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Summary

For genomic selection methods, the statistical challenge is to estimate the effect of each of the available single-
nucleotide polymorphism (SNP). In a context where the number of SNPs (p) is much higher than the number of
bulls (n), this task may lead to a poor estimation of these SNP effects if, as for genomic BLUP (gBLUP), all SNPs
have a non-null effect. An alternative is to use approaches that have been developed specifically to solve the
‘p>>n ’ problem. This is the case of variable selection methods and among them, we focus on the Elastic-Net
(EN) algorithm that is a penalized regression approach. Performances of EN, gBLUP and pedigree-based BLUP
were compared with data from three French dairy cattle breeds, giving very encouraging results for EN. We tried
to push further the idea of improving SNP effect estimates by considering fewer of them. This variable selection
strategy was considered both in the case of gBLUP and EN by adding an SNP pre-selection step based on
quantitative trait locus (QTL) detection. Similar results were observed with or without a pre-selection step, in
terms of correlations between direct genomic value (DGV) and observed daughter yield deviation in a validation
data set. However, when applied to the EN algorithm, this strategy led to a substantial reduction of the number
of SNPs included in the prediction equation. In a context where the number of genotyped animals and the
number of SNPs gets larger and larger, SNP pre-selection strongly alleviates computing requirements and
ensures that national evaluations can be completed within a reasonable time frame.

1. Introduction

The availability of dense single-nucleotide poly-
morphism (SNP) arrays has considerably changed the
landscape of dairy cattle selection worldwide. With
such chips, it is now possible to retrieve information
about quantitative trait locus (QTL) all over the ge-
nome. Genomic estimated breeding values (GEBV),
which correspond to a combination of the sum of
the effects of genetic markers (direct genomic value
(DGV)) and estimated breeding value (EBV), can be
used instead of the classical pedigree-based genetic
evaluations in selection programmes. Meuwissen et al.
(2001) envisioned the consequences on the estimation

of breeding values of a high-density marker map
covering the whole genome (see also Haley &Visscher,
1998; Andersson & Georges, 2004). Through simula-
tions, they showed that the use of GEBV can greatly
improve accuracy of genetic evaluation of animals
with no recorded performances hence leading to
higher genetic gain, particularly by shortening gener-
ation intervals in dairy cattle. In dairy cattle, the use
of GEBV is a promising alternative to the long and
costly progeny test. Since 2007, the potential interest
of genomic selection in dairy cattle has been
clearly demonstrated in terms of accuracy of breeding
values (Van Raden et al., 2009; Habier et al., 2011)
and in terms of design of breeding programmes
(Goddard & Hayes, 2007; Wensch-Dorendorf et al.,
2011). Recently, several countries (Australia, France,
Germany, the Netherlands, New Zealand, USA and
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others) implemented genomic selection for their
national evaluations (Hayes et al., 2009; Van Raden
et al., 2009; Boichard et al., 2010; Harris & Johnson,
2010; Liu et al., 2010).

Numerous methods have been proposed to per-
form genomic evaluations with variable resulting
accuracy depending on the underlying genetic as-
sumptions, on the trait, breed and reference popu-
lation size. For instance, Habier et al. (2010a) tested
a large panel of Bayesian approaches on a data set
from the Holstein breed and even though Bayes
A appeared to be a nearly optimal choice in their
study, they recommended determining the best
method for each quantitative trait separately. Indeed,
in another study on Australian Holstein Friesian
dairy cattle, Bayes A provided the lowest correla-
tion between predicted GEBV and breeding values
among the set of tested methods (Verbyla et al., 2009).
On French data that Legarra et al. (2011) conducted
for production traits, better predictions were ob-
tained for Bayesian LASSO than for genomic
BLUP (gBLUP). For other traits like fertility, it
was shown that gBLUP performed slightly better
than Bayesian LASSO (Hayes et al., 2009; Van Raden
et al., 2009).

Hence, it is still difficult to rank the large panel of
available genomic evaluation methods according to
their accuracy.

In a genomic evaluation procedure where the com-
plete set of SNP is used, the statistical challenge is
to evaluate effects attached to each of the available
SNPs. In a context where the number of SNPs (p) is
much higher than the number of bulls (n), this may
lead to a poor estimation of the SNP effects even
though the sum of genotypes time effects may be ad-
equate on this reference population. In a routine
evaluation with new animals, the best way to be con-
fident in DGV or GEBV is to attach an effect to SNP
in linkage disequilibrium with a QTL which reflects
the effect of the QTL and an effect regressed towards
zero to the others.

