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Abstract. Fix a prime number ‘. We prove a conjecture stated by Ihara, which he attributes
to Deligne, about the action of the absolute Galois group on the pro-‘ completion of the
fundamental group of the thrice punctured projective line. Similar techniques are also used

to prove part of a conjecture of Goncharov, also about the action of the absolute Galois group
on the fundamental group of the thrice punctured projective line. The main technical tool is
the weighted completion of a profinite group with respect to a reductive representation (and
other appropriate data).
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1. Introduction

Fix a prime number ‘. In this paper we prove a conjecture [16, p. 300], which Ihara

attributes to Deligne, about the action of the absolute Galois group on the pro-‘

completion of the fundamental group of the thrice punctured projective line. It is

stated below. Similar techniques are also used to prove part of a conjecture of

Goncharov [11, Conj. 2.1], also about the action of the absolute Galois group on

the fundamental group of the thrice punctured projective line, and which derives

from the conjectures of Deligne and Ihara and questions of Drinfeld [7, p. 859].

Ihara’s version of Deligne’s conjecture concerns the outer action

f‘: GQ ! Out p1ðP
1
ðCÞ � f0; 1;1g; xÞð‘Þ ð1Þ

of the absolute Galois group GQ on the pro-‘ fundamental group of the thrice punc-

tured projective line. The pro-‘ completion of p1ðP
1
ðCÞ � f0; 1;1g; xÞ is the inverse

limit of its finite quotients of ‘-power order. We shall denote it by pð‘Þ.
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Ihara defines a filtration

GQ ¼ I‘
0GQ 	 I‘

1GQ 	 I‘
2GQ 	 
 
 


of GQ by

I‘
mGQ ¼ kerff‘: GQ ! Outðpð‘Þ=Lmþ1pð‘ÞÞg ð2Þ

where Lmpð‘Þ denotes the mth term of the lower central series of pð‘Þ indexed so
that L1pð‘Þ ¼ pð‘Þ. It is independent of the choice of base point x but depends

on the choice of the prime ‘, as the ‘-adic cyclotomic character induces an

isomorphism Gr0I‘GQ ffi Z
‘ : It has the property that

½I‘2
mGQ; I‘

nGQ� � I‘
mþnGQ

from which it follows that the positive part

Gr>0I‘
GQ :¼

M
n>0

Gr n
I‘
GQ

of the associated graded group of GQ is a Lie algebra over Z‘ with bracket induced

by the group commutator.

In this paper we shall prove:

CONJECTURE 1 ([16, p. 300]). The Q‘-form ðGr>0I‘
GQÞ �Q‘ of the positive part of

Gr�I‘GQ is generated as a Lie algebra by elements s3, s5, s7; . . . where s2nþ1 2

Gr2nþ1I‘
GQ.

In fact, combining this result with the work of Ihara [16], one can see (cf. Remark

8.6) that there is a GQ-equivariant isomorphism

H1ðGr
>0
I‘

GQ;Q‘Þ ffi
M
n51

H1
ctsðGQ;Q‘ð2nþ 1ÞÞ

�
�Q‘ð2nþ 1Þ ffi

M
n51

Q‘ð2nþ 1Þ:

The value of Soulé’s element [33] of H1
ctsðGQ;Q‘ð2nþ 1ÞÞ on the image of s2nþ1 in

H1
ctsðGQ;Q‘ð2nþ 1ÞÞ

�
�Q‘ð2nþ 1Þ is nonzero.

In [16] Ihara constructs explicit elements s3; s5; s7; . . . of Gr>0I‘
GQ, which are

sometimes called Soulé elements. He studies the nonvanishing of the Lie brackets

of these elements and asks [16, p. 300] whether the sj generate ðGr
>0
I‘

GQÞ �Q‘

freely. In [17], he proves that if ðGr>0I‘
GQÞ �Q‘ is free, then it is generated by the

Soulé elements. He also shows that the sj generate an open subgroup of the image

of the homomorphism G‘ ! Outðpð‘Þ=Lmþ1pð‘ÞÞ for each m, a consequence of Con-

jecture 1. The techniques of this paper do not seem to shed light on the question

of freeness.

Our basic tool, which we develop in Paragraphs 3, 3.1, and 4, is the theory of

weighted completion of a profinite group G with respect to a continuous, Zariski
dense representation r: G! RðQ‘Þ into a Q‘-group endowed with a distinguished

central cocharacter w: Gm! R. The weighted completion in this case consists of
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(i) a proalgebraic Q‘-group G which is an extension

1! U ! G! R! 1

of R by a prounipotent group U with the property that H1ðUÞ, when viewed as
a Gm-module via w, has only negative weights in the sense of representation

theory;

(ii) a continuous homomorphism ~rr: G! GðQ‘Þ which lifts r.

These data are required to be universal for homomorphisms of G into such ‘nega-
tively weighted extensions’ of R by a prounipotent group. It is a variant of Deligne’s

notion of the relative Malcev completion, which is developed in [12, 13]. One can

also view weighted completions of G as the Tannakian fundamental group of an

appropriate category of finite-dimensional G-modules over Q‘. This approach is

explained in [14] – see also Remark 4.3.

Weighted completions arise naturally in Galois theory in many contexts, the

simplest of which is the following:

(i) ‘ is a prime number,

(ii) G ¼ G‘, the Galois group of the maximal algebraic extension of Q unramified

outside ‘,

(iii) R ¼ Gm,

(iv) r: G‘ ! GmðQ‘Þ ¼ Q


‘ is the ‘-adic cyclotomic character,

(v) w: Gm! Gm is the homomorphism defined by wðxÞ ¼ x�2.

In Section 7 we show that the weighted completion is an extension

1! K‘ ! A‘ ! Gm ! 1;

where the Lie algebra k‘ of K‘ is isomorphic (noncanonically) to the completion of

the Lie algebra generated byM
n50

H1
ctsðG‘;Q‘ð2nþ 1ÞÞ

�
�Q‘ð2nþ 1Þ ffi

M
n50

Q‘ð2nþ 1Þ:

The most important property of weighted completions (or more generally,

negatively weighted extensions) is that each module of such a group has a natural

weight filtration, and that the weight graded functor is exact on the category of

such modules. This exactness property, called strictness, is familiar from Deligne’s

mixed Hodge theory [4] as well as Galois theory. It is a key ingredient in the proof

of Conjecture 1. The reason for taking the central cocharacter to be x 7!� x�2 in

the previous paragraph is to make the representation theoretic weights agree with

the usual weights in algebraic geometry coming from Hodge theory and Galois

theory.

The Lie algebra of a weighted completion is a module over the group via the

adjoint action and therefore has a natural weight filtration. In particular, the Lie

algebra a‘ of the weighted completion of G‘ has a weight filtration where

k‘ ¼W�1a‘. The copy of Q‘ð2nþ 1Þ in the previous paragraph lies in W�2ð2nþ1Þk‘
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and projects to a non-zero element in the �2ð2nþ 1Þth weight graded quotient of k‘.
These together generate GrW� k‘.
The first step in the proof of Conjecture 1 is to use the fact, due to Ihara [15], that

the Galois representation (1) factors through G‘. This outer action induces one on

the unipotent completion P over Q‘ of the geometric fundamental group of

P
1
� f0; 1;1g. One can define the filtration (2) of G‘ by considering this action.

The representation of G‘ on the Lie algebra p of P is negatively weighted in an

appropriate sense and induces a homomorphism A‘ ! OutP and a corresponding
homomorphism a‘ ! OutDer p on Lie algebras. Using strictness, one can show
(see Section 8) that

ðGrm
I‘

G‘Þ �Z‘
Q‘ ffi Gr

W
�2mimfk‘! OutDerpg ffi im GrW�2mk‘! OutDerGrW� p

� �
whenever m > 0. Conjecture 1 then follows from the computation of GrW� a‘ in
Section 7.

Goncharov’s Conjecture is similar to Ihara’s and concerns the action (as distinct

from the outer action) of the Galois group of the kernel of the ‘-adic cyclotomic

character, Qðm‘1Þ, on the ‘-adic prounipotent completion P of p1ðP
1
ðCÞ�

f0; 1;1g; 01
!
Þ with base point the tangent vector at 0 pointing towards 1. In addi-

tion to conjecturing that the Lie algebra of the Zariski closure of the image of

GQðm‘1Þ in AutP is generated by elements s3; s5; s7; . . . ; he conjectures that it

is freely generated by them. We are able to prove the generation part of his

conjecture, but not the freeness. Goncharov’s Conjecture is considered in Para-

graph 8.5.

In Section 9 we prove ‘-adic versions of two related conjectures of Deligne, [5, 8.2,

p. 163] and [5, 8.9.5, p. 168], concerning mixed Tate motives over the spectrum of the

ring of S-integers of a number field. As was later pointed out to us by Goncharov,

these had already been proved by Beilinson and Deligne in their unpublished manu-

script [1]. Our approach via weighted completion is different, but equivalent, to the

approach of Beilinson and Deligne. Notably one should mention that Goncharov

[10] has used the work of Voevodsky [37] and Levine [20] to construct the category

of mixed Tate motives over the spectrum of a number field. It suggests a working

definition of the category of mixed Tate motives over the spectrum of a ring of

S-integers in a number field.

