https://doi.org/10.1017/jfm.2019.1049 Published online by Cambridge University Press

PN

@ CrossMark

J. Fluid Mech. (2020), vol. 886, A5. © The Author(s), 2020. 886 A5-1
Published by Cambridge University Press

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution,

and reproduction in any medium, provided the original work is properly cited.

doi:10.1017/jfm.2019.1049

Dispersive entrainment into gravity currents in
porous media

Chunendra K. Sahu'*{ and Jerome A. Neufeld'*?

IBP Institute for Multiphase Flow, University of Cambridge, Madingley Rise, Cambridge CB3 0EZ, UK

2Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Madingley Rise,
Cambridge CB3 0EZ, UK

3Institute of Theoretical Geophysics, Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

(Received 12 July 2019; revised 11 December 2019; accepted 12 December 2019)

The effects of dispersion acting on gravity currents propagating through porous media
are considered theoretically and experimentally. We exploit the large aspect ratio of
these currents to formulate a depth-averaged model of the evolution of the mass
and buoyancy. Dispersion, acting predominantly at the interface between the current
and the ambient, is velocity dependent and acts to entrain fluid into the gravity
current, in direct analogy to turbulent mixing. Here, we show that when the gravity
current is fed by a constant buoyancy and mass flux the buoyancy of the current is
self-similar and recovers the classical solution for gravity currents in porous media.
In contrast, the profile and the depth-averaged concentration of the current evolve
in a non-self-similar manner. The total volume of the current increases with time as
'3 due to this dispersive entrainment. We test our theoretical predictions using a
suite of laboratory experiments in which the evolution of the concentration within
the current was mapped using a dye-attenuation technique. These experimental results
show good agreement with the early-time limits of our theoretical model, and in
particular accurately predict the evolution of the depth-averaged concentration profile.
These results suggest that mixing within porous media may be modelled using an
effective dispersive entrainment, the magnitude of which may be set by the underlying
structure of the porous medium.
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1. Introduction

Gravity currents are primarily horizontal flows driven by gravity acting on the
density difference between fluids. In porous media, gravity currents describe the
behaviour of flows relevant to geological carbon sequestration, geothermal energy,
groundwater flows and the motion of contaminants in the subsurface, for example.
The behaviour of gravity currents in porous media has been studied extensively, both
experimentally and theoretically. The majority of these studies consider long, thin
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currents, propagating through homogeneous porous media with no mixing between
the fluids. However, due to the complexity of flow within realistic geological media,
the distribution of fluids may become dispersed by heterogeneities at a range of scales
and hence the behaviour of these buoyancy-driven flows may differ significantly from
idealized models. It is therefore important to incorporate the mixing between fluids
driven by the complexity of the pore space and natural heterogeneities within the
rocks in models of gravity currents in porous media.

Unconfined gravity currents in porous media have been studied theoretically and
experimentally by Huppert & Woods (1995) for rectilinear geometries and by Lyle
et al. (2005) for the axisymmetric case. These models are based on the assumption
that (i) the gravity currents are long and thin so that the vertical velocity can be
neglected, (ii) the background flow is negligible when the ambient is much deeper
than the current and (iii) that there is no mixing between the injected and ambient
fluids, commonly referred to as the sharp-interface assumption. In both geometries
the gravity currents exhibit a self-similar behaviour as described previously by
Pattle (1959). The propagation of gravity currents in porous media has been studied
further with additional geometrical complications. For example, gravity currents on an
inclined surface have been studied by Vella & Huppert (2006) and Gunn & Woods
(2011), or in a vertically confined medium by Nordbotten, Celia & Bachu (2005),
MacMinn et al. (2012), Pegler, Huppert & Neufeld (2014) and Zheng et al. (2015).
Moreover, by relaxing the restriction of a homogeneous medium, Pritchard, Woods
& Hogg (2001), Goda & Sato (2011) and Sahu & Flynn (2017) have investigated
gravity currents in layered porous media of differing permeabilities, while Zheng,
Christov & Stone (2014) have investigated flow in horizontally heterogeneous
medium. Formulations for modelling gravity currents in a highly heterogeneous
medium have been presented by Anderson, McLaughlin & Miller (2003, 2004), who
describe homogenization methods for the averaging of medium properties. Apart from
considering various geometries, the effects of non-uniform fluid properties in porous
gravity currents have also been investigated. Some examples include: two-layer
or stratified gravity currents by Woods & Mason (2000) and Pegler, Huppert &
Neufeld (2016), respectively; vaporizing gravity currents by Woods & Mason (1998);
and non-Newtonian gravity currents in porous media by Ciriello et al. (2016) and
Lauriola et al. (2018).

For miscible fluids in porous medium, mass transfer of solute occurs either by
molecular diffusion if the system is static, or by hydrodynamic dispersion if there
is flow (Delgado 2007; Woods 2015). However, the effects of mixing between the
gravity current and ambient fluid remain largely unexplored despite the extensive
literature on porous medium gravity currents outlined above. Some examples, where
mass transfer across the interface during a density-driven flow have been explored,
include convective dissolution which occurs during geological carbon sequestration
(Neufeld et al. 2010; MacMinn et al. 2012; Guo et al. 2016) and the intrusion of sea
water into coastal aquifers (Huyakorn et al. 1987; Dentz et al. 2006; Pastar & Dagan
2007). Solute transport obeys a Fickian model of dispersion when the medium is
homogeneous. However, given the heterogeneous nature of aquifers, mixing of solute
with the ambient generally occurs in a non-Fickian regime. A significant amount of
work has been done on modelling solute transport in heterogeneous, three-dimensional
media using stochastic methods, which have proved to be a helpful tool in capturing
the anomalies in solute transport in more realistic field problems (Carrera 1993;
Fleurant & van der Lee 2001; Verwoerd 2007; Fiori et al. 2015).