An alternative is to use approaches that have
been developed especially to solve the p>>n problem.
This is the case of variable selection methods and,
among them, we focused on the Elastic-Net (EN) al-
gorithm (Zou & Hastie, 2005) and we chose to
compare it to gBLUP, which is currently the most
used approach in practice. Secondly, a two-step ap-
proach was tested by adding an initial preparation
step consisting of an SNP pre-selection based on re-
sults from a QTL detection analysis. The second
step implements gBLUP or EN on this preselected
set of SNP with the hope that individual estimates
of effects of the retuned SNP would be more
accurate. To compare benefits and drawbacks of these
situations, a pedigree-based BLUP was used as the
reference.

2. Materials and methods

(i) Data

The data sets consisted of 1172 Montbéliarde, 1218
Normande and 3940 Holstein bulls, which were all
progeny tested and genotyped with the Illumina Bov-
ine SNP50 BeadChip1. With a minimumminor allele
frequency of 3%, 38 460 SNPs were retained for the
Montbéliarde breed, 38 534 SNPs for the Normande
breed and 39 738 SNPs for the Holstein breed.
Mendelian segregation was checked. The SNP pre-
selection chosen in this study uses a QTL detection
method based on haplotypes which requires phased
data. To infer missing genotypes and phases, Dual-
PHASE software was used (Druet & Georges, 2009).

The data set was divided into a training data set
to derive prediction equations and a validation data
set where predictions were compared with observed
phenotypes. Table 1 shows the size of training and
validation data sets for the three breeds. To define the
training and validation data sets, a cut-off date for
the bulls ’ birth date was introduced so that 25% of
the youngest genotyped bulls were included in the
validation dataset. Bulls without genotyped sire in
the training dataset were excluded. Animals from the
training data set were born before June 2002, while
animals from the validation data set were born be-
tween June 2002 and 2004. This cross-validation
design corresponds to the one used in studies of the
EuroGenomics Consortium (Lund et al., 2010).

Phenotypes used for this study were daughter yield
deviations (DYD) corresponding to the average
performance of a sire’s daughters, adjusted for fixed
and non-genetic random effects and for the additive
genetic value of their dam (Mrode & Swanson, 2004).
To account for the varying accuracy of the DYD, they
were weighted by their error variance, which is pro-
portional to the sire’s effective daughters ’ contri-
bution (EDC) (Fikse & Banos, 2001). DYD were
included in the analysis if EDC exceeded 20.

For the three breeds, 25 traits were available : five
production traits, two conception rate traits, 16 mor-
phological traits, somatic cell counts and milking
speed. Initially, only six traits were chosen to com-
pare the different approaches and for fine tuning of
different parameters. These six traits were the five

Table 1. Number of animals genotyped per data set
for the three breeds studied

Breed

Montbéliarde Normande Holstein

Training data set 950 970 2976
Validation data set 222 248 964
Total 1172 1218 3940
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production traits (Milk yield, Fat yield, Fat content,
Protein yield and Protein content) and cow concep-
tion rate (Boichard & Manfredi, 1994). Mean results
over the 25 traits will also be shown.

(ii) Methods

The first method used was gBLUP (Van Raden et al.,
2008) which uses the genomic relationship matrix,
G (Habier et al., 2007; Van Raden, 2008), instead of
the pedigree-based relationship matrix

G=ZZk=2 g
m

i=1
pi(1xpi),

where m corresponds to the number of loci con-
sidered, pi is the frequency of an allele of the locus
i and Z is the incidence matrix of SNP (genotype
scores) on individuals, coded as in Van Raden (2008).
The model is therefore: y=Xb+g+e, where g is a
vector of breeding values whose covariance matrix is
described by Gsu

2, where su
2 is the polygenic variance.

Van Raden (2008) and Goddard (2009) showed
that this model is equivalent to a mixed model fitting
the effect of the genotype score of each SNP, all SNPs
having a priori the same variance equal to s2

a=
s2
u=2gpi(1xpi), where su

2 is the polygenic variance
used in regular genetic evaluation and pi is the fre-
quency of an allele of the locus i (Gianola et al., 2009).

