 + b(M̄2

2) + c = 0. (3.11)

The quadratic coefficients are

b ≡
Λ − 2γβ2

[
1 + ξ

(
A1

A2
− 1

)](
1 + cf

4
A3f

A2

)

Λ
γ − 1

2
−
[
γβ2

(
1 + cf

4
A3f

A2

)]2

and c ≡ −

[
1 + ξ

(
A1

A2
− 1

)]2

Λ
γ − 1

2
−
[
γβ2

(
1 + cf

4
A3f

A2

)]2 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.12)
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Steady, quasi-one-dimensional, internal compressible flow

Possible solutions b Requires Valid root

1 > 0 |b/2| <
√

(b/2)2 − c +
1 < 0 |b/2| <

√
(b/2)2 − c +

2 < 0 |b/2| >
√

(b/2)2 − c ±
Table 1. Conditions for M̄2 solutions.

where the term Λ was introduced only for brevity as

Λ ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

1 + β1γ

(
1 − cf

4
A3f

A1

)
M̄2

1 +
(

1 − ξ + ν

(
P̄o1

P̄A
1

− 1

))(
A2

A1
− 1

)

α1

α2
M̄1

√√√√f̃1

(
q

h̄m
o1

+ 1

)

⎤
⎥⎥⎥⎥⎥⎥⎦

2

. (3.13)

Physically, Λ is the squared sum of all known momenta non-dimensionalized by the square
of the mass flow rate and the stagnation enthalpy. This can be shown to be equivalent to
the non-dimensionalization presented by Denton (1993) and Greitzer et al. (2004) for the
two-stream mixing problem.

4. Solution procedure

The unknown exit Mach number represents the full solution. This can now be found from
the quadratic equation as

M̄2
2 = −b

2
±
√(

b
2

)2

− c. (4.1)

This represents a closed-form algebraic solution to the generalized internal flow problem
that does not require a numerical solution or iterative methods.

The final issue to consider is that the solution was obtained from a bi-quadratic, and
hence allows for four roots as potential solutions. Physically realizable solutions may be
determined by considering two restrictions. First, the exit Mach number must be a real
positive number. This requirement eliminates all roots for which M̄2 < 0 (i.e. reversed
outlet flow), M̄2

2 < 0 and (b/2)2 − c < 0 (i.e. imaginary M̄2). A single solution is possible
for any real b value given that |b/2| <

√
(b/2)2 − c . Two solutions are possible if b < 0

and |b/2| >
√

(b/2)2 − c. Whether or not these possible solutions will be supersonic or
subsonic will depend on |−b/2 − 1|,

√
(b/2)2 − c, and the choice of ‘±’. Hereafter, the

choice ‘+’ will be referred to as a ‘positive root’, and ‘−’ will be referred to as a ‘negative
root’. The results are summarized in table 1. The final restriction requires eliminating
non-physical solutions by satisfying the second law:

Δs ≥
∫ 2

1

δq
T

. (4.2)

The stated restrictions reduce the number of allowable solutions to either one or two. In
the event that two M̄2 solutions are obtained, both should be considered to be physically
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realizable for the boundary conditions provided, e.g. one subsonic and one supersonic.
This will be demonstrated in the following sections, with examples of both canonical flow
problems and several unique solutions that were made possible by the formulation given
by (3.11).

Once the solution for M̄2 is known, all other quantities at the exit may be obtained. For
example, the exit pressure P̄A

2 can be found from the conservation of mass, i.e. (3.1). Hence
all exit conditions, including entropy change, can be found from the solution.

The control volume solution as derived can be used for any internal flow component,
as long as the required inputs are known or can be approximated. However, there may
be cases where there is an advantage to dividing the flow into multiple sub-elements in
the streamwise direction. An example of this is very long geometries with friction, such
as long pipe flow problems. In this case, the approximation to the friction force given by
(3.5) is improved if the component is segmented into multiple short sections. The control
volume solution still provides a closed-form solution, but a streamwise-direction marching
approach is applied. This provides a closed-form solution to the discretized problem,
which is defined as ‘semi-analytical’ (De Vidts & White 1992). This can be shown to
provide second-order convergence with increasing sub-element count.