An investigation of mixing in miscible gravity currents that more directly addresses
mixing between fluids is the work of Szulczewski & Juanes (2013). In that study
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the authors considered mixing due to molecular diffusion between dense and light
fluids within a confined porous layer. They investigated the case of a constant volume
release and found the time-dependent evolution of the interface and concentration.
They identify five regimes: early diffusion, S slumping, straight-line slumping, Taylor
slumping and late diffusion. They find that diffusion is predominant in the early and
late-time regimes, whereas in the S-slumping and straight-line-slumping regimes the
interface remains sharp. However, in the Taylor-slumping regime, they show that
the mixing is enhanced through Taylor dispersion. Their study, however, did not
consider the effects of enhanced mixing through dispersion driven by the flow. It
may be anticipated that at early and late times, where the velocity is small, mixing
is diffusive, but that at intermediate times mixing is enhanced through dispersion.
Furthermore, it may be anticipated that the mixing in the unconfined limit may differ
substantially from that found in confined aquifers.

The prevalence of dispersion in miscible gravity currents is apparent in previous
work, for example in flows through homogeneous porous media by Sahu & Flynn
(2015) and Pegler er al. (2017) — see their figures 6 and 12, respectively, and
the associated discussions. In multilayered porous media this mixing may be greatly
enhanced as observed in the laboratory experiments of Huppert, Neufeld & Strandkvist
(2013, figure 7) and Sahu & Flynn (2015, figure 4). In those studies the volume of
the current became larger than that anticipated by the fluid injected alone. In practice,
most geological aquifers are highly heterogeneous (Alpay 1972) and the fluids are not
entirely immiscible (Enick & Klara 1990), so it may be anticipated that the effects
of mixing during flow may be significant.

In this paper we present a model of mixing in porous medium gravity currents,
considering mechanical dispersion as the primary source of entrainment. We consider
the case of a continuous, constant volume flux injection and begin by presenting a
general mathematical model for dispersive entrainment in gravity currents in porous
media in §2. In §3 we demonstrate the character of the flow and mixing through
mathematical analysis. In §4 we present laboratory exteriments and explain how
we determine the concentration and hence mixing rates from laboratory images. In
§4.3 we present a comparison between the mathematical model and our experimental
results. In §5 we compare the findings from the current model with the previous
models and also describe how the current entrainment model may be applied more
broadly to heterogeneous porous media. Finally, in § 6 we conclude by summarizing
the current work and identifying future problems of interest.

2. Mathematical model of flow and dispersive entrainment
2.1. Governing equations

We consider the injection of a fluid of initial concentration Cy, and hence density pg,
at fixed volume flux ¢ into a large, horizontal porous medium of uniform porosity ¢
and permeability k that is initially saturated with an ambient fluid of concentration
C,=0 and density p,. In general, flow through the porous medium is described by a
statement of mass conservation, Darcy’s law, a statement of conservation of solute as
expressed by an advection—diffusion relationship, and an equation of state describing
the dependence of the density on concentration,

V.u=0, 2.1)

k .
u= —;(Vp + pg2), (2.2)
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%§+u-VC=V-waVC] (2.3)
px, 1) = pall1 + B(C(x, 1) — Co)]. (2.4)

Here, © is the dynamic viscosity, p is pressure, x = (x, z) represents the horizontal
and vertical coordinates, u = (u, w) is the velocity vector and D(u) is, in general, the
dispersion coefficient of concentration and B is the coefficient of solute contraction.
This general model for buoyancy-driven flow presents a challenge for numerical
simulations over very large lateral length scales. Our aim is therefore to construct a
reduced model of the average properties within the current using parameterizations,
where appropriate, of the vertical structure. We focus on cases where the depth of
the medium is large, and hence the flow of the ambient fluid may be neglected (the
so-called unconfined limit). Further, we consider cases where the lateral extent of the
current is much greater than the vertical extent. In this limit, scaling analysis of (2.1)—
(2.3) suggests that for long, thin currents |w| < |u| and the pressure is hydrostatic

h
p(x,z,1) =py + p.g(H — 2) + p.gB / [Cx,z,0) —Cpldz, (0<z<h). (2.5

Here, w and u are the vertical and horizontal velocities of the current and A(x, ) is
the gravity current height, which is identified as the interface between the current
and ambient where C(x, z=h, t) &~ C,, and py is the pressure at a reference height
z=H > h. Since the pressure is hydrostatic the horizontal velocity of the current is

ko kpa a [ kp.gB dlh(C — C,
e K0 __kpugh / (C— ) de| o KPP IRCE=CIT 5 )
W ox u ax Jo dax
where the depth-averaged concentration
_ 1 [
Clx,n=C,+ 7 / [C(x,z,t) —C,]dz. 2.7
0

Here, we make an ansatz that the concentration within the current is uniform with
depth, and only varies over a mixing region of width § at z = h. This assumption
may be generalized to a self-symmetric concentration profile throughout the length of
the current — see for example Johnson & Hogg (2013). In effect, we neglect vertical
variations in the concentration throughout the current, except at the edge as depicted
in figure 1, and model only the evolution of the bulk concentration.