The EN algorithm (Zou & Hastie, 2005; Croiseau
et al., 2009) corresponds to a combination of the ridge
regression (RR) and LASSO procedures. The differ-
ence between RR b̂RR= argmin {gn

i=1(yixxib)
2+

lg
j
b2
j } and LASSO b̂LASSO=argmin{gn

i=1(yixxib)
2+

lg
j
jbjj} estimates lies in the form of the penalty term.

In both equations, b is the vector of SNP effects bj, yi
is the phenotype of animal i and xi is its vector of
genotypes. The l parameter corresponds to the in-
tensity of the penalty. In the EN algorithm, a second
parameter a, taking a value in [0, 1] is used to weight
the RR and LASSO penalties.

b̂EN= argmin g
n

i=1
(yixxib)

2

�

+l (1xa)g
j

b2
j+ag

j

jbjj
� ��

With a=1, a LASSO model is defined, whereas with
a=0, a full RR model is chosen. Zou & Hastie
(2003, 2005) showed that in the presence of correlated
explanatory variables (e.g. effects corresponding to
SNP in linkage disequilibrium in our case), RR re-
tains all predictors and their corresponding coeffi-
cients tend to be equal and no variable selection is
performed. On the other hand, LASSO retains only
one predictor and removes the others (Zou & Hastie,
2003, 2005). Hence, by including RR and LASSO as
extreme cases, the EN algorithm provides a more
flexible tool.

In this study, EN procedures were used using an
R package named ‘glmnet’ (http://cran.r-project.org/
web/packages/glmnet/index.html) implemented by
Friedman et al. (2008). They proposed a fast im-
plementation of EN using cyclical coordinate descent,
computed along a regularization path.

(iii) Pre-selection of the SNP

For most traits, not all SNPs on the SNP chip are
likely to be close to a QTL. In other words, the as-
sumption that effects attached to each of the SNPs are
non null is unrealistic. Consequently, our conjecture is
that whatever the genomic evaluation method used,
a pre-selection of the SNP with an attached non-null
effect may help to improve the quality of genomic
prediction. This was tested in the situation where pre-
selection is based on QTL detection. QTL detection
was performed using a combined linkage dis-
equilibrium and linkage analysis (LDLA) (Meuwissen
& Goddard, 2001; Druet et al., 2008). First, the
existence of a single QTL was tested in the training
data set at all positions along the chromosomes de-
fined by haplotypes of six SNPs, with a sliding win-
dow of two SNPs. From this LDLA, a value of the
likelihood ratio test (LRT) was obtained for each
haplotype. Positions where a potential QTL is located
were defined as haplotypes each time an LRT peak
higher than a threshold value of 3 or 5 was found.
These values were quite arbitrary at this stage and
low enough to catch any potential QTL that can be
identified through this analysis. An LRT peak was
defined as the position where the highest LRT value
was found within a window of 25 or 50 SNP upstream
and downstream of the current haplotype.

Then, the 50 SNPs around each detected LRT peak
(¡25) were included in a pre-selected set of SNPs
used for genomic evaluation using either a gBLUP or
EN approach. The choice of the number of SNPs to
retain was based on a preliminary study where this
value of 50 gave the best results (data not shown).

(iv) Quality assessment of the genomic prediction

To measure the quality of prediction equations
(derived from the training set), the equations were
applied to the animals of the validation data set to get
DGVs. Then, the weighted correlation between DGV
and observed DYD was computed using EDC as
weights. The weighted Pearson product moment cor-
relation coefficient is calculated as (Peers, 1996) :

r(x, y)=
gwi(xixx̄w)(yixȳw)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gwi(xixx̄w)
2gwi(yixȳw)

2
q

where x̄w=
gwixi
gwi

, ȳw=
gwiyi
gwi

and wi is the EDC weight
of yi.
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The aim was to measure the accuracy of the
different methods to predict DYD using genomic in-
formation (DGV). Since GEBV combine the infor-
mation available from DGV and EBV, it is not
possible to know if an observed gain in accuracy is
due to the prediction equation or to a good combi-
nation of DGV and EBV. This is why the correlation
between DGV and observed DYD was preferred in
this study (see e.g. Guillaume et al., 2008).