Our proof of Conjecture 1 can be conceptualized by saying that the unipotent

completion of the fundamental group of p1ðP
1
� f0; 1;1g; 01

!
Þ should be a mixed

Tate motive over SpecZ, and therefore a module over the Tannakian fundamental

group of the category of mixed Tate motives over SpecZ. As was pointed out to us

by a referee, once one knows that the unipotent completion of the fundamental

group of p1ðP
1
� f0; 1;1g; 01

!
Þ is a mixed Tate motive over SpecZ in the sense of

Goncharov, Conjecture 1 will follow by some arguments including the strictness

of weight filtrations. Our approach here is more direct, treating only ‘-adic Galois

representations.
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Deligne’s Conjectures concern the category of mixed Tate motives over the

spectrum XF;S :¼ SpecOF � S of the ring of S-integers of a number field F. His

conjectures essentially say that

(i) there should be a category of mixed Tate motives over XF;S;

(ii) the tannakian fundamental group of this category should be a proalgebraic

Q-group which is an extension of Gm by a prounipotent group;

(iii) the Lie algebra of this prounipotent radical should be free and its first coho-

mology is isomorphic to
L

n>0KnðXF;SÞ �Qð�nÞ.

Let XF;S½1=‘� denote XF;S minus all primes over ‘. In Section 9, we define the cate-

gory of ‘-adic mixed Tate modules over XF;S to be the category whose objects are

p1ðXF;S½1=‘�Þ-modules M over Q‘ endowed with a weight filtration W� by

p1ðXF;S½1=‘�Þ-submodules such that all odd weight graded quotients of M vanish

and the ð�2mÞth graded quotient is a sum of a finite number copies of Q‘ðmÞ. In

addition, we require that all representations be crystalline at all primes p outside S

that lie over ‘.

When S contains all primes that lie over ‘, the Tannakian fundamental group of

the category of ‘-adic mixed Tate modules is the weighted completion AF;S of

p1ðXF;SÞ with respect to the cyclotomic character. This is shown, in Section 7, to

be an extension of Gm by a prounipotent Q‘-group whose Lie algebra is isomorphic

to a completion of the free Lie algebra generated byM
n>0

H1
étðXF;S;Q‘ðnÞÞ

�
�Q‘ðnÞ:

This group is related to the algebraic K-theory of XF;S by the regulators

c1: K2n�1ðXF;SÞ ! H1
étðXF;S;Q‘ðnÞÞ:

Soulé’s result [33] when ‘ is odd, and results of Rognes and Weibel [27] when ‘ ¼ 2,

imply that these induce isomorphismsM
n>0

K2n�1ðXF;SÞ �Q‘ �!
’ M

n>0

H1
étðXF;S;Q‘ðnÞÞ:

This yields a proof of an ‘-adic version of Deligne’s conjectures similar to the unpub-

lished proof of Beilinson and Deligne [1].

There is an appendix on unipotent completion where we collect and prove results

we need. Many of these must be well known but we know of no good references,

while other results may be new. One innovation is that we introduce the notion of

the ‘-adic unipotent completion of a profinite group and prove a comparison theo-

rem which states that if G is a finitely generated group, then the ‘-adic unipotent

completion of the profinite (or pro-‘) completion of G is isomorphic to the Q‘-form

of the ordinary unipotent completion of G.
There is a second appendix in which we prove some results about the continuous

cohomology of the Galois groups GF;S which are surely well known to the experts,

but for which we could not find suitable references.
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Conventions. Unless mentioned otherwise, all fields in this paper will be of charac-

teristic zero.

The functor H1 when applied to a group, Lie algebra, etc., will denote the maximal

abelian quotient. In the topological case, it will denote the quotient by the closure of

the commutator subgroup or subalgebra, as appropriate.

Following the conventions in Hodge theory (cf. [4]), we shall denote increasing

filtrations with a subscript index:

W�M: 
 
 
 �Wm�1M �WmM � 
 
 


and decreasing filtrations with a superscript index:

I �M: 
 
 
 	 ImM 	 Imþ1M 	 
 
 


Their associated gradeds are defined by

GrW� M :¼
M
m2Z

WmM=Wm�1M and Gr�IM :¼
M
m2Z

ImM=Imþ1M:

Throughout this paper, k denotes a field of characteristic zero.

2. Preliminaries on Proalgebraic Groups

In this paper, a group scheme or equivalently a k-group scheme means an affine

group scheme over k. An algebraic group over a field k or an algebraic k-group

means an affine group scheme of finite type over k. A proalgebraic group is a pro-

jective limit of algebraic groups over k. It is known that the category of proalgebraic

groups over k is equivalent to the category of affine group schemes over k, and any

proalgebraic group is a projective limit of a projective system consisting of surjective

morphisms (cf. [6, Corollary 2.7, p. 128]).

If G ¼ lim
a
 ���

Ga, then the set of its k-rational points satisfies

GðkÞ ¼ lim
a
 ���

GaðkÞ:

The Zariski closure of a subgroup S of GðKÞ, K an extension field of k, is the smallest
proalgebraic k-group that contains it – it is the projective limit lim

 �
Sa where Sa is the

k-Zariski closure of the image of S in GaðKÞ.

The Lie algebra g of the proalgebraic k-group

G ¼ lim
a
 ���

Ga;

where each Ga is algebraic, is simply the inverse limit

lim
a
 ���

ga

of the Lie algebras of the Ga. It will be regarded as a topological Lie algebra with the

topology defined by the inverse limit, where each ga has the discrete topology.

124 RICHARD HAIN AND MAKOTO MATSUMOTO

https://doi.org/10.1023/B:COMP.0000005077.42732.93 Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000005077.42732.93


If each Ga is unipotent, we say that G is prounipotent. The Lie algebra of a

prounipotent group is the inverse limit of nilpotent Lie algebras (in this paper a nil-

potent Lie algebra means a finite-dimensional nilpotent Lie algebra). Such a Lie alge-

bra is said to be pronilpotent.

The well known correspondence between unipotent groups of k and nilpotent Lie

algebras over k, which assigns to a unipotent group its Lie algebra, extends easily to

a correspondence between prounipotent groups over k and pronilpotent Lie algebras

over k (cf. [26, Appendix A]).

A graded Lie algebra is a Lie algebra in the category of graded vector spaces. It is

of finite type if each of its graded quotients is finite-dimensional. The following

results are needed in the sequel. The first is an immediate consequence of the elemen-

tary fact that a homomorphism n1 ! n2 between finite-dimensional nilpotent Lie
algebras is surjective if and only if the induced map H1ðn1Þ ! H1ðn2Þ is surjective.

PROPOSITION 2.1. If n ¼
L

m>0 nm is a graded Lie algebra, then the image of any

section of the canonical surjection n! H1ðnÞ generates n.

Any such section induces a homomorphism from the free Lie algebra generated by

H1ðnÞ. Thus we have:

COROLLARY 2.2. If n ¼
L

m>0 nm is a graded Lie algebra, then there is a free

graded Lie algebra f ¼
L

m>0 fm and a surjective homomorphism f! n such that the

induced map H1ðfÞ ! H1ðnÞ is an isomorphism.

Finally, we recall the Levi decomposition [2, p. 158].

PROPOSITION 2.3. Every algebraic k-group G is an extension of a reductive k-group

R ðcalled the Levi quotientÞ by a unipotent group U ðcalled the unipotent radicalÞ,

1! U! G! R! 1:

This extension is split and any two splittings differ by conjugation by an element of

UðkÞ.

3. Negatively Weighted Extensions and Weight Filtrations

Let R be an algebraic k-group. Denote Gm=k by Gm. Suppose that w: Gm ! R is

a central cocharacter—that is, a homomorphism whose image is contained in the

center of R.

We shall denote by Qm the one-dimensional irreducible representation of Gm on

which it acts by the mth power of the standard character. We shall denote the Qm-

isotypical component of a Gm-module V by Vm.

Suppose that

1! U! G! R! 1

GALOIS ACTIONS ON THE FUNDAMENTAL GROUP OF P
1
� f0; 1;1g 125

https://doi.org/10.1023/B:COMP.0000005077.42732.93 Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000005077.42732.93


is an extension of R by a unipotent group in the category of algebraic k-groups. The

first homology of U is an R-module, and therefore a Gm-module via the homo-

morphism w. Thus we can write

H1ðUÞ ¼
M
m2Z

H1ðUÞm:

We shall say that this extension is negatively weighted with respect to w if H1ðUÞm
vanishes whenever m5 0.

We shall say that a proalgebraic group which is an extension of R by a prouni-

potent group U is negatively weighted if it is an inverse limit of negatively weighted

algebraic groups.

If w is trivial, then there are no nontrivial negatively weighted extensions of R.

3.1. THE WEIGHT FILTRATION

Suppose that an algebraic k-group G is a negatively weighted extension of R with

respect to the central cocharacter w: Gm! R. In this section, we show that represen-

tations of a negatively weighted extension of R have a natural weight filtration, and

that morphisms between such modules are strict with respect to this weight filtration.

LEMMA 3.1. There is a lift of the homomorphism w: Gm ! R to a homomorphism

~ww: Gm ! G, and any two such liftings are conjugate by an element of UðkÞ.

Proof. This can be seen by pulling back the extension U! G! R along w and

then applying Proposition 2.3. &

Fix such a splitting ~ww. Each finite-dimensional G-module V can then be regarded

as a Gm-module via ~ww and can therefore be decomposed

V ¼
M
n2Z

Vn ð3Þ

under the Gm-action. Define the weight filtration of V by

WnV ¼
M
m4n

Vm:

A priori, this filtration depends on ~ww but we will show, in Proposition 3.8, that it

does not.

The nth weight graded quotient of V is defined by

GrWn V :¼WnV=Wn�1V:

The inclusion Vn,!V induces a natural isomorphism

GrWn V ffi Vn:

It follows directly from the representation theory of Gm that, for a fixed splitting

~ww, the weight splitting (3) is compatible with Hom and tensor products.
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PROPOSITION 3.2. If U and V are G-modules, then

HomðU;V Þn ¼
M

r�m¼n

HomðUm;VrÞ

and

ðU� V Þn ¼
M

rþm¼n

Um � Vr:

Moreover, if f: V!W is G-equivariant, then fðVnÞ �Wn for all n.

An immediate consequence is that the weight filtration is compatible with respect

to Hom and tensor products.