Considering that mass transfer due to concentration gradient occurs at the gravity
current edge through dispersion, the flux of concentration through z =% must be zero
so that a kinematic condition describing the surface of the current may be written as

¢C| 8th( Ol o wO)| p2<
O] = = (w _p=
"ot "ox " Tz
It is worth emphasizing that, as defined by the concentration contour C(h, f), growth
of the current may be driven by both advection and diffusive or dispersive mixing.
The evolution of the bulk concentration is therefore constrained by a depth integral
of (2.3) along with the kinematic condition (2.8) and the velocity model (2.6),

d(hC » _d(hC
(h0) _kpugh 3 [ 0O _
at no ox dx

(2.8)

h

(2.9)
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FIGURE 1. Schematic of a gravity current in a porous medium indicating how dispersion
may be incorporated through an effective entrainment. The red curve depicts a typical
vertical concentration profile throughout the current.

This equation expresses conservation of solute, or buoyancy, within the current. Depth
integration of a statement of conservation of mass, equation (2.1), along with the
kinematic condition

¢8h n ah + D oaC
g =t — i
ot 0x cC-C, 0z

(2.10)

9
h
provides a second equation that expresses conservation of mass within the current

dh k,oagﬂa<h8(hC)> D aC

— — = =Ww,. 2.11
¢8t Mmoo ox ox " ( )

h

T C-cC, iz

Here, mixing across the concentration boundary layer at the edge of the current
is modelled by an effective diffusive or dispersive entrainment w,. For dispersive
processes, we therefore approximate the effective entrainment of ambient fluid over a
small length scale & to be

D,
W, ~ % ~ au (2.12)

for processes in which Péclet number,
Pe=au/D, > 1, (2.13)

such that dispersion dominates (Delgado 2007; Woods 2015). Here D,, is the
molecular diffusivity, « = &/6 ~ O(1) is the effective entrainment coefficient and &
and & are representative of the pore scale. This dimensionless transverse dispersivity
plays a role that is qualitatively similar to the entrainment coefficient in turbulent
plumes and gravity currents (Morton, Taylor & Turner 1956; Johnson & Hogg 2013).
Here, for simplicity, we assume that the non-dimensional transverse dispersivity « &
constant, and constrain the value of this entrainment constant through experimental
measurements in §4.3. It is important to note that we neglect the longitudinal, or
horizontal, entrainment in our model and leave its inclusion for a future study.
Equations (2.9) and (2.11) express the local conservation of buoyancy and mass
respectively. At the origin, x =0, mass and concentration are injected at rates

q= [uh]x:()a and q(CO - Ca) = [M(E - Ca)h]x:(h (214a7b)
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respectively, where ¢ is the volume flux into the current and C, the initial
concentration. Note that (2.14a,b) can be used to show that the concentration at
the origin is fixed at the input concentration,

C(0, 1) =Co. (2.15)
Globally, concentration, or equivalently buoyancy, is conserved within the current
N
gi(Co—Co) = ¢ / (C—Cohdx, (2.16)
0
where xy(#) is the extent of the gravity current. Equation (2.16) together with (2.14)
and (2.9) imply that there is no buoyancy flux through the nose of the current,
[u(C — C)hl,, =0, (2.17)
which we identify as the location where

C(xy, 1) =C,. (2.18)

2.2. Non-dimensional governing equations

The presence of entrainment implies that (2.9) and (2.11) along with boundary
conditions (2.14)—(2.18) may be made non-dimensional, with dimensionless variables
defined as

. C-c
- , (2.194)
Co—C,
. akgB(Co—C,
hzwh’ (2.19b)
qU
2kgB(Cy — C,
s ¥ RePCo—Co) (2.19¢)
qV
. ad [kgB(Cy—C)H]?
=L [gﬂ(")} ‘. (2.19d)
®q v

Here, concentration is made non-dimensional with the concentration difference
between the input and ambient fluids (Cy — C,). Length and time scales are made
fully non-dimensional with the length, height and time scales over which dispersive
entrainment becomes comparable with the buoyancy velocity. On implementing these
forms, the governing equations, equations (2.9) and (2.11), therefore become

ARC)  d |.~d(hC

(A)——A hC (A) =0, (2.20)
ot 0x 0x

dh 9 |~0(hC d(hC

Jr  0x 0x 0x

respectively, where we have used the characteristic local gravity current velocity & =

—hd(hC) /90X to express the local dispersive entrainment. These governing equations
are solved subject to the boundary conditions

<2 d(hC
_he (A):
0x

1 (=0, (2.22a)
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A

C=1 (=0), (2.22b)
2 d(hC
—hC (A):zo G =3, (2.22¢)
ox
C=0 (=21, (2.22d)

where Xy(7) is the dimensionless length of the gravity current. Alternatively, we may
substitute one of (2.22a,b) with

XN
/ hCdx =1, (2.23)
0
which expresses global conservation of solute (or buoyancy).

3. Fixed mass and buoyancy flux with dispersive entrainment

We begin by considering the case, outlined in §2.2, in which a constant mass
and buoyancy flux is injected into a porous medium to form a long, thin gravity
current. Dispersion between the injected and ambient fluids acts to mix the fluids
across the interface, thus effectively entraining mass into the spreading current. The
incorporation of mixing, through dispersive entrainment, introduces a new length
scale in the physical problem, so that the self-similar spreading found by previous
authors (Huppert & Woods 1995; Lyle et al. 2005) is not an obvious outcome. We
therefore first look for direct numerical solutions to equations (2.20)—(2.22).