(v) Parameters used for the different methods

For the pedigree-based BLUP, genetic parameters
were estimated using an Average Information-
Restricted Expectation Maximization Likelihood
(AI-REML) approach (Jensen et al., 1996). For the
LDLA, it is necessary to incorporate Identical by
Descent (IBD) matrices among QTL allelic effects.
Software of Misztal et al. (2002) was modified ac-
cordingly. Heritability estimates used in pedigree-
based BLUP and gBLUP were those used in routine
genetic evaluations.

For EN, values for the a and l penalization para-
meters needed to be chosen and there is currently no
way to predict which range of values is the most ap-
propriate for each parameter. Consequently, a large
range of combinations of a and l was tested by grid
search to find the optimal values. The search aimed at
finding the maximum correlation between DGV and
observed DYD in the validation data set. The vali-
dation data set is consequently used to identify the
optimal set of parameters. This can be an advantage
in comparison with other methods with respect to the
accuracy of GEBV if this set of parameters is specific
to this training and validation data sets. However, by
looking at reference populations of increasing sizes,
we found that these parameters were breed- and trait-
specific with a rather large range of combinations
giving similar results (data not shown). The EN ap-
proach appears robust to moderate departures from
the optimal combination of parameters. To define
the optimal a parameter, a dichotomous search was
performed on the [0, 1] interval. Initially, a values of
0, 1 and 0.5 were tested. If a=0 provided the best

correlation, at the second iteration, the interval was
reduced to [0, 0.5]. If the best correlation was found
with a=1, the new interval was [0.5, 1]. If the best
correlation was found with a=0.5, the new interval
was [0.25, 0.75]. We applied this method until the
difference between two tested a was lower than 0.02.
The dichotomous approach requires a unimodal dis-
tribution for these correlations which is not guaran-
teed. Nevertheless, after testing a large panel of a
values for some traits (data not shown), this unimodal
distribution seems to be the rule.

For each a, 500 values of the penalty intensity l
were tested in the interval [0–max(b)], where max(b)
corresponds to the absolute value of the highest esti-
mate when no penalization is applied.

This research of optimal values for a and l was
performed separately for the pre-selected and the full
data sets. The search for the optimal a parameter is
the most time-consuming step of the glmnet package
and takes around 2 CPU minutes in Holstein for each
tested a.

3. Results

Table 2 shows the optimal set of EN parameters for
the six traits initially studied. Depending on the trait
and breed, the optimal set of parameters differed. For
instance, a complete RR approach gave the best re-
sults for Milk and Protein yield in the Montbéliarde
breed, while optimal a values of 0.25 for Milk yield in
Holstein and of 0.37 for Protein yield in Normande
were found, which correspond to a general EN model.
Moreover, there was a strong impact of both a and l
on the number of SNPs included in the regression
model. When a is near a complete LASSO procedure
(a=1), there were many fewer SNPs retained com-
pared with a complete RR procedure (a=0). Also, for
a given a, high values of l led to a high intensity of
penalization and consequently to a lower number of
SNP (results not shown).

In the second analysis, the SNP pre-selection based
on QTL detection was performed. As indicated be-
fore, this SNP pre-selection relied on two criteria : a
given LRT threshold and a given window size. Table 3

Table 2. Optimal a and l parameters and corresponding number of SNPs with non-null effect for the six traits
studied and for the three breeds using the EN procedure on the complete set of SNPs

Montbéliarde Normande Holstein

a l SNP a l SNP a l SNP

Milk yield 0 267.17 24 037 0.09 25.25 1529 0.25 15.18 1355
Protein yield 0 12.31 23 044 0.37 0.24 866 0.01 5.79 5648
Fat yield 0.01 6.71 5444 0.13 0.58 1474 0.25 0.65 1271
Protein content 0.13 0.01 1776 1 0.005 737 0.25 0.01 2297
Fat content 1 0.01 723 0.59 0.06 403 0.65 0.02 1351
Conception rate 0 120.41 8215 0.02 4.33 2879 0 17.49 20 904
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reports the effect of both criteria on the number of
LRT peaks identified in the case of milk yield.

Table 4 presents for the three breeds the results
obtained with the classical pedigree-based BLUP and
the two genomic selection methods (gBLUP and EN)
when either the whole set of SNP which passed the
quality control was used or after a pre-selection of the
SNP based on the LDLA approach.