COROLLARY 3.3. If U and V are G-modules, then

WnHomðU;V Þ ¼ ff 2 HomðU;V Þ: fðWrUÞ �WrþnV for all r 2 Zg

and

WnðU� V Þ ¼
X

rþs¼n

WrU�WsV:

We can apply this to the adjoint action to decompose g, the Lie algebra of G, and

u, the Lie algebra of the negative unipotent part U:

g ¼
M
n2Z

gn and u ¼
M
n2Z

un:

Denote the Lie algebra of R by r.

PROPOSITION 3.4. With notation as above,

ðiÞ if V is a G-module, x 2 gn and v 2 Vm, then x 
 v 2 Vnþm;

ðiiÞ g is a graded Lie algebra; that is, if x 2 gn and y 2 gm, then ½x; y� 2 gnþm;

ðiiiÞ u is a sub graded Lie algebra of g, that is, um � gm;

ðivÞ if n5 0, then un ¼ 0;

ðvÞ the graded quotients of g are given by

gn ¼

0; n > 0;
r; n ¼ 0;
un; n < 0:

8<:
Proof. The first statement follows from the previous proposition as the mapping

g� V! V is G-equivariant. The second follows from the first by taking V to be the

adjoint representation. The third statement is clear.

Set

u<0 ¼
M
n<0

un:

GALOIS ACTIONS ON THE FUNDAMENTAL GROUP OF P
1
� f0; 1;1g 127

https://doi.org/10.1023/B:COMP.0000005077.42732.93 Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000005077.42732.93


The inclusion of this into u induces a surjection on H1 as H1ðuÞ has all negative
weights. Since u and u<0 are both nilpotent, this implies that they are equal. This

proves the fourth statement.

The exact sequence 0! u! g! r! 0 is an exact sequence of graded g-
modules. Since w is central in R, it follows that r ¼ r0. Since u has only negative
weights, it follows that the projection g! r induces an isomorphism g0 ffi r and that
gn ¼ un whenever n 6¼ 0. &

COROLLARY 3.5. With notation as above, W�g is a filtration of g by Lie ideals, and

we have g ¼W0g, u ¼W�1g, and r ffi GrW0 g.

LEMMA 3.6. For every choice of lift ~ww, each term WnV of the weight filtration

of the G-module V is a g-module, and U acts trivially on its associated graded

GrW� V.

Proof. Since u ¼W�1g and since the action g� V! V is compatible with the

gradings, each term WnV of the weight filtration is a g-module. Since u ¼W�1g, the
image of the action u�WnV!WnV is contained in Wn�1V, from which the result

follows. &

The Levi decomposition extends to negatively weighted extensions.

LEMMA 3.7. If 1! U! G! R! 1 is a negatively weighted extension with

respect to the central cocharacter w: Gm! R, then the projection G! R splits, and

any two splittings are conjugate by an element of U.

Proof. If R is reductive, this follows directly from the classical Levi decomposi-

tion (Prop. 2.3). When R connected, the existence of the splitting follows from the

existence of a splitting of g! r as U is simply connected. The existence of such a Lie

algebra splitting follows by first taking a lifting ~ww: Gm ! G of w, and then decom-

posing g under the restriction of the adjoint action to Gm via ~ww. The summand of

weight zero (the invariant part) is a Lie algebra (as the bracket preserves weights)

and projects isomorphically to r.
First we will prove that any two liftings have to be conjugate by an element of U.

The intersection of U with the centralizer Cð ~wwÞ of a lift ~ww: Gm ! G of w is just the

identity as the Lie algebra of U has strictly negative weights with respect to ~ww under

the adjoint action. It follows that if s: R! G is a splitting and ~ww ¼ s � w, then

sðRÞ ¼ Cð ~wwÞ. Since the lifts ~ww are unique up to conjugation by an element of U,

any two splitting of G! R have to be conjugate by an element of U.

To prove the existence of the splitting in general, first take a Levi decomposition

R ffi �RR j
W

of R, where �RR is reductive andW unipotent. This also induces a Levi decomposition

Ro ffi �RRo
j
W
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of Ro, the connected component of the identity. By the connected case, we can lift Ro

to G. In particular, we can lift W to G. Since W and U are unipotent, �RR is the reduc-

tive quotient of G. By the classical Levi decomposition, we have a splitting of

G! �RR. The subtlety is that we have to choose this splitting so that its image nor-

malizes the lift of W.

The splittings �RR! G and Ro! G determine lifts ~ww0 and ~ww1 of w. By conjugating

one of the splittings by an element of U, we may assume they are the same. But then

the images of both splittings lie in the centralizer Cð ~ww0Þ. It follows that the image

projection Cð ~ww0Þ ! R is surjective, and therefore an isomorphism. Inverting this

isomorphism provides the splitting. &

PROPOSITION 3.8. The weight filtration of a G-module V is independent of the

choice of the lift ~ww of w and has the property that each WmV is a G-module. Moreover,

each GrWm V is an R-module of weight m.

Proof. Suppose that ~ww 0: Gm ! G is another lift of w. Then, by Lemma 3.1, there

is u 2 UðkÞ such that ~ww 0 ¼ u ~wwu�1. Write

V ¼
M
n2Z

V 0n

where V 0n is the subspace of V where Gm acts with weight n via ~ww 0. Then V 0n ¼ uVn.

Since each term of the weight filtrations associated to w and ~ww are G-modules, it

follows that, for each n,

M
m4n

V 0m ¼
M
m4n

uVm ¼ u
M
m4n

Vm

 !
�
M
m4n

Vm:

The reverse inclusion follows by reversing the roles of w and ~ww. The equality of the

weight filtrations follows.

To prove the second assertion, we choose a splitting s: R! G of the canonical

projection G! R, whose existence is assured by Lemma 3.7. Choose the lift ~ww to

be the composite of w: Gm! R with the splitting s. Let V ¼
L

Vn be the corre-

sponding weight decomposition of V. Since w is central in R, it follows that the

image of s preserves this decomposition and that each WmV is an ðim sÞ-module.

The result follows from Lemma 3.6.

The last assertion is clear. &

3.2. THE PROALGEBRAIC CASE

Suppose now that G is a proalgebraic k-group which is a negatively weighted exten-

sion of the algebraic k-group R and that V is a finite-dimensional G-module. Note
that G is the projective limit of algebraic k-groups Ga, each of which is a (necessarily

negatively weighted) extension of R. Since V is finite-dimensional, it is a Ga-module
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for some a, and therefore has a weight filtration. It is easily seen that this weight
filtration is independent of a. We therefore have:

THEOREM 3.9. If G is a proalgebraic k-group which is a negatively weighted

extension of the algebraic k-group R, then every finite-dimensional G-module

has a natural weight filtration W� by G-submodules. This has the following

properties:

ðiÞ the action of G on GrW� V factors through G! R;

ðiiÞ the action of Gm on GrWm V via w is of weight m;

ðiiiÞ the weight filtration is compatible with Hom and � in that it obeys the rules in

Corollary 3:3.

The weight filtration extends naturally to two different classes of infinite-dimen-

sional representations of G – viz, those representations that are projective or induc-
tive limits of finite-dimensional G-modules. In particular, the Lie algebras g of G and
u of U have natural weight filtrations.

3.3. MORPHISMS

The weight filtration has nice naturality and exactness properties. The following

setting is a little technical, but convenient for our applications.

Suppose that R1 and R2 are algebraic k-groups with distinguished central cochar-

acters wi: Gm ! Ri and that Gi is a proalgebraic k-group where i ¼ 1; 2. Suppose

that Gi ! Ri is an extension (not necessarily negatively weighted) of Ri, where

i ¼ 1; 2. Suppose that F: G1! G2 and f: R1! R2 are homomorphisms such that

the diagramz

commutes.

The following result says that, in some sense, negatively weighted extensions are

closed under subs and quotients. It is easily proved.

LEMMA 3.10. Suppose that F: G1! G2 is as above.

ðiÞ If F is an inclusion and G2 is a negatively weighted extension of R2 with respect to

w2, then G1 is a negatively weighted extension of R1 with respect to w1;

ðiiÞ If F is a surjection and G1 is a negatively weighted extension of R1 with respect to

w1, then G2 is a negatively weighted extension of R2 with respect to w2.
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A F-homomorphism from a G1-module V1 to a G2-module V2 is a G1 homomor-
phism, where V2 is regarded as a G1-module via F.
We can form a category: The objects are 4-tuples ðV;R;w;GÞ where R is an

algebraic k-group, w: Gm! R a central cocharacter, G a proalgebraic group which
is a negative extension of R, and where V is a finite-dimensional G-module. Morph-
isms between such modules are the F homomorphisms defined above. We shall call
this the category of weighted modules. Note that every object of this category has a

natural weight filtration.

3.4. STRICTNESS

Strictness is a key ingredient in our proof of Conjecture 1. A linear mapping

f: ðV1;W�Þ ! ðV2;W�Þ between two filtered vector spaces is said to be strict with

respect to the filtrations W� if it is filtration preserving and if

im f \WmV2 ¼ fðWmV1Þ

for all m 2 Z.

A filtration W� of a vector space induces a filtration on each subspace A,!V and

each quotient q: V!!B by

WmA :¼ A \WmV and WmB ¼ qðWmV Þ:

PROPOSITION 3.11. If f: ðV1;W�Þ ! ðV2;W�Þ is strict with respect to W�, then

there are natural isomorphisms

kerGrW� f ffi GrW� ker f and imGrW� f ffi GrW� im f

of graded vector spaces. &

THEOREM 3.12. Each homomorphism f: V1! V2 in the category of weighted

modules preserves the weight filtration and is strict with respect to it. Consequently, the

functors

V 7!� GrWm V; V 7!� WmV; and V 7!� V=WmV

are all exact on the category of finite-dimensional G-modules.