3.1. Dimensionless numerical solutions

To investigate the mathematical consequences of the model of dispersive entrainment,
we solve (2.20) and (2.21) subject to (2.22a-d) numerically. We use a flux-
conservative, Crank—Nicholson finite difference scheme to solve (2.20) with an
upwinding scheme implemented to solve (2.21). Boundary conditions (2.22a—d) are
implemented at X = L > 3y(1), but we find that the solutions naturally have compact
support, as described in the following sections, and hence boundary conditions
(2.22a—d) are satisfied implicitly at X = Xy(7) in our numerical solutions. Solutions
are found on a fixed grid of size % = [0, L], with spatially uniform discretization. In
all cases we simulate the propagation of the current until %y ~ 0.9L.

The numerical results obtained from this dimensionless analysis are shown in
figure 2. In figure 2(a) the product of height and concentration, which is the buoyancy

b=hC, 3.1)
is plotted as a function of X/Xy for times 7 = [1072, 10!, 1, 10!, 10*]. The results
demonstrate that b exhibits a self-similar profile for all times, a point we return to
in §3.2. Figure 2(b) shows the length scale of the current, xy(f), and the height, or
equivalently buoyancy, at the origin, ho or by, as a function of time. We find that
iy ~ 3 and hy = by ~ 7'/, values in keeping with the self-similar description of a
gravity current in a porous medium without mixing, as described in the analysis of
Huppert & Woods (1995).

3.2. Modified similarity solution

Motivated by the numerical solutions presented in § 3.1 we first look for self-similar
solutions describing the evolution of the buoyancy within the current, returning to their
implications for the height and concentration profiles throughout. We first note that
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FIGURE 2. Numerical solutions of (2. 20) and (2.21) using a finite difference scheme
: (a) dimensionless buoyancy, b = hC, versus dimensionless length, X, at various

d1mens1onless times, 7, corresponding to (2.19), and (b) h and b at 3 =0 and the nose
location, Xy, as functions of 7.

(2.20) may be written in terms of the buoyancy, b=hC, as

ab o [.0b
A T A bﬁ - 0, (32)
Jr  ox ox

subject to

b
b—
0x

XN
=1, b(y) =0, / bdx =1, (3.3a—c)
0

=0

where we have used (2.22a) and (2.23) to write (3.3a) and (3.3c) respectively, and
likewise used the assumption that il(;CN) is finite to rewrite (2.22d) as (3.3b). It is
readily apparent that (3.2) and (3.3a—c) satisfy the formulation for a sharp-interface
gravity current in a porous medium (Huppert & Woods 1995), and hence we recover
the classical result that the buoyancy is self-similar. In detail we find that

A

b=1"F(n).  where 0= € [0, ny] (3.4a.b)
and f(n) satisfies
1f 2 df d fdf (3.5)
3 377d77 Cdp \Udn )’ '
subject to
df NN
—f—| =1, f(yy)=0 and / fdn=1. (3.6a—c)
dn 0 0

Equation (3.5) is solved using a shooting method (using the Matlab routine ode45)
and the result is shown in figure 3, where f(0) =1.296 and ny = 1.482.

This result anticipates the conclusion that in the absence of entrainment, where Cc=1

everywhere and hence h=b, the classical, self-similar model of a gravity current in
a porous medium is recovered. Furthermore this result suggests that at all times we
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== fob/bo versus UNJE/)ACN
0 0.5 1.0

n

FIGURE 3. Numerical solution of (3.5) showing the self-similar buoyancy, or solute mass,
of the gravity current. We find that fo =f(n =0) = 1.296 and ny =1.482. The red dashed
curve shows the numerical result of figure 2(a) normalized using fy and ny.

may expect this self-similar behaviour for buoyancy, which drives the propagation of
the dispersively entraining gravity current.

In contrast, dispersive entrainment dilutes the concentration within the current
and adds to its apparent mass, and hence we may anticipate that the height and
concentration profiles will not evolve in a self-similar manner. However, noting that

C(G=0)=1 and hence h(0,7) =hb(0,7) ~ 73, we write
h=1Pgm, 1), 3.7)
so that (2.21) may be rewritten as

dg 1[ g 2ndg  dgdf d&*f 1 df (3.8)
a1 3 30n ondpy gdn2 23 dn’ '

which is subject to

80,0)=f, and g(n,0)=f(n). (3.9a,b)

Given the profile of the buoyancy, f(n), which can be independently determined as
shown previously, we see that the profile of the current, as described by g(n, ), is
governed by a purely hyperbolic (i.e. advective) equation driven by entrainment. We
therefore use an upwinding discretization for dg/dn from n = 0, where (3.9a) is
applied, to n = ny with the same number of grid points in between as used for f
in (3.5). Since f(n) is determined independently, the values of f and f” at each p
used in the numerical solution for g(n) are obtained from the solution presented in
figure 3. Given the 7 term in the denominator of (3.8), we assume that the initial
condition (3.9b) is valid at an early time 7 = 107* and use a time step of 107 to

solve for dg/dt7 explicitly, marching forward in 7. Results for g and C are shown in
figure 4 for various values of 7, where the concentration C is obtained from

A~ f()
C(n, 1) = —.
.9 gn, 0

The shock solution obtained at the nose in figure 4(a) is due to the purely advective
(or hyperbolic) nature of (3.8). Furthermore, the appearance of the shock is a

(3.10)
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(@) (b) 10
0.8
1.0
= 2 06
S < i
S0 ~—
Q
05 0.4
- —- Sharp interface 0.2
— Dispersive interface ~
0 0.5 1.0 1.5 0 0.5 1.0 1.5
n n