All genomic methods improved the correlation
between DGV and observed DYD compared with
pedigree-based BLUP and the genetic architecture of
the trait seemed to play an important role on the gain
in correlation: for traits where some QTLs explain a

large part of the variance, such as protein content and
fat content (where DGAT1 gene is present), a mean
gain in correlation over the three breeds of +0.22
and +0.23, respectively, was observed. In contrast,
when the trait background appears to be polygenic
with many QTLs explaining only a small part of the
variance each, as for conception rate, the observed
mean gain in correlation was more limited (+0.06).
Between the two genomic approaches, EN gave better
results with a mean gain (compared with pedigree-
based BLUP) over the six traits of 0.15, 0.13 and 0.20
for Montbéliarde, Normande and Holstein, respect-
ively, compared with 0.12, 0.08 and 0.18 with gBLUP.

When an SNP pre-selection was applied, the gain
in correlation using gBLUP and EN was very similar
to the one observed using the complete set of SNP.
Again, among the two different genomic approaches,
the best results were obtained with EN. Compared
with the pedigree-based BLUP, the mean gains
over the six traits were 0.14, 0.15 and 0.20 for
Montbéliarde, Normande and Holstein, respectively,
compared with 0.12, 0.11 and 0.18 with gBLUP.

Table 5 shows the slope of the regression of ob-
served DYD on DGV for Holstein. A value close to 1
is expected. In dairy cattle, genomic evaluations are
validated by Interbull if the slope of regression is in-
cluded between 0.8 and 1.2 (Interbull, 2011). Over the
three tested methods, similar ranges of values were
observed for pedigree-based BLUP and EN. The
slope for gBLUP deviated more from 1 than for the
two other methods (on average, 0.22 for gBLUP
compared with 0.11 for pedigree-based BLUP and
0.12 for EN). The same analysis was performed for
the approach with SNP pre-selection. For EN, the
SNP pre-selection had no impact on the slope.

Table 6 presents the number of SNPs with a non-
null effect retained by EN algorithm without or with
a pre-selection of SNP in the Holstein breed. Similar
results were obtained in Montbéliarde and Normande
(data not shown). The results for the six traits are
given, as well as the average of the number of SNPs
over the 25 traits available for the three breeds. The

Table 3. Number of LRT peaks identified for milk
yield as a function of LRT threshold and window size
in the Montbéliarde, Normande and Holstein breeds

SNP
window
size

LRT threshold

3 5

Montbéliarde 25 432 265
50 273 180

Normande 25 363 197
50 219 142

Holstein 25 481 350
50 268 204

Table 4. Weighted correlation between DGV and
observed DYD for the three breeds obtained using
pedigree-based BLUP, gBLUP and EN on the
complete set of SNP (54 K) or after a pre-selection
of the SNP (PS)

Pedigree-
based
BLUP

gBLUP EN

54 K PS 54 K PS

Montbéliarde
Milk yield 0.28 0.44 0.43 0.45 0.42
Fat yield 0.40 0.50 0.50 0.50 0.51
Protein yield 0.27 0.46 0.47 0.46 0.47
Fat content 0.40 0.51 0.56 0.59 0.59
Protein content 0.25 0.44 0.42 0.44 0.42
Conception rate 0.43 0.43 0.42 0.47 0.48

Normande
Milk yield 0.30 0.34 0.38 0.41 0.42
Fat yield 0.27 0.39 0.38 0.41 0.41
Protein yield 0.23 0.31 0.33 0.37 0.40
Fat content 0.58 0.61 0.63 0.71 0.75
Protein content 0.33 0.50 0.55 0.54 0.53
Conception rate 0.24 0.27 0.30 0.31 0.31

Holstein
Milk yield 0.38 0.56 0.56 0.57 0.57
Fat yield 0.40 0.59 0.59 0.63 0.63
Protein yield 0.44 0.55 0.54 0.57 0.57
Fat content 0.44 0.72 0.74 0.80 0.79
Protein content 0.47 0.73 0.73 0.75 0.73
Conception rate 0.29 0.35 0.33 0.33 0.33

Table 5. Slope of the regression of observed DYD on
DGV for the Holstein breed obtained using pedigree-
based BLUP, gBLUP and EN on the complete set of
SNP (54 K) or after a pre-selection of the SNP (PS)