Proof. We use the notation of Paragraph 3.3. Since V1 and V2 are finite-dimen-

sional, we may assume that G1 and G2 are algebraic. To prove that the weight fil-
tration is preserved by the morphism f: V1! V2, choose a lift ~ww1: Gm ! G1, and

define ~ww2 to be F � ~ww1. Then both V1 and V2 become Gm-modules, and f is

Gm-equivariant. The first assertion follows. Strictness follows similarly as f becomes

a map of graded vector spaces after choosing the lift ~ww.

The exactness of GrWn follows for similar reasons. If

0! V 0 ! V! V 00 ! 0
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is an exact sequence of weighted modules, one can choose compatible liftings of the

central cocharacters, so that the exact sequence becomes an exact sequence of

Gm-modules. The sequence

0! V 0n! Vn! V00n ! 0

is thus exact for all n. The exactness of GrWn follows as the nth weight graded

quotient of a module is naturally isomorphic to its weight n part. &

This theorem extends to certain infinite-dimensional representations of such

groups. There are two appropriate categories of such G-modules. Namely, the cate-
gory of projective limits of finite-dimensional representations of G, and the category
of inductive limits of finite-dimensional representations of G. In both cases, there is a
weight filtration and morphisms are strict with respect to it.

4. Weighted Completion

We will work only in the profinite setting as that is where our examples lie, although

there is an obvious analogue in the discrete case. Denote Gm=Q‘
by Gm. Suppose

that:

(i) G is a profinite group;
(ii) R is an algebraic group defined over Q‘;

(iii) w: Gm! R is a central cocharacter;

(iv) r: G! RðQ‘Þ is a continuous homomorphism with Zariski dense image.

DEFINITION 4.1. The weighted completion of G with respect to r and w is a

proalgebraicQ‘-group G, which is an extension of R by a prounipotent group U, and
a continuous homomorphism ~rr: G! GðQ‘Þ which lifts r:

It is characterized by its universal mapping property: if G is a proalgebraic Q‘-group

which is a negatively weighted extension of R (with respect to w) by a prounipotent

group, and if f: G! GðQ‘Þ is a homomorphism that lifts r, then there is a unique
homomorphism of proalgebraic groups F: G! G that commutes with the projec-

tions to R and such that f ¼ F ~rr.

DEFINITION 4.2. A Q‘G-module V is a Q‘-vector space with a continuous

G-action. A weighted G-module is a finite-dimensional Q‘G-modules V with an

132 RICHARD HAIN AND MAKOTO MATSUMOTO

https://doi.org/10.1023/B:COMP.0000005077.42732.93 Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000005077.42732.93


increasing filtrationW� by G-submodules where, for each n, the action of G on GrWn V

factors through an action of R via r and where

Gm!
w

R! AutGrWn V

is the nth power of the standard character.

Morphisms between weighted G-modules are those as G-modules.

Remark 4:3. The weighted completion of G with respect to r: G! RðQ‘Þ can also

be defined to be the Tannakian fundamental group of the category of weighted

G-modules. This is proved in [14].

PROPOSITION 4.4. The weighted completion of G with respect to r: G! RðQ‘Þ and

w: Gm ! R always exists.

Proof. Consider the category whose objects are pairs

ðG! R;f: G! GðQ‘ÞÞ;

where G is an algebraic Q‘-group which is a negatively weighted extension of R and

where f is a continuous, Zariski dense representation which lifts r: G! RðQ‘Þ.

A morphism

F: ðG1! R;f1: G! G1ðQ‘ÞÞ ! ðG2 ! R;f2: G! G2ðQ‘ÞÞ

consists of a homomorphism f: G1! G2 of Q‘-groups that is compatible with the

projections to R and satisfies f2 ¼ f 
 f1.
Since the image of f is Zariski dense, there is at most one morphism between any

two objects. In addition, there is fibered product:

ðG1! R;f1: G! G1ðQ‘ÞÞ 
R ðG2 ! R;f2: G! G2ðQ‘ÞÞ

is defined to be

ðG! R;f: G! GðQ‘ÞÞ;

where G is the Zariski closure of the image of

f1 
R f2: G! ðG1 
R G2ÞðQ‘Þ:

It follows that this category is a projective system. The weighted completion of G
with respect to r is then ðG; r̂r: G! GðQ‘ÞÞ, the projective limit of all objects of this

category. &

4.1. COHOMOLOGY OF g AND u

We shall view g and u as topological Lie algebras where neighbourhood of zero are
the kernels n of the canonical homomorphisms to the finite-dimensional quotients of
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g that are extensions

0! u=n! g=n! r! 0:

of r by a nilpotent Lie algebra.
Suppose that V is a finite-dimensional R-module. Define the continuous cohomo-

logy of u and g with coefficients in V to be the direct limit of the cohomology of their

canonical finite dimensional quotients:

H�ctsðuÞ ¼ lim
n
����!

H�ðu=nÞ

and

H�ctsðg;V Þ ¼ lim
n
����!

H�ðg=n;V Þ and H�ctsðu;V Þ ¼ lim
n
����!

H�ðu=n;V Þ ¼ H�ctsðuÞ � V:

These can be computed using continuous cochains; the group H�ctsðg;V Þ is the
cohomology of the complex

Homcts ðL�g;V Þ :¼ lim
n
����!

HomðL�ðg=nÞ;V Þ

of continuous cochains. The differential is induced by the dual of the bracket.

A complex which computes H�ctsðu;V Þ is obtained by replacing g by u.
Since the Lie algebras g of G and u of U are inverse limits of the Lie algebras of the

finite dimensional quotients of G and U, respectively, it follows from Theorem 3.12

that each has a natural weight filtration. Since the category of G-modules is Abelian,
these pass to H�ctsðuÞ.

PROPOSITION 4.5. The Lie algebras g of G, r of R and u of U have natural weight

filtrations. These satisfy

g ¼W0g; Wnu ¼Wng whenever n < 0:

These weight filtrations pass to cohomology. In particular, each cohomology group

Hm
ctsðuÞ has a canonical weight filtration which satisfies

GrWm Hn
ctsðuÞ ¼ 0 if m < n:

More precisely, if Wm�1H
1
ctsðuÞ ¼ 0, then Wnm�1H

n
ctsðuÞ ¼ 0.

Proof. We need only prove the last statement. Since H1
ctsðuÞ has weights 5m, u

has weights 4�m, and its continuous dual u � (a direct limit of finite-dimensional
G-modules) has weights 5m. It follows that the space

Hom ctsðL�u; kÞ

of degree n continuous cochains on u has weights 5nm. Since the bracket is a

morphism, the Chevalley–Eilenberg complex

ðHomcts ðL�u; kÞ;�½ ; � �Þ

of continuous cochains on u is a complex of G-modules. Its cohomology is therefore
a graded G-module and thus has a weight filtration induced from that of u. Since
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the n-cochains have weights 5nm, it follows that the weights on HnðuÞ are also
5nm. &

4.2. BASIC STRUCTURE OF g AND u

Each finite dimensional representation V of R can be decomposed V ¼
L

n2Z Vn

under the Gm action. We shall call V pure of weight n if V ¼ Vn, and negatively

weighted if Vn ¼ 0 for all n5 0. Since w is central, each Vn is an R-module. Thus,

if V is indecomposable (i.e., cannot be written as a direct sum of two nontrivial

submodules), V is pure of some weight we shall denote by nðV Þ.

Denote by Hi
ctsðG;V Þ the cohomology of the complex of continuous cochains

f: Gmþ1! V

where V is viewed as a continuous G-module via r: G! RðQ‘Þ. This is the same

notion of continuous cohomology as used in [34, Sect. 2].

THEOREM 4.6. For all pure R-modules V, there are natural isomorphisms

HomctsR ðH1ðUÞ;V Þ ffi H1
ctsðG;V Þ when nðV Þ < 0;

0 when nðV Þ5 0



and

HomctsR ðGr
W
n H1ðUÞ;V Þ ffi H1

ctsðG;V Þ when n ¼ nðV Þ < 0;
0 otherwise:



The second assertion follows directly from the first, which is proved in Section 5.

COROLLARY 4.7. If H1
ctsðG;V Þ vanishes for all pure representations V of R of

negative weight, then the weighted completion of G relative to r: G! R is r itself.

Proof. The theorem above implies that H1ðuÞ ¼ 0. Since u is pronilpotent, u is
trivial. &

4.3. THE CASE R REDUCTIVE

Suppose now that R is reductive. Let fVaga be a set of representatives of the

isomorphism classes of finite-dimensional irreducible representations of R. For

convenience, we set nðaÞ ¼ nðVaÞ.

The next result follows directly from Theorem 4.6.

THEOREM 4.8. If H1
ctsðG;VaÞ is finite-dimensional for all a with nðaÞ < 0, then

H1
ctsðuÞ ffi

M
fa : nðaÞ51g

H1
ctsðG;V

�
a Þ � Va
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and

H1ðUÞ ffi H1ðuÞ ffi lim
F
 �

M
a2F

H1
ctsðG;VaÞ

�
� Va

where F ranges over the finite subsets of fa: nðaÞ < 0g. More precisely, W0H
1
ctsðuÞ

vanishes and, if m > 0, then

GrWm H1
ctsðuÞ ffi

M
fa : nðaÞ¼mg

H1
ctsðG;V

�
a Þ � Va:

In the reductive case, we are able to control H2
ctsðuÞ as well, which will allow us to

control the relations in u.

THEOREM 4.9. There is a natural injective R-invariant homomorphism

F: H2
ctsðuÞ ,!

M
fa : nðaÞ52g

H2
ctsðG;V

�
a Þ � Va:

In addition, if m > 1, then

GrWm H2
ctsðuÞ �

M
fa : nðaÞ¼mg

H2
ctsðG;V

�
a Þ � Va:

The proof is given in Section 6.