A second example where multiple sub-elements may be useful is for flows with
continuously varying cross-sectional area in which the wall-pressure scaling (ξ ) is
unknown. The wall-pressure scaling is set to ξ = 1/2, ν = 0, which approximates the wall
pressure as the mean of inlet and outlet static pressure. This is commonly used with the
steady one-dimensional differential equations (Shapiro 1953; John & Keith 2006; Kundu
et al. 2015). Effectively, this means that the wall pressure is being solved for along the
length of overall control volume. Like the case of friction, this can be shown to provide
second-order convergence with increasing sub-element count. Convergence to the solution
occurs regardless of the value of ξ as long as ν = 0, though the rate of convergence
varies with the actual value of ξ . This result indicates that in the limit of infinitely many
sub-elements (i.e. a differential size control volume), the solution presented in this work is
consistent with the solution of the differential form of the governing equations for steady,
compressible, quasi-one-dimensional flow.

Problems that include arbitrary area change may be solved with a single control volume
provided that the values of ξ and ν are given. For example, in a flow with gradual
area change, it may be assumed that the wall pressure varies between the inlet and exit
static pressure values. This would be independent of the inlet stagnation pressure. Hence
ν = 0, and choosing ξ in the range 0 ≤ ξ ≤ 1 will set P̄A

3 between the inlet and exit
static pressures. In problems where the inlet stagnation pressure is more appropriate, with
a relevant constraint 1 − ξ − ν = 0, and choosing 0 ≤ ν ≤ 1, will set P̄A

3 between the
exit static pressure and the inlet stagnation pressure. Two examples, which set ξ and ν

within these ranges, are the cases of sudden expansion and sudden contraction. These are
discussed in § 6.

Alternatively, if the values of ξ and ν are not readily apparent from the geometry, the
values may be varied over some range and selected to achieve a specific outlet condition.
For example, a known component efficiency or entropy generation may be used as a
constraint.

Finally, special cases allow for closed-form solutions for the wall pressure. For example,
a closed-form solution for isentropic flow can be found if M2 is sufficiently small. Here,
the overbar notation can be neglected since the flow is assumed uniform and the flux
correction factors are unity. First, the momentum equation is rearranged to obtain an
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explicit expression for ξ with ν = 0:

ξ = 1
P2

P1
− 1

⎛
⎜⎜⎝

P2

P1

A2

A1
(1 + γ M2

2) − (1 + γ M2
1)

A2

A1
− 1

− 1

⎞
⎟⎟⎠ . (4.3)

Two new relationships are required to substitute for P2/P1 and M2 such that a closed-form
expression can be determined based on known inlet conditions. The assumption of
isentropic flow can be used so that the static pressure ratio becomes equivalent to

P2

P1
= P2

Po2

Po1

P1
. (4.4)

The outlet-stagnation-to-static pressure ratio may be expressed as a Taylor series about
M2

2 = 0:

Po2

P2
=
(

1 + γ − 1
2

M2
2

)γ /(γ−1)

= 1 + γ

2
M2

2 + γ

8
M4

2 + γ

48
(2 − γ ) M6

2 + O(M8
2).

(4.5)
Neglecting terms of order M4

2 and higher allows a solution for M2 to be found using mass
and energy conservation. The roots of the resulting polynomial are the solutions to the
two-term isentropic flow approximation

M2s ≈
√√√√√√

M2
1(

A2

A1

)2

f (γ+1)/(γ−1)

1 − γ M2
1

, (4.6)

where M2s is the isentropic exit Mach number. Substituting the first two terms of (4.5) and
(4.6) into (4.3) yields the isentropic value of the wall-pressure scaling coefficient ξs:

ξs ≈

1 +
γ

2
M2

1(
A2

A1

)2

f (γ+1)/(γ−1)

1 − γ M2
1

f γ /(γ−1)

1 −

⎛
⎜⎜⎜⎝1 +

γ

2
M2

1(
A2

A1

)2

f (γ+1)/(γ−1)

1 − γ M2
1

⎞
⎟⎟⎟⎠

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f γ /(γ−1)

1

A2

A1
A2

A1
− 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + γ M2
1(

A2

A1

)2

f (γ+1)/(γ−1)

1 − γ M2
1

1 +
γ

2
M2

1(
A2

A1

)2

f (γ+1)/(γ−1)

