THE SINGULAR CONGRUENCE AND THE MAXIMAL QUOTIENT SEMIGROUP

ву F. R. McMORRIS

It is a well known result (see [4, p. 108]) that if R is a ring and Q(R) its maximal right quotient ring, then Q(R) is (von Neumann) regular if and only if every large right ideal of R is dense. This condition is equivalent to saying that the singular ideal of R is zero. In this note we show that the condition loses its magic in the theory of semigroups.

Throughout we let S denote a semigroup with 0 and 1. A right ideal D is *dense* if and only if for all $x_1, x_2, x \in S$ with $x_1 \neq x_2$, there exists $d \in D$ such that $x_1 d \neq x_2 d$ and $xd \in D$. A right ideal L is *large* if and only if $L \cap I \neq 0$ for every nonzero right ideal I. A dense right ideal is easily seen to be large. Set $J(S) = \{x : x^r \text{ is large}\}$ where $x^r = \{s : xs = 0\}$. It can be shown that J(S) is an ideal (two-sided) of S, and it is called the *singular ideal* of S.

A semigroup T containing S as a subsemigroup is called a right quotient semigroup of S if for every t_1 , t_2 , $t \in T$ with $t_1 \neq t_2$, there exists $s \in S$ such that $t_1s \neq t_2s$ and $ts \in S$. Let S^{Δ} denote the set of all dense right ideals of S, and let $\text{Hom}_S(D, S)$ denote the set of all right S-homomorphisms of $D \in S^{\Delta}$ into S. Set $Q(S) = \bigcup_{D \in S^{\Delta}} \text{Hom}_S(D, S)$, where we set $q_1 = q_2(q_1, q_2 \in Q(S))$ if and only if q_1 agrees with q_2 on some dense right ideal. It was shown in [5] that Q(S) is the maximal right quotient semigroup of S. The embedding of S into Q(S) is done by considering an element of S as a left multiplication on S.

We need one last definition. S is *regular* if and only if for each $a \in S$, there exists $b \in S$ such that aba=a. It is easy to see that if S is regular, then for each $a \in S$ there exists $x \in S$ such that axa=a and xax=x.

The following theorem which we state without proof is due to Johnson [3].

THEOREM. If Q(S) is regular, then J(S)=0.

Define the relation ψ by $a\psi b$ if and only if ax = bx for all x in some large right ideal. ψ is called the *singular congruence* of S.

PROPOSITION. ψ is a congruence relation.

Proof. ψ is clearly an equivalence relation so that we only need show that ψ is left and right compatible [1, p. 16].

Let $a\psi b$ and $x \in S$. Assume as=bs for all $s \in L$, where L is large. Consider $x^{-1}L = \{y \in S : xy \in L\}$. $x^{-1}L$ is large and axy=bxy for all $y \in x^{-1}L$. Hence $ax\psi bx$ and ψ is right compatible. Left compatibility is obvious.

PROPOSITION. $\psi = i$ (the identity relation) if and only if every large right ideal is dense.

Proof. The "if" part is clear from the definition of a dense right ideal.

Assume $\psi = i$ and let L be a large right ideal. Let $x_1 \neq x_2$, $x \in S$ and consider $x^{-1}L$. Now $x^{-1}L$ is large which implies that $L^* = x^{-1}L \cap L$ is also large. Since $\psi = i$, there exists $a \in L^* \subseteq L$ such that $x_1a \neq x_2a$. Also $a \in L^* \subseteq x^{-1}L$ implies that $xa \in L$. Thus L is dense.

If $\psi = i$, then J(S) = 0 but the converse is not true as will be seen below. The following examples also show that $\psi = i$ is neither a necessary nor sufficient condition for Q(S) to be regular.

EXAMPLE 1. Let S be a semilattice of two groups with 0 and 1 adjoined (see [1, p. 128]). Thus $S = G_{\alpha} \cup G_{\beta} \cup 0 \cup 1$. Assume $\alpha < \beta$. In [6] we showed that Q(S) is regular. But $\psi \neq i$ since the ideal $L = S \setminus 1$ is large but not dense.

EXAMPLE 2. Let T be a Baer-Levi semigroup as defined in [2, p. 82]. Thus T is a right cancellative, right simple semigroup without idempotents. Adjoin a 0 and 1, and set $S=T \cup 0 \cup 1$.

The only nonzero right ideal of S is $D=T \cup 0$ and thus D is the only proper large right ideal of S. We assert that D is dense. It suffices to show that if $s_1, s_2 \in S$ with $s_1 \neq s_2$, then there exists $d \in D$ such that $s_1 d \neq s_2 d$. The only question arises when $s_1 = 1$ and $s_2 \in T$. By Lemma 8.4 of [2], the equation xy = y holds for no elements $x, y \in T$. Thus $s_2 d \neq d = 1d$ for $d \in T$. Therefore D is dense and $\psi = i$.

Now let $a \in T$. We claim that a is not a regular element of Q(S). Assume it is. Then there exists $q \in \text{Hom}_S(D, S)$ such that aqa=a and qaq=q (recall that a is considered as a left multiplication). Since qaq agrees with q on D, we have (qaq)(a)=q(a). But (qaq)(a)=(qa)(q(a))=q(aq(a))=q(a)q(a). Therefore q(a) is idempotent. Since T contains no idempotents, we must have q(a)=0 or q(a)=1.

If q(a)=0, then aqa=a implies that $0=aq(a)a=(aqa)(a)=a(a)=a^2$ which is a contradiction. Assume q(a)=1. Since T is right simple, aT=T so that there exists $y \in T$ such that ay=a. Hence y=1y=q(a)y=q(ay)=q(a)=1. This again is a contradiction. Therefore Q(S) is not a regular semigroup.

References

1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Amer. Math. Soc. Surveys, No. 7, Vol. I, Providence, R.I., 1961.

2. —, The algebraic theory of semigroups, Amer. Math. Soc. Surveys, No. 7, Vol. II, Providence, R.I., 1967.

3. R. E. Johnson, *The extended centralizer of a ring over a module*, Proc. Amer. Math. Soc. 2 (1951), 891–895.

4. J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966.

5. F. R. McMorris, The maximal quotient semigroup, Semigroup Forum (to appear).

https://doi.org/10.4153/CMB-1972-056-8 Published online by Cambridge University Press

1972] THE SINGULAR CONGRUENCE

6. —, The quotient semigroup of a semigroup that is a semilattice of groups, Glasgow Math. J. 12, (1971), 18–23.

BOWLING GREEN STATE UNIVERSITY, BOWLING GREEN, OHIO