COROLLARY 4.10. Suppose that H1
ctsðG;V

�
a Þ vanishes for all a satisfying 0 < nðaÞ

< d. If H2
ctsðG;V

�
a Þ vanishes for all a with nðaÞ5 2d, then GrW� u is a free Lie algebra.

Moreover, any lift of a basis of GrW� H1ðuÞ to Gr
W
� u is a free generating set.

Proof. The condition on H1
ctsðG;V

�
a Þ implies, by Theorem 4.9, that Wd�1

H1
ctsðuÞ ¼ 0. The last assertion in Proposition 4.5 implies that W2d�1H

2
ctsðuÞ ¼ 0. The

assumption about H2
ctsðG;V

�
a Þ and the last assertion of Theorem 4.9 imply that

GrWm H2
ctsðuÞ ¼ 0

when m5 2d, so that GrW� H2
ctsðuÞ ¼ 0. Since Gr

W
� is an exact functor, it commutes

with homology. So it follows that H2ðGrW� uÞ vanishes. The result now follows from
the following lemma. &

LEMMA 4.11. If n ¼
L

m<0 nm is a graded Lie algebra over a field of characteristic

zero, then n is free if and only if H2ðnÞ ¼ 0.
Proof. By Corollary 2.2, there is a free graded Lie algebra f ¼

L
m<0 fm and a

graded Lie algebra homomorphism f! n which is surjective and induces an

isomorphism on H1. Denote the kernel of this by a. Note that n is free if and only if
a ¼ 0. Since a is an ideal in a negatively graded Lie algebra, a ¼ 0 if and only if
a=½f; a� ¼ 0.
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There is a spectral sequence

Ea;b
2 ¼ Haðn;HbðaÞÞ ) HaþbðfÞ:

Since f is free, H2ðfÞ ¼ 0. It follows that

d2: H0ðn;H1ðaÞÞ ! H2ðnÞ

is an isomorphism. The result follows as H0ðn;H1ðaÞÞ is the graded dual of

a=½f; a�. &

EXAMPLE 4.12. Suppose that G ¼ Z
‘ , that R ¼ Gm=Q‘
and that r: Z
‘ ,!

GmðQ‘Þ ¼ Q


‘ is the natural inclusion. Take w to be the inverse of the square of the

standard character.? In this example we compute the weighted completion of Z
‘
with respect to r and w. Note that

H1
ctsðZ



‘ ;Q

mÞ ¼ 0;

for all non-zero m 2 Z. This can be seen as follows.

For each a 2 Z
‘ , the mapping

a: Qm! Qm x 7!� amx

is Z
‘ -equivariant, and thus induces an automorphism of HnðZ
‘ ;Q
mÞ. A general

fact in group cohomology implies that this automorphism is trivial. (cf. [28, p.

116].) It follows that ð1� amÞ annihilates HnðZ
‘ ;Q
mÞ for all a 2 Z
‘ . But if m 6¼ 0

and a 6¼ 1, then ð1� amÞ is in Q


‘ . It follows that H

nðZ
‘ ;Q
mÞ vanishes when m 6¼ 0.

Theorem 4.6 tells us that the unipotent radical U of the weighted completion of Z
‘
is trivial, so that the weighted completion of Z
‘ with respect to r is just

r: Z
‘ ! GmðQ‘Þ.

More generally, we can take G in the previous example to be any open subgroup of
Z
‘ . One has the same vanishing of cohomology and consequently, that the weighted

completion of G with respect to r: G! GmðQ‘Þ is just r itself.

4.4. NATURALITY

Here we record some more technical naturality statements that are needed in the

sequel.

Suppose that f: G1! G2 is a continuous homomorphism between two profinite

groups. Suppose that R1 and R2 are two algebraic Q‘-groups with central cocharac-

?We use the inverse of the square of the standard character so that later, when considering the
weighted completion of p1ðSpecZ½1=‘�Þ, for example, the representation theoretic weights agree with
weights defined using Frobenius. This square makes no difference to the weighted completion, it just

doubles the indexing of the weight filtration.
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ters w1 and w2, respectively. Suppose that

r1: G1 ! R1ðQ‘Þ and r2: G2! R2ðQ‘Þ

are two continuous, Zariski dense homomorphisms. We can form the weighted

completions G1 and G2 of G1 and G2. Suppose that f: R1! R2 is a homomorphism

of Q‘-groups such that

commutes.

The following result is easily proved using the universal mapping property of

weighted completion and Theorem 3.12.

PROPOSITION 4.13. Under these hypotheses, there is a homomorphism F: G1! G2
of proalgebraic Q‘-groups such that the diagram

commutes. Moreover, the induced homomorphism g1 ! g2 on Lie algebras preserves

the weight filtration and is strictly compatible with it.

We are now in the situation described in Paragraph 3.3 and can thus apply

Theorem 3.12.

4.5. RIGHT EXACTNESS

Our goal in this paragraph is to understand the relation between the kernel of G! R

and the ‘-adic unipotent completion of the kernel of r: G! RðQ‘Þ.

We continue with the notation from the beginning of this section: G is a profinite
group, r: G! RðQ‘Þ is a continuous, Zariski dense homomorphism from G to an
algebraic Q‘-group, w is a central cocharacter of R, G is the corresponding weighted
completion of G, and U is the kernel of G! R.
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Denote by R the weighted completion of im r with respect to the inclusion
im r ,!RðQ‘Þ and w. The homomorphisms G! im r and ker r! UðQ‘Þ induce

homomorphisms

G! R and ðker rÞun=Q‘
! U

where ðker rÞun=Q‘
denotes the ‘-adic unipotent completion (Paragraph A.2) of ker r.

PROPOSITION 4.14. The sequence

ðker rÞun=Q‘
! G! R! 1

is exact.

Proof. Since G! RðQ‘Þ is Zariski dense, G! R is surjective. Denote the image

of ðker rÞun=Q‘
in U by K. Since the diagram

commutes, the image of ker r in RðQ‘Þ is trivial. It follows that K is contained in the
kernel of G! R and that the composite

ðker rÞun=Q‘
! G! R

is trivial. It remains to show that K contains the kernel of G! R.
Note that K is the Zariski closure of the image of ker r in U. Since ker r is normal

in G, and since G is Zariski dense in G, K is normal in G. The homomorphism r indu-
ces a homomorphism im r! ðG=KÞðQ‘Þ. Because G=K is a negatively weighted

extension of R, the universal mapping property of R gives a splitting R! G=K of

G! R. Since the image of G is Zariski dense in G, im r has Zariski dense image
in G=K, which implies that this splitting is surjective, and therefore an isomorphism
R! G=K. &

COROLLARY 4.15. If H1
ctsðim r;VaÞ vanishes for all irreducible representations Va

of R for which nðaÞ < 0, then the sequence

ðker rÞun=Q‘
! G! R! 1

is exact. In particular, the image of ker r in UðQ‘Þ is Zariski dense.

Proof. Corollary 4.7 implies that R ¼ R. The result follows. &

5. Proof of Theorem 4.6

The proof is an exercise in group cohomology. We continue with the notation

from Section 4, except that we will abuse notation and not distinguish between an
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algebraic Q‘-group and the group of its Q‘ rational points.

Recall that

U ¼ lim
r̂r
 �

Ur̂r

where r̂r ranges over all continuous, Zariski dense representations r̂r: G! Gr̂rðQ‘Þ

into a negatively weighted extension Gr̂r of R by a unipotent group, which we shall

denote by Ur̂r.

PROPOSITION 5.1. There are natural isomorphisms

H1ðuÞ ¼ H1ðUÞ ¼ lim
r̂r
 �

H1ðUr̂rÞ and H1
ctsðuÞ ¼ lim

r̂r
�!

H1ður̂rÞ:

Each finite-dimensional R-module will be considered as a continuous G-module
via r. Note that there are natural one-to-one correspondences between:

(i) the set of continuous 1-cocycles f: G! V;

(ii) the set of continuous homomorphisms f: G! R j
V that lift r;
(iii) the set of continuous splittings s: G! G j
V of the extension

0! V! G j
V! G! 1:

Under this correspondence, cocycle f, the lift g 7!� ðrðgÞ; fðgÞÞ, and the splitting
g 7!� ðg; fðgÞÞ all correspond.
The following result is somewhat standard and is easily proved. It is a basic tool in

the proof of Theorem 4.6.

LEMMA 5.2. There are natural one-to-one correspondences between the following

three sets:

continuous homomorphisms

f: G! R j
V that lift r


 �. conjugation by

elements of V

continuous splittings s:

G! G j
V of G j
V �! G


 �. conjugation by

elements of V

and H1
ctsðG;V Þ. The bijections are induced by the bijections above.

We now prove the Theorem. First, if V is a pure representation of R with nðV Þ5 0,

then HomctsS ðH1ðUÞ;V Þ ¼ 0 as H1ðUÞ is negatively weighted. So suppose that V is a

pure representation of negative weight. In this case, the extension S j
V is negatively

weighted.

Each element of H1
ctsðG;V Þ gives a homomorphism r̂r: G! R j
V that lifts r. By

the universal mapping property of G, there is a homomorphism y: G! R j
V whose

composition with the canonical mapping G! GðQ‘Þ is r̂r. Since R j
V is an algebraic

group, this homomorphism induces a continuous mapping H1ðUÞ ! V, which is
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clearly R-invariant. This homomorphism depends only on the homomorphism r̂r up
to conjugation by elements of V. There is thus a well defined homomorphism

H1
ctsðG;V Þ ! HomctsR ðH1ðUÞ;V Þ:

Conversely, suppose that f: H1ðUÞ ! V is continuous and R-invariant. Pushing

out the extension

0! H1ðUÞ ! G=½U;U� ! R! 1

along f, we obtain an extension

0! V! Gf ! R! 1

which is algebraic as f is continuous. Composing the canonical mapping G! G with
G! G=½U;U� ! Gf, we obtain a homomorphism G! Gf which lifts r. By
Lemma 3.7, the projection Gf ! R splits, and the splitting is unique up to conjuga-

tion by an element of V. Thus f induces a homomorphism G! R j
V which is

unique up to conjugation by an element of V, and therefore an element of

H1
ctsðG;V Þ. This mapping is easily seen to be the inverse of the one above. This

completes the proof of Theorem 4.6.