1 − γ M2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1 + γ M2
1

A2

A1
− 1

− 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.7)
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This relationship for ξs, along with (4.1), provides a closed-form solution to isentropic
flow with area change for arbitrary inlet Mach numbers and small exit Mach numbers.
This result will be accurate as long as Po2/P2 is well approximated as 1 + (γ /2)M2

2.
The leading-order error term of this approximation is (γ /8)M4

2. This approximation is
accurate to within approximately 0.1 % for M2 < 0.3, and approximately 1 % for M2 < 0.5
for γ = 7/5. Retaining additional terms in (4.5) would improve the approximation for
isentropic flow. In principle, closed-form solutions using more terms could be found
as long as the roots of the resulting polynomial are able to be solved explicitly. An
additional approximation for isentropic flow without the assumption of small M2s is given
in Appendix A.

5. Comparison to classical solutions

The utility of the derived solution will be demonstrated with a series of example problems.
First, several of the classical one-dimensional compressible flow problems will be shown.
This is to show consistency with established theory, as well as to demonstrate the variety
of boundary conditions that can be considered from the same solution, i.e. (4.1). A later
section will compare the results of (4.1) with experimental measurements and other recent
solutions from the available literature.

The first problem considered is isentropic flow with area change. The flow is assumed
uniform for this analysis, so the overbar notation is neglected and the flux correction factors
are unity. An analytical relationship between the area ratio A2/A1, the inlet Mach number
M1, and the isentropic exit Mach number M2s, can be found from (3.2) by setting the
stagnation pressure, stagnation temperature and mass-flux correction factor ratios to unity,
resulting in

A2

A1
= M1

M2s

⎛
⎜⎝ 1 + γ − 1

2
M2

1

1 + γ − 1
2

M2
2s

⎞
⎟⎠

−(γ+1)/2(γ−1)

. (5.1)

The solution in the form of M2s for a given area ratio and M1 value can be found
numerically but has no closed-form solution.

The isentropic flow solution of (4.1) requires incorporating a constraint Δs = 0. This
additional constraint effectively sets the wall-pressure coefficients to their isentropic
values for the given boundary conditions. There are three methods to incorporate this new
constraint into the solution: approximate the solution using isentropic relations, multiple
sub-elements or iteration. The isentropic value of the wall pressure is independent of the
inlet stagnation pressure, hence ν = 0 for each method. The first method used (4.7) to set
ξ and was found to be accurate for small M2 values. The second method implemented
multiple sub-elements using ξ = 0.5. The last method used a single control volume to
evaluate the solution as a function of ξ . This approach used iteration to determine the
value of ξ such that Δs = 0.

The results of iteration using a single control volume for isentropic flow are shown in
figure 2. The abscissa is the inlet Mach number, and the ordinate is the isentropic exit
Mach number. The ‘×’ symbols refer to the negative root, and the ‘◦’ symbols refer to the
positive root for the isentropic iterative results from (4.1). These results are compared with
(5.1) for area ratio in figure 2(a). The corresponding values of ξ are shown in figure 2(b)
and are compared against (4.3). Both the area ratio and ξ values show the iterative results
agree with the analytical expressions to numerical precision.
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Figure 2. Isentropic flow for γ = 7/5 using a single control volume. (a) Contours of area ratio; lines are from
(5.1), and symbols are from (4.1). (b) Contours of ξ with ν = 0; lines are from (4.3), and symbols are from
(4.1).

The next problem considered is the flow across a normal shock. Again, the overbar
notation can be neglected since the flow is assumed uniform and the flux correction factors
are unity. Equation (4.1) was solved using A2/A1 = 1 and q/h̄m

o1 = 0. The entropy change
across the shock is used to compare the solution from this work against the literature. This
is given by John & Keith (2006) as

s2 − s1

cP
= −γ − 1

γ
ln

⎡
⎢⎢⎣
⎛
⎜⎝

γ + 1
2

M2
1

1 + γ − 1
2

M2
1

⎞
⎟⎠

γ /(γ−1) (
2γ

γ + 1
M2

1 − γ − 1
γ + 1

)−1/(γ−1)

⎤
⎥⎥⎦ .