FIGURE 4. Numerical results obtained using an upwinding finite difference scheme for
dimensionless height and concentration from (3.8) and (3.10), respectively. The dashed
curve in panel (a) shows the sharp-interface solution derived by Huppert & Woods (1995)
which also represents 7 = O for the dispersive model. The solution obtained from the
current, dispersive model is shown for 7 =[107%, 1073, 1072, 10~", 1] both for g and C,
with arrows indicating increasing 7.

natural consequence of neglecting horizontal dispersion in our mathematical model.
Entrainment through dispersion acts to thicken the current, ultimately leading to
a large, blunt nose (see figure 4a) and an almost linear profile of the average
concentration (see figure 4b). It is observed in figure 4(a) that at late times the
height profile has a positive slope, which signifies that the volume accumulated
through vertical entrainment becomes greater than the volume advected horizontally.
However, the combination of the height and concentration profiles, in the form of the
buoyancy (see equation (2.6)), still drives the net flow from the origin to the nose of
the current, and therefore the positive slope of the height profile does not result into
a backflow.

Due to the continuous entrainment from the ambient, the total volume of the current
V. increases at a rate in excess of the injected volume, gf. The total dimensionless
volume of the gravity current, V.=¢V, /(q?), can therefore be written as

. t XN 3 R
g9 (‘1 +/ ", dx> di=1+ g, (3.11)
gt Jo \ ¢ 0 4

where f; = 1.296 as presented in figure 3. The last term appears by combining
(2.6), (2.12) and (3.4) with the similarity solution presented in figure 3. Equation
(3.11) shows that the rate of entrainment is self-similar and hence the total volume
of the gravity current can be predicted analytically as a function of dimensionless
time 7. In dimensional form, equation (3.11) reads

Ve=—+ (3.12)
%

qt 30[ﬁ) quﬁ(co_cu) 23 4/3
~g T agn T

This shows that when the entrainment coefficient « =0, V.= gt/¢, which reproduces
the limiting case of the sharp-interface model. Furthermore, considering the additional
volume that has entrained, a mean solute concentration C., or reduced gravity,
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normalized by Cy — C,, at any 7 can be derived by buoyancy conservation as

. C.—C, W C—C, 4
C.= —/ (3.13)
0

‘T Co—C, Sy Co—C. o 4+3¢f1A

Thus, we find that the mean concentration of the contaminated region described by
(3.13) is self-similar, which can be written in dimensional form as

4(Co — Co)(9pgv)'

Co=Cat 4(pqv)' + 3¢foalkgB(Co — CHPAL3

(3.14)

4. Experimental investigation

A series of laboratory experiments were performed in which the spatial and
temporal distributions of concentration were measured so as to assess the impact
of dispersive mixing on the structure and dynamics of a gravity current within a
porous medium. These measurements were made possible by carefully calibrating
the concentration of dye, and hence colour intensity, within the experimental images.
From these measurements we obtained the structure of the concentration field and
were therefore able to assess the importance of dispersive mixing in the resulting
gravity current.

4.1. Experimental set-up and calibration curve

The experiments were conducted in a transparent rectangular tank of size 200 x 20 x
1 cm®. The tank was filled with d, =3.1 £0.2 mm diameter ballotini and tap water
of density p, =0.998 g cm~>. The porosity of the tank was measured and found to
be ¢ =0.41£0.01, which is slightly higher than the value for randomly close-packed
beads (¢ =0.37) since the width of the tank is comparable with the diameter of the
beads and therefore inhibits the packing. The permeability was estimated using the
Kozeny—Carman relation

d,% @

k=L T — ~1.174+0.30 x 107 cm?, 4.1)
180 (1 — ¢)2

which compares favourably to the values k = 1.11 4 0.17 x 10~* cm? based on the
rate of propagation of the gravity currents described below. Salt water of fixed salt
and dye concentration was injected at the bottom-left corner of the tank at a constant
rate during the experiments using a peristaltic pump. The water level in the tank
was kept constant throughout the experiments by an overflow port at the top of the
tank opposite the input port, as shown in the schematic of the experimental set-up in
figure 5.

We used a Nikon D5300 DSLR camera, with a resolution of 6000 x 4000 pixels,
to capture images of the experiments, with images recorded directly to a computer
every 60 s. To ensure uniform illumination, the experimental tank was backlit by a
LED light panel with the same dimensions as the tank.

Calibration experiments were performed to determine the functional relationship
between the dye concentration and image intensity. For these experiments, the
tank was uniformly saturated with a red dye of concentration C,. A total of 10
concentration values were used to construct the calibration curve,

C, =10, 0.02,0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 1.00, 1.20] £0.01 g L™, 4.2)
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FIGURE 5. Schematic of the experimental set-up.
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FIGURE 6. Calibration curve: dye concentration versus image intensity, with C;, =+
0.01 g L7

with concentration spacing set to optimize camera sensitivity and fully resolve
the calibration curve. The camera settings used were aperture f/10, shutter speed
1/2500 s and only the green channel of the image was used for processing. In
detail, the calibration curve, shown in figure 6, was constructed by subtracting each
image with non-zero dye concentration from a reference image in which C,; = 0.
To account for small variations in light intensity across the tank, we divided each
calibration image into a series of 1.0 (horizontal) x 0.3 (vertical) cm? subregions,
each containing approximately 120-150 pixels. We found that the concentration could
be recovered from the image intensity in each subregion using a polynomial of the
form

Ci=Aly—I)+B(,—D* g L', 4.3)

where [ and [, are the image intensities of the calibration image and reference
image, respectively, in each subregion and A and B are their polynomial fitting
coefficients. Characteristic values of A and B across each subregion are A =
544+£158x1073 gL' and B=6.73+1.15x 107 g L.