Holstein

Pedigree-
based
BLUP

gBLUP EN

54 K PS 54 K PS

Milk yield 0.80 0.68 0.68 0.80 0.80
Fat yield 0.96 0.80 0.61 1.06 1.05
Protein yield 0.86 0.65 0.76 0.80 0.78
Fat content 0.98 0.87 0.89 0.95 0.98
Protein content 0.94 0.90 0.83 0.93 0.92
Conception rate 0.80 0.78 0.69 0.84 0.84
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number of SNPs retained was dependent on the
genetic architecture of the trait. Traits such as Fat
content where DGAT1 explains a very high part of
the variance required fewer SNPs than conception
rate. The mean number of SNPs over the 25 traits
illustrates the impact of pre-selection on the number
of retained SNPs.

For the six presented traits, pre-selection led to a
reduction of the number of SNPs needed in the pre-
diction equation. Among these traits, conception rate
is the one with the highest polygenic part as the
number of SNPs included in the EN model shows.
Production traits required between 1271 and 5648,
which is much less than the 20 904 SNPs required for
conception rate. The highest reduction of the number
of SNPs retained was for conception rate (from 20 904
to 9677 SNPs, which corresponds to a reduction of
54%).

The impact of this SNP pre-selection on correla-
tions was an absolute decrease limited to 1–2% and

was relatively limited. For the 25 available traits,
the average number of SNPs used in the prediction
equation derived from the EN algorithm applied on
the whole set of SNPs was 16 334. After pre-selection,
this number declined to 10 059. This important de-
crease in the number of SNPs used was obtained while
correlations remained relatively stable (loss of 1% on
average). Surprisingly, for some traits, the number of
SNPs retained by EN after pre-selection was higher
than when EN was applied to the whole set of
SNPs. This was the case for body depth, chest width
and milking speed for Holstein. Nevertheless, this
phenomenon was marginal and, for most traits, pre-
selection allowed a large decrease in SNP numbers.
The results presented in Table 6 correspond to the
optimal a and l values. During the EN procedure, a
large number of parameter combinations were tested
and some suboptimal combinations required an even
smaller number of SNPs. Table 7 presents, for the
Holstein breed and for the six initial traits, the highest

Table 6. Correlation and number of SNP used in the prediction equation using the EN algorithm on the whole
set of SNP (54 K) or after a pre-selection of the SNP (PS) for the Holstein breed

Traits

Holstein

54 K PS

Impact on
CorrelationCorrelation

Number
of SNPs Correlation

Number
of SNPs

Milk yield 0.57 1355 0.59 1329 0.02
Fat yield 0.63 1271 0.62 1211 x0.01
Protein yield 0.57 5648 0.56 1098 x0.02
Fat content 0.79 1351 0.78 1087 x0.01
Protein content 0.75 2297 0.73 1742 x0.02
Conception rate 0.33 20 904 0.34 9677 0.01
Mean over the 6 traits – 5471 – 2691 x0.01
Men over 25 traits – 16 334 – 10 059 x0.01

Table 7. Highest correlation and corresponding number of selected SNPs when using the whole set of SNP
(54 K), after a pre-selection of the SNP (PS) or when the number of selected SNPs is limited to 2500, 1500
or 1000 in the Holstein breed

54 K PS 2500 SNPs 1500 SNPs 1000 SNPs

Milk yield Correlation 0.569 0.573 0.573 0.569 0.551
SNP 1328 2752 2422 1328 955

Fat yield Correlation 0.631 0.626 0.631 0.631 0.624
SNP 1273 1126 1273 1273 991

Protein yield Correlation 0.573 0.568 0.568 0.565 0.561
SNP 21 716 2390 2120 1448 959

Fat content Correlation 0.795 0.791 0.795 0.795 0.791
SNP 1364 1068 1364 1364 985

Protein content Correlation 0.748 0.731 0.748 0.696 0.694
SNP 2368 3684 2368 1419 996

Conception rate Correlation 0.335 0.328 0.320 0.307 0.301
SNP 20 853 9144 2379 1141 850
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correlations that were observed when the total num-
ber of SNPs with non-null effect was limited to a value
between 2500 and 1000 SNPs. An option of the R
package glmnet allows the maximum number of
variables to be set. This option acts on the intensity of
the penalization to validate this constraint.