(5.2)
The entropy change is shown over a range of M1 values in figure 3 as a dashed line. Note

that (5.2) admits both trivial solutions (Δs = 0) and non-physical shocks with M1 < 1.
The solutions from (4.1) are shown with symbols; the positive and negative roots are shown
separately. Interestingly, the negative root gives the non-trivial solution for M1 > 1 and
trivial solution for M1 < 1. The positive root results in a subsonic shock with negative
entropy change or the trivial supersonic solution. The results from (4.1) agree with (5.2)
to numerical precision.

Fanno and Rayleigh flows are now considered. Again, the overbar notation can be
neglected since the flow is assumed uniform and the flux correction factors are unity.
Entropy change is again used as the dependent variable of interest, as it is easy to visualize
and compare solutions. The entropy change for Fanno flow is given by Shapiro (1953) as

s − s∗

cP
= ln

⎡
⎢⎢⎣M2

⎛
⎜⎜⎝

γ + 1
2

M2
(

1 + γ − 1
2

M2
)
⎞
⎟⎟⎠

(γ+1)/2γ⎤⎥⎥⎦ , (5.3)
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Figure 3. Entropy generation across a normal shock; the dashed line is from (5.2), and symbols are from
(4.1).

where s∗ refers to the sonic condition. The entropy change for Rayleigh flow is given in
Shapiro (1953) and John & Keith (2006) as

s − s∗

cP
= ln

[
M2

(
γ + 1

1 + γ M2

)(γ+1)/γ
]

. (5.4)

These results compared to (4.1) are shown in figure 4. The solutions from Shapiro (1953)
and John & Keith (2006) are shown as dashed lines, with the positive and negative roots
from (4.1) shown with symbols. The results show the consistency of (4.1) with Rayleigh
flows to within numerical precision of the solution. The results also show that the solution
follows the correct non-dimensional entropy change versus Mach number for Fanno flow.

6. Additional example problems

Several distinctive internal flows are now considered that can be considered with the
present formulation. This includes sudden expansion, sudden contraction, the two-stream
mixing layer, and combinations of friction and heat transfer with area change.

The problem of sudden expansion with compressible flow provides a useful
demonstration of the solution presented in this paper. The control volume and problem
set-up are shown in figure 5. There are three control surfaces: inlet, outlet and an
impermeable wall. There is no heat addition through the walls, and there is no friction
present at the walls. The flow is assumed to be uniform at both the inlet and exit of the
control volume. Note that this requires the outlet of the control volume to be sufficiently
downstream of the inlet so that the uniform assumption is justified. Further, the overbar
notation can be neglected and the flux correction factors are set to unity. The pressure on
the wall is specified based on the assumption that the streamlines separate horizontally at
the expansion point. Hence it can be assumed that P̄A

3 = P̄A
1 .

957 A15-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

44
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.44


Steady, quasi-one-dimensional, internal compressible flow

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
M

−0.4

−0.3

−0.2

−0.1

0

0.1

(s
 –

 s∗
)/c

P

Positive root

Negative root

Rayleigh

Fanno

Figure 4. Entropy relative to the reference condition (M = 1) for Fanno flow, shown as a dotted line using
(5.3), and Rayleigh flow, shown as a dashed line using (5.4); symbols are from (4.1).

1

3

2

Flow Flow

Figure 5. Sudden expansion control volume.

The assumptions noted lead to the parameters given by q = 0, ν = 0 and ξ = 0. The
quantities M1 and A2/A1 were considered to be independent variables so that M2 may be
determined. Figure 6 shows the solution to (4.1) along with experimental data from Hall
& Orme (1955). The abscissa and ordinate of the figure represent the inlet and exit Mach
numbers, respectively. The different lines correspond to varied area ratios.

The exit Mach number increases as M1 is increased and as A2/A1 decreases, as expected.
Generally, the agreement between the analytical solution and the experimental data is
excellent over the full range of inlet Mach numbers and area ratios. It is noted that
the lowest area ratio values do show a small bias in the prediction. This is likely due
to the assumption P̄A

3 = P̄A
1 , which is likely invalid for smaller area ratios, since the

flow reattachment location will be closer to the expansion location, thereby altering the
streamline pattern. A more accurate estimate of the wall pressure, using theoretical values
or empirical relations (Marjanovic & Djordjevic 1994; Morimune, Hirayama & Maeda
1980), would improve the predictions for area ratios closer to unity.