4.2. Gravity current experiments and concentration maps

A suite of gravity current experiments was conducted in which the fixed source
volume flux ¢ and fluid density py, or equivalently concentration C,, were varied.
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Expt. g (cm? s7')  po (g em™) g, (cm s72)  std (err) (%)

1 0.169 1.021 20.60 +1.3
2 0.242 1.021 20.60 +1.3
3 0.363 1.021 20.60 +1.4
4 0.363 1.021 20.60 +1.6
5 0.242 1.046 45.12 +2.7
6 0.363 1.046 45.12 +1.6
7 0.363 1.046 45.12 +0.8
8 0.484 1.046 45.12 +1.8
9 0.242 1.072 70.63 £2.5
10 0.363 1.072 70.63 2.5

TABLE 1. A summary of the experimental parameters: source volume flux ¢, source
density p, and source reduced gravity g;, where g, = g(0o — p.)/p. = 8B(Co — C,). Typical
measurement uncertainty of these quantities is ¢ 0.001 cm? s~!, py+0.005 g cm™* and
gy £ 0.52 cm s72, respectively. Also presented in the table are the standard deviations
of the errors err, calculated using (4.4), involved with the post-processing scheme in
measuring the concentration and volume within the currents from the start to end of each
experiment.

In total, we report on 10 experiments, for which the details are listed in table 1,
where experiments 4 and 7 are repeats of experiments 3 and 6 respectively. The
images from these experiments were processed in a manner consistent with the
calibration experiments: they were first cropped and subtracted from a reference
image taken of the tank saturated with tap water just before starting each experiment.
The image intensity of these processed images was then converted into a concentration,
Cy(x, z, t) using the calibration curve (4.3) in each 0.3 ¢cm? subregion. An example
of the processed experimental images is shown in figure 7 where the raw gravity
current images and the processed concentration maps are shown from a representative
experiment (experiment 7) at four time points.

To measure the height profiles of the gravity currents we use an interface detection
method on the image intensity or concentration which does not rely on the calibration
data. After subtracting the gravity current images from a reference image the resultant
image is divided into vertical columns of 1 cm thickness across the tank. For each
column the vertical gradient of the intensity, indirectly the concentration gradient,
is calculated. From these intensity or concentration gradients, the location of the
maximum absolute gradient is taken as the interface between the gravity current
and ambient fluid. Height profiles obtained through this interface detection method
are shown using dashed curves in figure 7, both in the raw images and on the
concentration maps.

Furthermore, we note that the concentration maps in figure 7 are uniform to leading
order, but contain a concentration profile that varies systematically across the current.
We divided the concentration maps into vertical columns of equal thickness and the
mean vertical concentration for each column was calculated. Also presented in figure 7
are the vertical variations of concentration at three different locations, shown in red,
green and magenta. The clear difference in concentration between these three curves
at z— 0, signifies the horizontal variation, whereas their individual vertical variations
correspond to the assumption we made in §2.1, i.e. shown figure 1, that maximum
concentration gradient occurs at the edge and remains nearly constant beneath that.
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FIGURE 7. (a) Gravity current images, (b) their concentration maps and (c) vertical
concentration profiles. Dashed curves represent the height profiles obtained using interface
detection algorithm. Each individual panel is 200 cm long and 20 cm tall, whereas the
colour map scale represents (C — C,)/(Cy— C,). In (c) the red, green and magenta curves
represent the vertical concentration variation at three different locations indicated in the
concentration map at =20 min.

As a check on the accuracy of the dye-concentration calibration scheme, we
calculate the normalized difference between the concentration injected, and that
imaged in the entire tank at any time 7. The percentage error, defined in this way, is
therefore given by

qt(CO - Ca) 100¢
¢ ] qr(Co—C)’

where V. and C. are the total volume and mean concentration of the contaminated
region measured using the dye-attenuation image processing routine at time ¢ for
an experiment of volume flux ¢ and source concentration Cy. The percentage error,
err, is estimated for each experiment at 10 different times from the start to end of
the experiment. The values are found to be random and do not show any particular
trend in time. Standard deviations of these errors are presented in table 1 and are
encouragingly within +2.5 % for each case.

err = (4.4)

4.3. Comparison with dispersive entrainment theory

The raw gravity current images and concentration maps in figure 7 verify the
occurrence of entrainment in gravity currents in porous media. To quantitively
analyse the effects of entrainment and compare the results of our experiments with
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FIGURE 8. Log-log plot of total entrained volume in gravity currents versus time. The
straight lines represent theoretical predictions from (3.12) with the best fit « = 0.013 &
0.005.

our theoretical predictions we first estimate the value of the entrainment coefficient «.
We consider the total entrained volume (V, — gt/¢) as the basis for a global estimate
of «, whose theoretical predictions are obtained from (3.12) and experimental values
from the concentration maps in figure 7. A best fit analysis of the quantity V. — gt/¢
is performed and compared to the theoretical predictions for each experiment, which
suggests @ =0.013 £0.005 and is shown in figure 8. The vertical and horizontal axes
represent the left and right (without «) terms in (3.12), respectively, and the straight
lines are the theoretical predictions. The data are consistent with the simple, linear
entrainment law used, particularly at later times, with discrepancies between theory
and experiment at early times likely amplified by the relaxation of the source flow
to a long, thin gravity current.