Obviously, this limitation in the number of SNPs
led to a decrease in correlation, but this was relatively
limited: between 0 and 3.4% depending on the trait
and the maximum number of SNPs defined. In com-
plement to this table, Figure 1 presents the mean
change in correlation over the 25 traits for the three
breeds according to the number of selected SNPs.

The breed found to be the most sensitive to the
limitation of selected SNP in EN was the Holstein
breed, but this is also the breed in which, on average,
the largest number of SNPs without pre-selection are
retained (17 341 selected SNPs in this situation against
11 526 in Normande and 12 939 in Montbéliarde).
When the number of selected SNPs was limited to
2500, the average absolute loss in correlation over the
25 traits ranged from 1 and 1.7%. This average loss in
correlation changed to 2.3 and 4.5% with a limit to
1000 selected SNPs.

4. Discussion

As for many previous studies, genomic evaluations
with gBLUP and EN substantially improved the
quality of prediction of observed DYD in the vali-
dation data set compared with pedigree-based BLUP
(Hayes et al., 2009; Wolc et al., 2011). Between these
two genomic evaluations, gBLUP has the advantage

of being conceptually simpler in the sense that there is
no extra parameter to define or to optimize. In theory,
a method that estimates all SNP effects should ensure
that false-positive or uninformative effects are re-
gressed towards zero, but in practice, these false
positive or uninformative effects are not strictly equal
to zero. EN, which shares some variable selection
properties with other methods (like Bayes B, Cp, …)
limits the number of SNPs with non-null estimated
effects in the model. This property can be an advan-
tage because it alleviates the p>>n problems, in par-
ticular for smaller breeds. Limiting the number of
SNP effects to estimates becomes important for an
accurate prediction equation.

Since this study shows that EN provides better re-
sults than gBLUP for most traits in the three breeds
studied, we tried to push further the idea of variable
selection both in the case of gBLUP and EN by ad-
ding an SNP pre-selection step based on QTL detec-
tion. The resulting correlations between DGV and
observed DYD and also the slopes of the regression of
observed DYD on DGV were similar to the ones ob-
tained using the complete set of SNPs. Moreover,
both the EN algorithm and the pre-selection of the
SNP led to a reduction of the number of SNPs in-
cluded in the prediction equation with a minor effect
on the quality of prediction. This procedure seems
particularly relevant in the genomic selection context
for two reasons:

’ From a genetic standpoint, it is consistent with the
assumption that not all SNPs are required to ex-
plain the genetic architecture of a given trait. Some

Fig. 1. Mean change in correlation (dashed lines) over the 25 traits for Montbéliarde (&), Normande (’) and Holstein (m)
when the maximum number of SNPs selected by EN is restricted to the value indicated on the x-axis. Continuous lines
represent the actual number of selected SNPs.
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of them, with non-significant effects, can still carry
genetic information and particularly on genetic
relationships (Habier et al., 2007, 2010b). However,
since very similar correlations were obtained using
the complete set of SNPs or a fraction of them after
pre-selection, it means that a subset of SNPs in-
cluded in the model was not really informative for
the trait and pre-selection avoids including in the
prediction equation these uninformative SNPs.

’ Furthermore, it is expected that in the near future
the number of genotyped animals and the number
of SNPs will get larger and larger. This will rep-
resent a major challenge for genomic evaluations
from a computing point of view. The SNP pre-
selection implemented here requires an LDLA
approach and a detection of the LRT peak, which
is based on two parameters (windows of SNP to
consider and an LRT threshold). The LDLA ap-
proach requires phasing the data which, depending
on the methodology used, could be computation-
ally time consuming. However, the LDLA ap-
proach does not have to be performed at each
genomic evaluation because animals that are added
between two genomic evaluations are young and
their performances have a very low weight com-
pared with older ones. Moreover, as mentioned
before, the time-consuming step is to phase the
data. Actually, this step is not required for all
the genomic selection methods used in national
evaluation and consequently, constraints due to
phasing data are not encountered. But if an ad-
ditional imputation step is required to mix dif-
ferent versions of chips (Illumina Bovine SNP50
BeadChip1 V1 and V2 for example) or different
sizes of chips (3, 50 and 777 K), this phasing step is
routinely needed anyway. Then, SNP pre-selection
strongly alleviates computing requirements and
consequently ensures that national evaluations can
be completed within a reasonable time frame.