The compressible sudden contraction, like sudden expansion, provides another useful
demonstration of the solution presented in this paper. The control volume and problem
set-up are shown in figure 7. The assumptions are identical to the sudden expansion
just discussed. This includes the assumption that the measurements used are sufficiently
downstream so that the uniform flow assumption is justified. Similar to the case of sudden
expansion, the overbar notation is also dropped and the flux correction factors are set
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Figure 6. Sudden expansion solution using (4.1), shown as lines, compared to experimental data, shown as
symbols, from Hall & Orme (1955) for ξ = 0, ν = 0 and γ = 7/5.

1 3

2

Flow Flow

Figure 7. Sudden contraction control volume.

to unity. The wall pressure in this case, however, can be assumed to be close to the
inlet stagnation pressure (Marjanovic & Djordjevic 1994). That is, P̄A

3 = P̄o1. Further, the
outlet control surface is placed sufficiently downstream of the vena contracta to justify the
uniform flow assumption. The problem set-up leads to q = 0, ν = 1 and ξ = 0.

Figure 8 shows the theoretical solution along with experimental data from Benedict
et al. (1966). These measurements were also used by Marjanovic & Djordjevic (1994). The
abscissa represents the exit static-to-stagnation pressure ratio (P2/Po2), which is related
directly to M2. The ordinate is the exit-to-inlet stagnation pressure ratio (Po2/Po1), which
can be related directly to the net entropy change across the control volume. Results from
four different area ratio values are shown.

The exit-to-inlet stagnation pressure ratio is observed to decrease with decreasing exit
static-to-stagnation pressure ratio (increasing exit Mach number). The theoretical solution
agrees well with the experimental data in magnitude and trend, but underpredicts the
exit-to-inlet stagnation pressure ratio by as much as ≈ 0.03. This implies that using the
inlet stagnation pressure value for the wall pressure is a useful upper bound, and provides
a lower bound to the stagnation pressure ratio through a sudden contraction. It is worth
noting that this prediction did not require any information regarding the vena contracta in
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Figure 8. Sudden contraction solution using (4.1), shown as lines, compared to experimental data, shown as
symbols, from Benedict et al. (1966) for ξ = 0, ν = 1 and γ = 7/5.

the outlet pipe section. Similar to the sudden expansion, a more accurate estimate of the
wall pressure, using theoretical values or empirical relations (Marjanovic & Djordjevic
1994), would improve the predictions.

The two-stream mixing layer, like the previous examples, provides another useful
demonstration of the solution presented in this paper. The control volume and problem
set-up are shown in figure 9, applied to the case of two supersonic streams mixing. There
are two control surfaces: one inlet and one outlet. Note that the inlet was considered using
a non-uniform flow, while the outlet was uniform, such that all outlet flux correction
factors were assumed to be unity. Further, the inlet non-uniform profile was considered
as a combination of two uniform flow streams, as shown. The ‘primary stream’ is given
as the lower inlet stream, and the ‘secondary stream’ is the upper inlet stream, as shown
in figure 9. The primary and secondary streams together compose the overall inlet control
surface. There was no heat addition through the walls and the area ratio is unity (i.e.
A2/A1 = 1). Friction was assumed to be significant due to the high flow speed. The
friction coefficient was assumed to be cf ≈ 0.005, which was based on an estimate by
Chow & Addy (1964). The inlet static pressure was not assumed to be uniform. The inlet
mass-averaged Mach number was used as the normalizing Mach number. The presence
of a shock structure inside the control volume was handled implicitly by the selection of
subsonic or supersonic M̄2, i.e. selection of the positive or negative root in (4.1). This
particular case required the subsonic M̄2.

Figure 10 shows the theoretical solution along with experimental data from Dutton
et al. (1982). The abscissa represents the primary-stagnation-to-secondary-stream static
pressure ratio (Pop/Ps), and the ordinate is the exit-to-secondary-stream static pressure
ratio (P2/Ps). Results from four different secondary stream Mach numbers and two
different primary-to-secondary-stream area ratios are shown. The primary stream Mach
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Figure 9. Non-uniform inlet flow with constant area mixing.
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Figure 10. Supersonic constant-area two-stream mixing with friction solution using (4.1), shown as lines,
compared to experimental data, shown as symbols, from Dutton et al. (1982) for Mp = 2.50, cf = 0.005,
A3/A1 = 40 and γ = 7/5.

number was set to 2.5. Solid symbols and open symbols of the same shape denote two
different Reynolds numbers for the same area ratio and inlet Mach numbers.