The height profiles of the experimental gravity currents are presented in figure 9 for
three different experiments at three different times, where the time span is different
for each experiment. The experimental results are compared with the predictions of
our dispersive model for o = 0.008, 0.013 and 0.018, consistent with figure 8, and
the height profiles predicted by the sharp-interface model, i.e. « = 0 (Huppert &
Woods 1995). At early times (#; in each panel) the dispersive and sharp-interface
predictions almost coincide, whereas at later times the difference between them
increases gradually as the accumulated mixing increases. This behaviour is confirmed
by our experiments, as the discrete experimental data show a good agreement with
the dispersive height profiles and tend to evolve a blunted nose at the front due to
entrainment. Encouragingly, most of the experimental data fall between the height
profiles predicted for o =0.013 £ 0.005.

In the concentration plots of figure 9 (right side panels) we find that the
spatio-temporal variation of mean concentration is in agreement with the theoretical
predictions, which we have plotted for three different values of o« similar to that for
the height profiles — note that, according to our theoretical model, the length of the
gravity current, xy, is unaffected by the entrainment and therefore the predictions
for different o in figure 9 converge at the nose. The experimental data highlight the
effect of mixing, with a decreasing concentration towards the front of the current, as
predicted by the dispersive entrainment model. In comparison, the mean concentration
predicted by the sharp-interface model is C(x, ) = 1. While these concentration
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FIGURE 9. Comparison of theory versus experiment for 2 and C: (a,b) experiment 1, (c,d)
experiment 6 and (e,f) experiment 8. Results are presented for three different times with
t1 =[12, 6, 5] min for experiments 1, 6 and 8, respectively. Indicative error bars for the
height profiles are shown at the top left corners in each panel for times #;, #, and ;.
These error bars represent the mean difference between the height measured and the height
predicted using o =0.013 for each time.

plots show a clear demonstration of mixing in experiments, we observe that at late
times the data around the nose are quite dispersed and they deviate significantly
from the predictions. This may be either because the gravity current closer to the
nose is much thinner, which makes it more prone to the errors linked with the
post-processing scheme we use for making the concentration maps or because the
horizontal entrainment is significant at the nose which we do not consider in our
theoretical model.

In figure 10 we show the buoyancy (b= hC) profiles for the experiments presented
in figure 9 by combining the left and right panels at the respective times. All the data
are normalized using the buoyancy at x =0, by, and length xy such that they collapse
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FIGURE 10. Comparison of theory versus experiment for the buoyancy flux. Black curve
represent the prediction shown in figure 3 and the discrete data are from experiments 1,
6 and 8 at three different times.
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FIGURE 11. Log-log plots showing: (a) gravity current length, (b) height at the source.
The straight lines represent the predictions from (3.4) and (3.7), respectively, and the
experimental data are shown for all 10 experiments.

onto a universal profile, thus demonstrating the self-similarity of the buoyancy flux.
The self-similar profile (solid curve) obtained from figure 3 shows a good agreement
with the discrete experimental data.

Finally, we compare the length (xy) and height at the source (/) of the gravity
currents for all 10 experiments from table 1 as shown in figure 11. Here, Xy, izo and 7
are the non-dimensional quantities defined in (2.19) and the straight lines represent the
predictions from (3.4) and (3.7), respectively, with n =ny =1.482 and g =f, = 1.296.
Agreement between the theory and experiments is promising, with minor deviation in
panel (b) for hy. This deviation may be attributed to the fact that the ambient fluid
motion is neglected in our theoretical analysis, whereas in the experiments Ay is of
the order of ambient fluid depth.

5. Discussion

The mixing of fluids in porous media is a long-standing problem with a
large number of important geophysical and industrial applications. To date, many
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approaches to modelling mixing, or dispersion, within porous media have focused on
augmented advection—diffusion models. Here, motivated by highly successful models
of turbulent plumes and gravity currents, we have instead sought to constrain only
the bulk properties of the gravity current, the mass and the concentration or buoyancy.
While such conservation arguments neglect the variance inherent in the flows, they
are a powerful tool for understanding the large-scale dynamics.

Through a set of careful laboratory experiments we have tested the predicted
consequences of such a dispersive entrainment model, and find good agreement when
analysing the structure of the depth-averaged concentration in particular (see figure 9).

We see a clear indication of entrainment in the laboratory experiments through the
increasing volume with time (see figure 8). However, we see only a minor difference
between our dispersive model and the sharp-interface model predictions, particularly
for height profiles (figure 9), although we note that the laboratory experiments
generally fall in a range where dimensionless time 7 < 1073, At these early times the
total entrainment is small, increasing the volume of the current by only approximately
4% (see (3.11)). When the gravity currents are allowed to develop for longer, e.g. in
real geological flows where 7 can become much larger, the discrepancy between the
sharp-interface model and actual flow may increase with time and in these cases
dispersive mixing would become more significant. We also anticipate that as time
progresses and dispersive entrainment leads to the formation of a shock front at
the nose, longitudinal dispersion may become more significant, an effect we here
neglected in this study.

The importance or magnitude of the dispersive entrainment depends crucially
on the small-scale structure of the porous medium. Here, for mathematical and
experimental simplicity, we have focused on pore-scale dispersion for which the
effective entrainment coefficient is necessarily small. However, for many natural
systems the effective dispersion may be much larger, particularly when considering
heterogeneities at the 10 cm scale acting on currents which are 1-10 m thick. In
such cases the effective entrainment would necessarily reflect the underlying structure
of the medium, appropriately averaged.