6. Proof of Theorem 4.9

6.1. A TECHNICAL LEMMA

Suppose that R is a reductive group over a field k of characteristic zero. Suppose that

n is a nilpotent Lie algebra over k and that R acts on n as a group of automorphisms.
Suppose that V is a finite-dimensional R-module. Each element of y 2 H2

ctsðnÞ � V

determines a central extension

0! V! ~nny! n! 0:

LEMMA 6.1. The action of R on n and V lifts to an action on ~nny as a group of Lie

algebra automorphisms if and only if y 2
�
H2
ctsðnÞ � V

�G
:

Proof. We will prove the sufficiency of the condition; necessity is left as an

exercise.

Since R is reductive and acts on the finite-dimensional complex

C�ðnÞ :¼ ðL�n �;�½ ; � �Þ

of Lie algebra cochains,

H�ctsðnÞ � V

�R
¼ H�ð



C�ðnÞ � V

�R
Þ:

In particular, each

y 2


H2
ctsðnÞ � V

�R
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can be represented by a continuous R-invariant cocycle Y: L2n! V. The Lie alge-

bra ~nny can be constructed as n� V with bracket

½ðx; vÞ; ðy;wÞ� ¼ ð½x; y�;Yðx ^ yÞÞ:

The obvious action of R on n� V preserves the bracket as Y is R invariant. &

6.2. PROOF OF THE THEOREM

We continue with the notation from Section 4. Suppose in addition that R is

reductive. Let fVag be a set of representatives of the isomorphism classes of the

finite-dimensional, irreducible R-modules. It suffices to construct an injective linear

map

Fa: H2
ctsðuÞ � Va


 �R
! H2

ctsðG;VaÞ:

Suppose that y 2 ½H2
ctsðuÞ � Va�

R. Then there exists an algebraic quotient G of G
which is an extension

1! N! G! R! 1

where N is unipotent, and a class ~yy 2 ½H2ðnÞ � Va�
R, where n is the Lie algebra of N,

whose image under H2ðnÞ ! H2
ctsðuÞ is y. The class ~yy determines a central extension

0! Va! ~NNy! N! 1:

Choose a Levi decomposition

G ffi R j
N:

This determines an action of R on n. Lemma 6.1 implies that the R action on N lifts

to ~NNy. We can thus form the extension

0! Va! R j
 ~NNy! R j
N! 1:

Pulling this extension back along the quotient mapping G! G ¼ R j
N, we obtain

an extension

0! Va! ~GGy! G! 1: ð4Þ

of proalgebraic groups. Pulling this extension back along G! G, we obtain an
extension

0! Va! ~GGy! G! 1: ð5Þ

This gives a class in H2
ctsðG;VaÞ. This class is easily seen to depend only on the class

of y. This procedure therefore defines a map

Fa: H2
ctsðuÞ � Va


 �R
! H2

ctsðG;VaÞ:
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If FaðyÞ vanishes, the extension (5) splits. The universal mapping property of
G! GðQ‘Þ then implies that (4) splits. This restricts to give a splitting of the extension

0! Va! ~uuy! u! 0;

where ~uuy denotes the Lie algebra of the unipotent radical of ~GGy. It follows that y vanishes.

7. The Weighted Completion of p1ðSpec OF;SÞ

Fix a prime number ‘. Suppose that F is a number field. Denote its ring of integers by

OF. Suppose that S is a finite set of closed points of Spec OF containing all primes

over ‘. Let OF;S be the set of S-integers of F, so that Spec OF;S ¼ Spec OF � S. Set

GF;S ¼ p1ðSpec OF;S; Spec �FF Þ:

This is the Galois group of the maximal algebraic extension of F unramified outside S.

One has the ‘-adic cyclotomic character w‘: GF;S ! Z
‘ . Its image is an open sub-

group of Z
‘ and hence of finite index. Composing this with the inclusion

Z
‘ ,!GmðQ‘Þ, we obtain a continuous homomorphism

r‘: GF;S ! GmðQ‘Þ

with Zariski dense image. As in Example 4.12, we take w: Gm ! Gm be the mor-

phism x 7!� x�2.

Since Gm is reductive, we can form the weighted completion

of GF;S with respect to r‘. Here AF;S is a proalgebraic group over Q‘ with reductive

quotient Gm. Denote the prounipotent radical of AF;S by KF;S and the Lie algebras

of AF;S and KF;S by aF;S and kF;S, respectively.

PROPOSITION 7.1. The homomorphism

kerfr‘: GF;S ! GmðQ‘Þg ! KF;SðQ‘Þ

induced by ~rr‘: GF;S ! AF;SðQ‘Þ has Zariski dense image.

Proof. This follows directly from Example 4.12 and Corollary 4.15 as the image

of w‘: GF;S ! Z
‘ is open. &

7.1. BASIC STRUCTURE OF aF;S

The Lie algebra aF;S, being the Lie algebra of a weighted completion, has a natural

weight filtration. Note that since w is the inverse of the square of the standard

character, all weights are even. Thus the weight filtration of aF;S satisfies

aF;S ¼W0aF;S; kF;S ¼W�2aF;S and GrW2nþ1aF;S ¼ 0 for all n:
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THEOREM 7.2. The Lie algebra GrW� kF;S is a free Lie algebra and there is a natural

Gm-equivariant isomorphism

H1
ctsðkF;SÞ ffi

M1
n¼1

H1
ctsðGF;S;Q‘ðnÞÞ �Q‘ð�nÞ ffi

M1
n¼1

Q‘ð�nÞdn ;

where

dn ¼

r1 þ r2 þ #S� 1; when n ¼ 1;
r1 þ r2; when n is odd and > 1;
r2; when n is even:

(

Here r1 and r2 are the number of real and complex places of F, respectively. Moreover,

each weight graded quotient of aF;S is a finite dimensional Q‘-vector space. Any lift of a

graded basis of H1ðGr
W
� kF;SÞ to a graded set of elements of GrW� kF;S freely generates

GrW� kF;S.
Proof. This follows directly from Theorem 4.8, Corollary 4.10, and Theorem

B.1. &

7.2. THE CASE F ¼ Q

Set

G‘ ¼ GQ;f‘g; a‘ ¼ aQ;f‘g; k‘ ¼ kQ;f‘g; A‘ ¼ AQ;f‘g; K‘ ¼ KQ;f‘g:

Combining the results of the previous paragraph, we have:

THEOREM 7.3. The Lie algebra k‘ is free and

H1
ctsðk‘Þ ¼

M
n50

Q‘ð�2n� 1Þ:

Moreover, there are elements sm 2W�2ma‘ for each odd positive number m whose

images in GrW� k‘ generate it freely. &

7.3. THE WEIGHT FILTRATION OF GF;S

The weight filtration of aF;S can be exponentiated to give a weight filtration

AF;S ¼W0AF;S 	W�1AF;S 	W�2AF;S 	W�3AF;S 	 
 
 


of AF;S whose odd weight graded quotients vanish. This induces a filtration on GF;S

by pulling back the weight filtration

GF;S ¼W0GF;S 	W�1GF;S ¼W�2GF;S 	W�3GF;S ¼W�4GF;S 	 
 
 


of AF;S along the natural map ~rr‘: GF;S ! AF;SðQ‘Þ. Note that W�1GF;S is the kernel

of the cyclotomic character.

144 RICHARD HAIN AND MAKOTO MATSUMOTO

https://doi.org/10.1023/B:COMP.0000005077.42732.93 Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000005077.42732.93


For each m > 0, there is a natural continuous inclusion

GrW�mGF;S ,!GrW�m AF;SðQ‘Þ �!
!
GrW�maF;S: ð6Þ

THEOREM 7.4. The linear inclusions ð6Þ combine to give an isomorphism

GrW<0GF;S �Z‘
Q‘ ,!GrW� kF;S

of Q‘-Lie algebras.

Since, by Proposition 7.1, the image of ker w‘ in KF;SðQ‘Þ is Zariski dense, this

follows from the general lemma proved in the next paragraph.

7.4. ANOTHER TECHNICAL LEMMA

Suppose that G is a profinite group, that U is a prounipotent Q‘-group and that

U ¼W�1U 	W�2U 	W�3U 	 
 
 


is a central filtration of U such that U=W�nU is unipotent for each n. Suppose that

r: G! UðQ‘Þ is a continuous homomorphism. We can induce a filtration

G ¼W�1G 	W�2G 	W�3G 	 
 
 


on G by defining W�nG ¼ r�1ðW�nUðQ‘ÞÞ. Note that the mapping

GrWm G! GrWm UðQ‘Þ ð7Þ

is injective.

LEMMA 7.5. If the image of r: G! UðQ‘Þ is Zariski dense, then the inclusion ð7Þ

induces an isomorphism

GrWm G�Z‘
Q‘ ! GrWm UðQ‘Þ

for each m < 0.

Proof. Fix m < 0. By replacing U by U=WMU for some M < m, we may

assume that U is unipotent. By replacing G by G=WMG, we may assume that r is an
inclusion.

We will prove the result by induction on the dimension of U. First recall that if U

is a unipotent group over a field k of characteristic zero, and V is a closed normal

subgroup of U, also defined over k, then the group of k-rational points of U=V is

isomorphic to UðkÞ=VðkÞ.