The exit-to-secondary-stream static pressure ratio values were observed to increase
linearly with primary-stagnation-to-secondary-static pressure ratio. The predictions show
the same qualitative behaviour and are within ≈ 8 % error relative to the data. The
larger errors are likely due to an increase in the friction coefficient as the Reynolds
number is reduced. The direction of the error is also consistent with an increasing friction
coefficient, meaning that a larger cf would lower the predicted exit-to-secondary-stream
static pressure ratio. An additional test was reported for Mp = 4.0 and Ms = 2.0, which
also had maximum error of approximately 8 %. However, this was not included due to the
large ordinate and abscissa scale differences relative to the other data.
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Ff

Q̇

Flow Flow

3

1

2

Figure 11. Schematic of simultaneous friction and heat transfer.

The combination of simultaneous heat transfer and friction in a constant-area duct
provides a useful example of the solution when using multiple sub-elements. A schematic
of this problem is shown in figure 11. This problem was recently reduced by Ferrari
(2021a) to a single implicit algebraic equation, which can then be solved iteratively.
Ferrari’s solution for simultaneous heat transfer and friction provides a useful comparison
for the multiple sub-element solution method presented here.

Two separate cases are examined: one with a subsonic inlet, and the other with a
supersonic inlet. This comparison is shown in figure 12. The subsonic inlet case is shown
in figure 12(a), and the supersonic inlet case is shown in figure 12(b). The abscissa is
non-dimensionalized length along the duct, cf x/D. The ordinate is Mach number. The
overbar notation can be neglected since the flow is assumed uniform and the flux correction
factors are unity. There are multiple curves for various values of a non-dimensionalized
heat-transfer-to-friction ratio. The heat-transfer-to-friction ratio is defined as

Γ ≡

q
h̄m

o1

cf
L
D

, (6.1)

where the overall length of the duct is L, and the diameter is D. Note that the Γ = 0
case corresponds to Fanno flow. The open symbols in figure 12 are predictions using
the solution as described above, but with multiple sub-elements. Both the subsonic and
supersonic cases show a reduced non-dimensional length prior to choking with heat
transfer into the fluid. Further, increasing heat transfer reduces the non-dimensional length
at which choking occurs. This is consistent with the direction of increasing entropy.

The prediction using multiple sub-elements is consistent both qualitatively and
quantitatively with Ferrari’s exact solution for both subsonic and supersonic flows. The use
of multiple sub-elements to reproduce Ferrari’s solution is required due to the friction force
approximation. The subsonic and supersonic inlet cases both used 1000 sub-elements. This
shows that in the limit of many sub-elements, the result will converge to the appropriate
solution for the case of simultaneous friction and heat transfer. This result is consistent
with previous statements that the solution of the differential form is recovered in the limit
of infinitely many control volumes, so that any one volume is of infinitesimal size.

The combination of simultaneous linear diameter change and friction provides another
useful example of the solution when using multiple sub-elements. A schematic of this
problem is shown in figure 13. This problem was recently reduced by Ferrari (2021b)
to a single, implicit, algebraic equation, which can then be solved iteratively. Obtaining
this algebraic equation required restricting the diameter to vary linearly over the length of

957 A15-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

44
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.44


A.A. Oliva and S.C. Morris

0 0.4 0.8 1.2 1.6 2.0 2.4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0(a) (b)

M

Γ = 0.36

Γ = 0.22

Γ = 0.10

Γ = 0.01

Γ = 0

(4.1)

0 0.1 0.2 0.3 0.4 0.5
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Γ = 1.00

Γ = 0.55

Γ = 0.14

Γ = 0.02

Γ = 0

(4.1)

cf (x/D) cf (x/D)

Figure 12. Comparison of the multiple sub-element solution using (4.1), shown as symbols, and Ferrari’s
solution, shown using lines for various Γ values, for the case of simultaneous friction and heat transfer (Ferrari
2021a). (a) Subsonic flow with heat transfer and friction. (b) Supersonic flow with heat transfer and friction.