In many heterogeneous media the dispersivity becomes dependent on the scale
of the flow because of resultant flow instabilities and local non-uniform velocities
(Wheatcarft & Tyler 1988; Gelhar 1992). An example of enhanced entrainment can
be seen in the two-layered experiments of Huppert et al. (2013, figure 7) and Sahu
& Flynn (2017, figure 4). In these cases the entrainment is enhanced because of a
layered permeability structure which results in Rayleigh-Taylor instabilities which
actively promote mixing.

The experimental images of Huppert et al. (2013) and Sahu & Flynn (2017) also
show that the gravity current is significantly thicker at the nose even at the laboratory
scale than seen in the homogenous cases (see figure 9). This is consistent with our
findings shown in figure 4(a) for larger 7, which is greater in those experiments due
to enhanced «.

While the total volume of entrained fluid increases with time due to the increasing
interfacial area, the entrainment rate, w, (see (2.12)) decreases because the horizontal
velocity of the current decreases as u oct~'/* as can be inferred from (2.6) and (3.4).
This implies that the Péclet number Pe oct~'/* (see (2.13)), and therefore at late times
the effects of dispersion may no longer be dominant.

The time scale for the transition between dispersive (advective) and diffusive
behaviour can be estimated by considering the velocity at the nose,

doe 2 [dkgBCog\' 1
=T () — 5.1
dar 37IN ( v (5.1

uy=¢ YR
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which is characteristic of velocities within the current. The time at which the current
reaches Pe <1 can then be straightforwardly given as

. _ PkeBCog <2rdpnN>3'

5.2
D 5 3D, (5.2)

At times t > tp diffusion may become significant, and thus the nature of entrainment
may change. In addition, over time ¢ ~ O(fp) the front of the gravity current may
develop a shock-type structure implying that the assumption of negligible lateral
entrainment is no longer valid.

A related analysis of the mixing of miscible fluids in a confined gravity current in
a porous medium was conducted by Szulczewski & Juanes (2013). In their analysis
Szulczewski & Juanes (2013) consider only molecular diffusion, and show that there
are five dominant regimes of mixing: an early-time diffusive regime, an S-slumping
regime, a straight-line slumping regime, a Taylor-slumping regime and a late-time
diffusive regime. In the first and last regimes they show that the mixing between
the gravity current and ambient occurs purely due to molecular diffusion and the
concentration follows an error-function distribution, where solute mass flux, F, across
a vertical cross-section varies in time as F oc t~'/2. In the S-slumping regime the
mass flux is independent of time, whereas in the straight-line and Taylor-slumping
regimes, the flux F oct~'/? and F oc t73/4, respectively. In our analysis the flux F ~
uC and, in contrast to the work of Szulczewski & Juanes (2013), follows a single
dependence on time as F oc t'/3 up to times t ~ . However, it is important to
note that our results differ from those of Szulczewski & Juanes (2013) both in that
we consider a velocity-dependent dispersion (rather than a molecular diffusivity), and
because we consider the case of continuous flux injection in an unconfined ambient
in contrast to the fixed volumes of dense and ambient fluid and a confined boundary.
Flows in confined settings are likely to generate significant vertical sheer, such that
the feedback between the flow and the concentration distribution may not satisfy the
simple approximations model here which are more appropriate for unconfined flows.

6. Conclusion

Motivated by the importance of mixing in geological flows, we have described
a modelling approach for understanding dispersive entrainment in gravity currents
in porous media. The mathematical model conserves mass and concentration, or
buoyancy, within the current and considers the addition of mass to the current
through a dispersive interface. For simplicity we assume that the entrainment is
proportional to the velocity of the current and may be characterized by a constant
entrainment coefficient.

Here, we show that a natural consequence of the model is that the buoyancy flux of
the current exhibits a self-similar behaviour and does not depend on the details of the
dispersive entrainment. Using a modified similarity solution we then derive the height
profiles and concentration of the gravity current, which prove to not be self-similar
in nature, and show that the shape of the current and the concentration change with
time. However, the total amount of entrainment and the mean concentration of the
contaminated region are self-similar and vary with dimensionless time as 7'/* and 7'/,
respectively. We note that the resulting model recovers classical models of gravity
currents in porous media when dispersive entrainment is negligible.

We also present laboratory experiments which were performed using a dye-
attenuation technique. We first performed calibration experiments to find a functional
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relationship between the dye concentration and image intensity. These calibration data
were then used to determine the concentration in the gravity current experiments. A
total of 10 experiments were performed with varying volume flux and concentration
at the source as variables. For these experiments we find that the volume of the
current grows measurably by entrainment, and that the entrainment coefficient
a = 0.013 £ 0.005. Furthermore, the experimental results independently confirm
the occurrence of entrainment in porous medium gravity currents and in general show
a good agreement with the predictions of our dispersive interface model.

We predict that at late times, when the velocity of the gravity current becomes
significantly small, it may be sensible to consider the effects of molecular diffusion
and also discard the assumption of long and thin current.

The modelling framework presented here, along with the experimental methodology,
provide a new approach to characterizing mixing in porous media. In particular, we
anticipate that the approach may provide a significant simplification in cases where the
porous medium is heterogeneous across a range of scales. In addition, the transition
between dispersive entrainment, dominated by rapid advection, to late-time diffusive
mixing may yet be incorporated in such an averaged model with implications for the
ultimate fate of sequestered CO,, for example.
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