We first consider the case where U is Abelian. In this case, G is a compact sub-
group of UðQ‘Þ ffi Q‘

N. Since Z‘ is a PID, and since G is compact and torsion-free,
it is freely generated by r linearly independent elements of Q‘

N. It follows that G is
Zariski dense in Q‘

N if and only if r ¼ N. This proves the result when U is Abelian.
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Now suppose that U is not Abelian. Note that the commutator subgroup ½G;G� is
Zariski dense in ½U;U�; it is clear that the Zariski closure of ½G;G� is contained in
½U;U�. The reverse conclusion follows as the image of G in the Q‘-rational points

of the quotient of U by the closure of ½G;G� is dense and Abelian, which implies that

½U;U� � the Zariski closure of ½G;G� in U:

If U is not Abelian, then there is a least n for which U 6¼W�nU. Since the filtration

W� is central, W�nU 	 ½U;U�. Using the fact that ½G;G� is Zariski dense in ½U;U�

and also the fact that the result holds for U=½U;U�, it is not hard to see that

W�nG is Zariski dense in W�nU. By induction, the result holds for

W�nG ,!W�nUðQ‘Þ

from which the result for G! UðQ‘Þ follows as

GrW�mU ¼
GrW�mU=W�nU; m < n;

GrW�mW�nU; m5 n:

(
&

8. Galois Actions on Geometric Fundamental Groups

Fix a prime number ‘. Suppose that F is a number field and that X is a geometrically

connected variety defined over F. Set �XX ¼ X�F
�FF. Denote the absolute Galois group

of F by GF. We have the outer Galois action f‘: GF ! Out p1ð �XX; xÞð‘Þ of GF on the

pro-‘ completion of the geometric fundamental group of ðX; xÞ.

For a finite set of primes S of the ring of integers OF, we denote the ring of

S-integers by OF;S, and p1ðSpecOF;S; Spec �FFÞ by GF;S. It is known that there is a

finite set of primes S such that f‘ factors through GF ! GF;S, so we have

fS: GF;S ! Out p1ð �XX; xÞð‘Þ:

This S can be taken as the union of the bad-reduction primes ofX and the primes above

‘, (cf. [9, Chapter XIII]). If X ¼ P
1
� f0; 1;1g over F ¼ Q, then we can take S ¼ f‘g.

8.1. THE I-FILTRATION

Define a filtration

Out p1ð �XX; xÞð‘Þ ¼ L0 Out p1ð �XX; xÞð‘Þ 	 L1 Out p1ð �XX; xÞð‘Þ 	 
 
 


of the outer automorphism group of p1ð �XX; xÞð‘Þ by

LmOut p1ð �XX; xÞð‘Þ

¼ ker Out p1ð �XX; xÞð‘Þ ! Out p1ð �XX; xÞð‘Þ=Lmþ1p1ð �XX; xÞð‘Þ
� �� �
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where

p1ð �XX; xÞð‘Þ ¼ L1p1ð �XX; xÞð‘Þ 	 L2p1ð �XX; xÞð‘Þ 	 
 
 


denotes the lower central series of p1ð �XX; xÞð‘Þ. The I-filtration

GF ¼ I‘
0GF 	 I‘

1GF 	 I‘
2GF 	 
 
 


of GF is the pull back of the filtration L� of Out p1ð �XX; xÞð‘Þ along the outer action:

I‘
mGF ¼ f�1‘ LmOut p1ð �XX; xÞð‘Þ ¼ ker GF ! Out p1ð �XX; xÞð‘Þ=Lmþ1

� �� �
:

We can also pullback the filtration L� of Out p1ð �XX; xÞð‘Þ to define the I-filtration

of GF;S:

GF;S ¼ I‘
0GF;S 	 I‘

1GF;S 	 I‘
2GF;S 	 
 
 


By an elementary argument, the quotient mapping GF!!GF;S induces isomorphisms

Gr n
I‘
GF;S ffi Gr

n
I‘
GF: ð8Þ

Since ½I‘
mGF; I‘

nGF� � I‘
mþnGF, the associated graded groups Gr

>0
I‘

GF ffi Gr
>0
I‘

GF;S

are Lie algebras over Z‘; the bracket is induced by the group commutator. (See

[30], for example.)

8.2. GALOIS ACTIONS ON UNIPOTENT COMPLETIONS

Set P ¼ p1ð �XX; xÞun=Q‘
, the ‘-adic unipotent completion (see Section A.2) of p1ð �XX; xÞ.

Remark 8:1. It follows from Theorem A.6 that for each imbedding s: F ,!C,

there is an isomorphism

P ¼ p1ðXs; xÞ
un
=Q �Q Q‘;

where Xs denotes the complex variety obtained from X via s.
There is a proalgebraic group Out P whose K-rational points form the group of

continuous outer automorphisms of PðKÞ for each field extension K of Q‘. (See

Paragraph A.4.) By the functoriality of unipotent completion, the outer action of

GF;S on p1ð �XX; xÞ induces a homomorphism FS: GF;S ! Out P. As above, the lower
central series

P ¼ L1P 	 L2P 	 L3P 	 
 
 


of P induces a filtration

L0Out P 	 L1Out P 	 L2Out P 	 
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of Out P. Pulling this back along FS, we obtain a filtration

GF;S ¼ I ‘
0GF;S 	 I ‘

1GF;S 	 I ‘
2GF;S 	 
 
 


of GF;S.

PROPOSITION 8.2. For all m5 0, I‘
mGF;S � I ‘

mGF;S and the natural map

Grm
I‘

GF;S ! Grm
I ‘

GF;S

has finite kernel and cokernel. In particular, if m > 0, then

ðGrm
I‘

GF;SÞ �Z‘
Q‘ ffi ðGr

m
I ‘

GF;SÞ �Z‘
Q‘:

Proof. We will use Theorem A.3 and its notation. Set G ¼ p1ð �XX; xÞð‘Þ. Since G is a
finitely generated pro-‘ group, LmG � DmG and DmG=LmG is a finite ‘-group. Also,
LmG ¼ DmG for all m if and only if G=LmG is torsion free for all m.
Using universal mapping properties, one can show that the inclusion

G=DmG ,!ðP=LmPÞðQ‘Þ is the ‘-adic unipotent completion of G=DmG. It follows
that the natural homomorphism AutG! AutP descends to a natural homomorph-
ism

AutðG=DmGÞ ,!AutðP=LmPÞ

which is injective. This induces a homomorphism

OutðG=DmGÞ ! OutðP=LmPÞ:

The kernel of this morphism is finite. This is equivalent to the assertion that

InnðG=DmGÞ has finite index in AutðG=DmGÞ \ InnðP=LmPÞ, which follows from
the compactness of AutðG=DmGÞ (G is finitely generated as a pro-‘ group) and the
openness of G=DmG in P=LmPðQ‘Þ, a consequence of Lemma 7.5. Since

DmG=LmG is a finite ‘-group, it follows that the kernel of both

OutðG=LmGÞ ! OutðG=DmGÞ and OutðG=LmGÞ ! OutðP=LmPÞ
are finite from which it follows that I‘

mGF;S is a finite index subgroup of I ‘
mGF;S.

Because the sequence

1! ðI‘
m \ I mþ1

‘ Þ=Imþ1
‘ ! Im=I

‘ ‘mþ1!
f
I m
‘ =I mþ1

‘ ! I m
‘ =ðI

m
‘ þ I mþ1

‘ Þ ! 1

is exact, the kernel and cokernel of f are finite.
Since ½I‘

m; I‘
n� � I‘

mþn and ½I ‘
m; I ‘

n� � I ‘
mþn, Grm

I‘
GF;S and Gr

m
I ‘

GF;S are abe-

lian pro-‘ groups whenever m > 0. Thus it follows that the kernel and cokernel of

the mapping on each associated graded is a finite abelian ‘-group when m > 0. &

8.3. THE GALOIS IMAGE

Choose an F-rational base point – either a geometric point x or a tangential base

point anchored at an F-rational point of a smooth completion of X. Denote the

Lie algebra of P by p. It is well known that H1
étð

�XX;Q‘Þ is isomorphic to

Homctsðp1ð �XX; xÞ;Q‘Þ as a continuous GF;S-module.
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Denote the Zariski closure of the image of GF;S in Aut P by bGGF;S and its prouni-

potent radical by bUUF;S. Denote the Zariski closure of the image of GF;S in Out P by
GF;S and its prounipotent radical by UF;S. There is a natural homomorphismbGGF;S ! GF;S.

PROPOSITION 8.3. If H1
étð

�XX;Q‘ð1ÞÞ is a trivial GF;S-module, then

ðiÞ the natural homomorphism GF;S ! Aut P! Aut H1ðpÞ is the composition of

the ‘-adic cyclotomic character with the inclusion of the scalar matrices;

ðiiÞ the subgroup bGGF;S of Aut P is a negatively weighted extension of the scalar matri-

ces Gm by bUUF;S with respect to the central cocharacter w: x 7!� x�2;

ðiiiÞ the subgroup GF;S of Out P is a negatively weighted extension of the scalar matri-

ces Gm by UF;S with respect to the central cocharacter w: x 7!� x�2;

ðivÞ The homomorphism GF;S ! AutUðQ‘Þ induces surjective homomorphisms

AF;S !bGGF;S ! GF;S;

ðvÞ p has a natural weight filtration which is essentially its lower central series:

W�2mp ¼ Lmp and GrW2mþ1 p ¼ 0 for all m;

ðviÞ the weight filtrations on p, Der p and OutDer p are related by

GrWn OutDer p ¼ ðGr
W
n Der pÞ=ðGr

W
n pÞ and GrW� Der p ffi DerGr

W
� p;

ðviiÞ the weight filtration of bUUK;T is characterized by

W�2m bUUF;S ¼ ker
�bUUF;S ! AutðP=Lmþ1PÞ

�
and GrW2mþ1

bUUF;S ¼ 1

for all m;

ðviiiÞ the weight filtration of UF;S is characterized by

W�2m UF;S ¼ ker
�
UF;S ! OutðP=Lmþ1PÞ

�
and GrW2mþ1UF;S ¼ 1

for all m.