Flow

Ff

θ3

3

1

2

Flow

Figure 13. Schematic of simultaneous area change, with linear variation in diameter, and friction.

the nozzle or diffuser. This restriction means that it is valid only for conical geometries.
Ferrari’s solution provides a benchmark with which to compare the solution presented
here using multiple sub-elements.

Two separate cases are examined: one with a subsonic inlet, and the other with a
supersonic inlet. This comparison is shown in figure 14. The subsonic inlet case for a
linearly convergent diameter subsonic nozzle is shown in figure 14(a); the supersonic inlet
case for a linearly divergent diameter supersonic nozzle is shown in figure 14(b). The
abscissa is a non-dimensional length, cf L/D(x). The ordinate is Mach number. Again, the
overbar notation can be neglected since the flow is assumed uniform and the flux correction
factors are unity. Note that for the subsonic inlet case, the diameter is decreasing along
the length of the subsonic nozzle, so the flow direction is in the direction of increasing
cf L/D(x). However, for the supersonic inlet case, the diameter is increasing along the
length of the supersonic nozzle, so the flow direction is in the direction of decreasing
cf L/D(x). The subsonic inlet case shows an increasing Mach number in the flow direction,
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cf (L/D(x)) cf (L/D(x))

Figure 14. Comparison of the multiple sub-element solution using (4.1), shown as symbols, and Ferrari’s
solution, shown using a dashed line, for the case of simultaneous area change and friction (Ferrari 2021b). (a)
Subsonic flow with area change and friction. (b) Supersonic flow with area change and friction.

which is consistent with the decreasing area. The subsonic nozzle stops just short of a
Mach number of unity. The supersonic case shows an increasing Mach number along the
flow direction, which is consistent with an increasing area for supersonic flow.

The prediction using multiple sub-elements is consistent both qualitatively and
quantitatively with Ferrari’s exact solution for both the subsonic and supersonic inlet cases.
The use of multiple sub-elements to reproduce Ferrari’s solution is required due to both
the friction force approximation and the unknown wall pressure along the duct length.
The subsonic inlet case used 900 sub-elements, while the supersonic inlet case used 1200
sub-elements. These sub-element counts are identical to the number of elements used by
Ferrari when comparing the exact solution to numerical integration results. This shows
that in the limit of many sub-elements, the result will converge to the appropriate solution
in the case of simultaneous area change and friction. This is true regardless of the value of
ξ as long as ν = 0, though the rate of convergence varies with ξ . This result is consistent
with the previous result. More specifically, the solution of the differential form is recovered
in the limit of infinitely many control volumes, so that any one volume is of infinitesimal
size.

7. Conclusions

A closed-form algebraic solution for steady quasi-one-dimensional compressible flow with
area change, friction and heat transfer was presented. The solution was shown to be
the roots of a bi-quadratic polynomial that satisfies the integral form of the governing
equations.

The solution was shown to be consistent with various classical flows such as Fanno,
Rayleigh and isentropic, and flows with a normal shock. The solution accounted for
discontinuities without special consideration. Arbitrary non-uniform flows were handled
using simple scalar correction factors.
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Theoretical predictions were compared to experimental data for sudden expansion,
sudden contraction, and the mixing of two supersonic streams. It was shown that the
predictions were in good agreement with the data for each case over a wide range of inlet
conditions. This shows that the solution, with the appropriate assumptions, may be applied
to a wide range of engineering applications and provide accurate results.

The use of multiple sub-elements was shown to reproduce exact solutions for
simultaneous heat transfer with friction and area change with friction.

The use of flux correction factors provides a novel and convenient approach for
multiple inlet and outlet streams. These correction factors are capable of accommodating
an arbitrary number of streams provided that the profiles are integrable. Although the
derivation of these factors assumed a constant γ over the control surface, it can be
expanded easily to allow for non-constant γ over the control surface. This may be useful
when combining different gases for combustion.

The solution presented might be expanded using the same basic methodology presented
here to include additional effects beyond what is shown in this work. These include,
but are not limited to, additional forces, flow injection or extraction, prescribed chemical
reactions, variable wall temperature, and variable friction coefficient. Such new formations
might result in explicit closed-form results as derived in this paper, or in some cases could
result in implicit expressions that require iteration to solve for M2.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Andrew A. Oliva https://orcid.org/0000-0002-8796-2530.