In this study, we focused on one variable selection
method that is the EN and one pre-selection method
that is LDLA. Obviously, other genomic selection
methods (Bayesian methods for instance) and other
pre-selection approaches (based on ‘pure’ association
studies instead of LDLA for instance) should be also
tested to complete this study. EN provided better
results in our study and our model assumed that all
genetic variation was explained by SNP. The latter
may be true if all causal mutations are bi-allelic and
if SNPs are in strong linkage disequilibrium with all
causal mutations. If causal mutations are multi-allelic
or if SNPs are in weak linkage disequilibrium with
this causal mutation, model based on haplotypes
could be more advantageous. The current French
genomic evaluation (Boichard et al., 2010) combines
Marker Assisted Selection (MAS) on QTL followed

through haplotypes and genomic selection based on
SNP detected with the EN algorithm. EN was used as
a variable selection method and prediction equations
were generated for the French genomic MAS.

In conclusion, the EN algorithm appears to be
a very flexible and promising tool in the genomic
selection framework that can be used for genomic
evaluation or as a variable selection device to provide
SNP of interest to a marker-assisted evaluation
method.
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Legarra, A., Robert-Granié, C., Croiseau, P., Guillaume, F.
& Fritz, S. (2011). Improved Lasso for genomic selection.
Genetics Research (Cambridge) 93, 77–87.

Liu, Z., Seefried, F., Reinhardt, F., Thaller, G. & Reents, R.
(2010). Dairy cattle genetic evaluation enhanced with
genomic information. In 9th World Congress on Genetics
Applied to Livestock Production. Germany: Leibzig.

Lund, M. S., de Roos, A. P. W., de Vries, A. G., Druet, T.,
Ducrocq, V., Fritz, S., et al. (2010). Improving genomic
prediction by EuroGenomics collaboration. In 9th World

Congress on Genetics Applied to Livestock Production.
Germany: Leipzig.

Meuwissen, T. &Goddard, M. (2001). Prediction of identity
by descent probabilities from marker-haplotypes.
Genetics Selection Evolution 33, 605–634.

Meuwissen, T., Hayes, B. & Goddard, M. (2001). Prediction
of total genetic value using genome-wide dense marker
maps. Genetics 157, 1819–1829.

Misztal, I., Tsuruta, T., Strabel, T., Auvray, B., Druet, T. &
Lee, D. H. (2002). BLUPF90 and related programs
(BGF90). 7th World Congress on Genetics Applied to
Livestock Production. France: Montpellier.

Mrode, R. A. & Swanson, G. J. T. (2004). Calculating cow
and daughter yield deviations and partitioning of genetic
evaluations under a random regression model. Livestock
Production Science 86, 253–260.

Peers, I. (1996). Statistical Analysis for Education and
Psychology Researchers. Washington, DC: Falmer Press.

Van Raden, P. (2008). Efficient methods to compute geno-
mic predictions. Journal of Dairy Science 91, 4414–4423.

Van Raden, P., Van Tassell, C., Wiggans, G., Sonstegard,
T., Schnabel, R., Taylor, J., et al. (2009). Invited review:
reliability of genomic predictions for North American
Holstein bulls. Journal of Dairy Science 92, 16–24.

Verbyla, K., Hayes, B., Bowman, P. & Goddard, M. (2009).
Accuracy of genomic selection using stochastic search
variable selection in Australian Holstein Friesian dairy
cattle. Genetics Research 91, 307–311.

Wensch-Dorendorf, M., Yin, T., Swalve, H. H. & König, S.
(2011). Optimal strategies for the use of genomic selection
in dairy cattle breeding programs. Journal of Dairy
Science 94, 4140–5151.

Wolc, A., Stricker, C., Arango, J., Settar, P., Fulton, J. E. &
O’Sullivan, N. P., et al. (2011). Breeding value prediction
for production traits in layer chickens using pedigree
or genomic relationships in a reduced animal model.
Genetics Selection Evolution 43, 5.

Zou, H. & Hastie, T. (2003). Regression Shrinkage and
Selection via the Elastic Net, with Application to
Microarrays. Stanford University : Department of
Statistics.

Zou, H. & Hastie, T. (2005). Regularization and variable
selection via the Elastic Net. Royal Statistical Society
Series B 67, 301–320.

Fine tuning genomic evaluations in dairy cattle 417

https://doi.org/10.1017/S0016672311000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672311000358