Appendix A. Isentropic approximation for compressible flow

This appendix provides an approximation for isentropic approximation of a compressible
flow. The change in entropy for a gas going from inlet to outlet can be written as (John &
Keith 2006)

Δs
R

= γ

γ − 1
ln
(

To2

To1

)
− ln

(
Po2

Po1

)
, (A1)

where Δs/R is the non-dimensional change in entropy normalized by the specific
gas constant, Po2/Po1 is the stagnation pressure ratio, and To2/To1 is the stagnation
temperature ratio. Applying an adiabatic assumption, as part of the requirement for
isentropic flow, yields

Δs
R

= ln
(

Po1

Po2

)
. (A2)

Mass conservation is then used to obtain an expression that contains A2/A1, M2 and M1.
This gives

Δs
R

= ln

(
A2

A1

M2

M1

(
f2
f1

)−(γ+1)/2(γ−1)
)

. (A3)

The resulting equation is then separated into two components:

Δs
R

= ln
(

A2

A1

M2

M1

)
− γ + 1

2(γ − 1)
ln
(

f2
f1

)
. (A4)

The argument of the first natural logarithm in (A4) is near unity for constant density flow.
The argument of the second natural logarithm is near unity when M2 ≈ M1. The fact that
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Steady, quasi-one-dimensional, internal compressible flow

both natural logarithm arguments may be close to unity, for some range of Mach numbers,
provides a convenient reference point with which to create an approximation.

Many approximations of ln(1 + ε) exist for small ε, for example, Taylor series about
ε = 0. The method used here is similar to that shown by Khattri (2009). The term ln(1 + ε)

may be expressed as an integral from 1 to 1 + ε, i.e.

ln(1 + ε) =
∫ 1+ε

1

1
x

dx, (A5)

where x is a dummy variable of integration. This integral may then be approximated using
the midpoint rule as (Moin 2010)

∫ 1+ε

1

1
x

dx ≈ ε

1 + ε

2

+ 1
12

⎛
⎜⎝ ε

1 + ε

2

⎞
⎟⎠

3

︸ ︷︷ ︸
leading-order error

, (A6)

where the first term on the right-hand side of (A6) is the approximation, and the second
term represents the leading-order error. This approximation may now be applied to both
natural logarithm terms in (A4).

The entropy change from inlet to outlet of a compressible flow is then approximated as

Δs
R

≈ 2

A2

A1

M2

M1
− 1

A2

A1

M2

M1
+ 1

− γ + 1
γ − 1

f2
f1

− 1

f2
f1

+ 1
. (A7)

This approximation is valid for any calorically perfect ideal gas with adiabatic walls.
Applying the reversible assumption, so that Δs = 0, to the previous equation gives

A2

A1

M2s

M1
− 1

A2

A1

M2s

M1
+ 1

− γ + 1
2(γ − 1)

f2s

f1
− 1

f2s

f1
+ 1

≈ 0. (A8)

This equation may be rearranged as(
A2

A1

M2s

M1
− 1

)(
f2s

f1
+ 1

)
− γ + 1

2(γ − 1)

(
f2s

f1
− 1

)(
A2

A1

M2s

M1
+ 1

)
≈ 0. (A9)

Substituting the definition of f2s, expanding, and grouping terms yields

c3M3
2s + c2M2

2s + c1M2s + c0 ≈ 0, (A10)
where the polynomial coefficients are

c3 ≡ γ − 1
2

A2

A1

(
1 − γ + 1

2(γ − 1)

)
,

c2 ≡ −M1
γ − 1

2

(
1 + γ + 1

2(γ − 1)

)
,

c1 ≡ A2

A1

((
1 + γ + 1

2(γ − 1)

)
(1 + f1) − γ + 1

γ − 1

)
,

c0 ≡ −M1

(
(1 + f1)

(
1 + γ + 1

2(γ − 1)

)
− f1

γ + 1
γ − 1

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A11)
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The roots of the resulting cubic polynomial are approximations of M2s for isentropic
flow of any calorically perfect ideal gas. Further, if the discriminant is positive, then
there are three real roots, though not necessarily positive, that exist. If the discriminant is
negative, then there are one real root and two complex conjugate roots (Zwillinger 2018).
These roots are subject to the additional requirements described in § 4. Specifically, M2s
must be real and positive.
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