Proof. The first assertion follows from the assumption using the natural

isomorphism H1ð �XXÞ ffi H1ðpÞ. Since the bracket

Gr1L p�Gr n
L p! Grnþ1L p

is surjective and GF;S equivariant, it follows that GF;S acts on Gr
m
L p via the mth

power of the cyclotomic character. This implies the second and third assertions as

it implies that every derivation of p that acts trivially on Gr�L p has negative weight.
The fourth follows from the universality of AF;S. Because p is a module over AF;S, it

has a natural weight filtration. Since GF;S acts on Gr
n
L p via the nth power of the

cyclotomic character, next assertion follows. The remaining assertions follow as

Der p and OutDer p are negatively weighted GF;S-modules. &
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THEOREM 8.4. If H1
étð

�XX;Q‘ð1ÞÞ is a trivial GF;S-module, then there is a graded

Lie algebra surjection GrW� kF;S ! GrW� uF;S and an isomorphism

GrW� uF;S ffi ðGr
>0
I‘

GF;SÞ �Z‘
Q‘:

Proof. The surjection AF;S ! GF;S restricts to a surjection KF;S ! UF;S, which

implies that I‘
1GF;S ! UF;SðQ‘Þ has Zariski dense image. By strictness, it induces a

surjection GrW� kF;S ! GrW� uF;S. From Proposition 8.3, it follows that I ‘
mGF;S is

the inverse image ofW�2mGF;S under the natural mapping GF;S ! GF;S. There is thus

an injection

Grm
I ‘

GF;S ,!GrW�2mGF;S:

Proposition 8.2, Proposition 7.1 and Lemma 7.5 imply that this induces isomorphisms

ðGrm
I‘

GF;SÞ �Z‘
Q‘ ffi ðGr

m
I ‘

GF;SÞ �Z‘
Q‘ ffi Gr

W
�2m UF;S ffi Gr

W
�2m uF;S:

whenever m > 0. &

8.4. PROOF OF CONJECTURE 1

Since P
1
� f0; 1;1g has everywhere good reduction, the Galois representation

f‘: GQ ! Out p1ðPð1=QÞ � f0; 1;1gÞð‘Þ

factors through the projection GQ ! G‘ ¼ GQ;f‘g [15, Thm. 1]. It is standard that

H1
étðPð1=QÞ � f0; 1;1g;Q‘ð1ÞÞ is a trivial G‘-module. Now apply Theorem 8.4 with

X ¼ P
1
� f0; 1;1g, F ¼ Q, S ¼ f‘g, kF;S ¼ k‘. Theorem 7.3 says that Gr

W
� k‘ is gene-

rated by elements

s2nþ1 2 GrW�2ð2nþ1Þk‘ n5 0:

Conjecture 1 now follows from Theorem 8.4 and the following lemma, which implies

that the image of s1 in

ðGr>0I G‘Þ �Q‘ ffi Gr
W
� uQ;f‘g

is trivial.

LEMMA 8.5. We have GrW�2 OutDer p ¼ 0, so that GrW�2uQ;f‘g ¼ 0.

Proof. Since GrW� p is isomorphic to the free Lie algebra generated by H1ðpÞ, it
follows that GrW�4p ffi Q‘ð2Þ. By Proposition 8.3 we have

GrW�2Der p ffi Gr
W
�2 DerGr

W
� p ffi HomðH1ðpÞ;Gr

W
�4 pÞ ffi H1ðpÞ

The non-degeneracy of the Lie bracket

H1ðpÞ �H1ðpÞ ! GrW�4 p ffi Q‘ð2Þ

implies that the mapping H1ðpÞ ! HomðH1ðpÞ;Gr
W
�4 pÞ, given by taking inner deri-
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vations, is an isomorphism. Thus

GrW�2 OutDer p ffi Gr
W
�2 Der p=Gr

W
�2 p ffi HomðH1ðpÞ;Gr

W
�4 pÞ=H1ðpÞ ¼ 0: &

Remark 8:6. Our proof says nothing about the nontriviality of the

s2mþ1 2 ðGr�I‘G‘Þ �Q‘:

Ihara’s work [16] implies that when m5 1, all are nontrivial in H1ððGr
�
I‘
G‘Þ �Q‘Þ.

Combined with Theorem 7.3, this implies that

H1ððGr
�
I‘
G‘Þ �Q‘Þ ¼

M
m5 1

Q‘ð2mþ 1Þ

where the copy of Q‘ð2mþ 1Þ is spanned by s2mþ1. Ihara [16] also uses power series
methods to establish nonvanishing results for some brackets of the sj. Improvements

can be found in [22] and [36].

Ihara defined a certain Z-lie algebra D called the stable derivation algebra, which is

a subalgebra of outer derivations of free Z-Lie algebra with two generators. It is

proved that Gr>0I G‘ is contained in D�Z‘ for every prime ‘. He considered the pro-

blem of whether D is generated by certain derivations D2mþ1, which are analogues of

the s2mþ1. He found a mysterious congruence [17]

2½D3;D9� � 27½D5;D7� " 0 mod 691

when ‘ ¼ 691. This suggests that one might have

2½s3; s9� � 27½s5; s7� " 0 mod 691

in Gr>0I‘
G‘ for ‘ ¼ 691, hence this Lie algebra might not be generated by the elements

si over Z‘ for ‘ ¼ 691. This is not currently known, but Sharifi announced interest-

ing progress: for ‘ regular, the freeness of Gr>0I‘
G‘ �Q‘ implies that Gr

>0
I‘
itself is

generated by the elements si, and for ‘ irregular, a conjecture of Greenberg’s implies

that Gr>0I‘
G‘ is not free on si.

8.5. GONCHAROV’S CONJECTURE

Goncharov [11] considers the varieties

XN :¼ P
1
� f0; mN;1g

where mN denotes the group of Nth roots of unity. Take F to be QðmNÞ and S to be

the set of primes in OF that lie over N‘. Let v ¼ 01
!
, the tangent vector at 0 that

points towards 1. The Galois representation

f̂f‘: GF ! Aut p1ð �XX; vÞð‘Þ

is unramified outside S by the Smooth Base Change Theorem [9, Chapt. XIII], so it

factors through a representation

f̂fS: GF;S ! Aut p1ð �XX; vÞð‘Þ:
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Denote the ‘-adic unipotent completion of p1ð �XX; vÞð‘Þ by P. By functoriality, f̂f‘

and f̂fS induce homomorphisms GF ! GF;S ! AutPðQ‘Þ. By Proposition 8.3, this

induces a homomorphism

F̂FS: AF;S ! AutP:

Goncharov considers the Zariski closure of the image of

GQðm‘1Þ :¼ Galð
�QQ=Qðm‘1ÞÞ

in AutP. Since

GQðm‘1Þ ¼ kerfw‘: GF ! Z
‘ g;

Theorem 7.1 implies that this is the image bUUF;S of KF;S in AutP.

THEOREM 8.7. For all N5 1, the Lie algebra of the Zariski closure of the image

of GQðm‘1Þ ! AutP is a quotient of kF;S, and is therefore generated topologically by a

lift ofM
n50

H1
étðSpecOQðmNÞ;S;Q‘ðnÞÞ

�
�Q‘ðnÞ:

When N ¼ 1, this proves the generation portion of Conjecture 2.1 in [11].

9. ‘-Adic Mixed Tate Modules Over Spec OF;S

In this section, we show how weighted completion of Galois groups can be used to

prove ‘-adic versions of Deligne’s Conjectures [5, x 8] on mixed Tate motives over the

spectrum of the ring of S-integers in a number field. Such ‘-adic versions of these

conjectures have previously been proved by Beilinson and Deligne by different,

but equivalent, methods in their unpublished manuscript [1].

9.1. DELIGNE’S CONJECTURES

Suppose that F is a number field and that S is a finite subset of Spec OF. Deligne

[5, 8.2] conjectures that there is a category of mixed Tate motives over Spec OF;S

and that in this category, Ext1ðQð0Þ;QðnÞÞ ¼ K2n�1ðOF;SÞ �Q. The tannakian fun-

damental group of this category is of the form Gm j
U where U is prounipotent.

He further conjectures [5, 8.9.5] that the weight graded Lie algebra of U is freely

generated byM
n51

K2n�1ðOF;SÞ �Q:

(The generation statement is equivalent to the first conjecture above.)

The analogue of this conjecture for mixed Tate motives over a number field has

been solved by Goncarov [10], who used results of Voevodsky [37] and Levine [20]
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to construct the category of mixed Tate motives over a number field. He has also

made a working definition of mixed Tate motives over the ring of S-integers in a

number field.

Here we formulate and prove an ‘-adic version of this. Fix a rational prime ‘.

Beilinson andDeligne had given a similar construction in the unpublishedmanuscript [1].

9.2. THE CASE f‘g CONTAINED IN S

First, we shall assume that S contains all primes that lie over ‘. Later we shall

remove this hypothesis. In this case, it is natural to define the category of ‘-adic

mixed Tate modules over Spec OF;S to be the category of weighted GF;S-modules

(see Definition 4.2). Denote this category by MTM‘ðOF;SÞ.

LEMMA 9.1. The category MTM‘ðOF;SÞ is equivalent to the category of finite-

dimensional representations of AF;S. For each n 2 Z and i5 0, there is a natural

isomorphism

ExtiMTM‘ðOF;SÞ
ðQ‘;Q‘ðnÞÞ ffi HiðAF;S;Q‘ðnÞÞ:

Proof. This follows directly from [14] – see Remark 4.3. &

If U is prounipotent with Lie algebra u, then H�ðUÞ ffi H�ctsðuÞ, since the category
of U-modules is equivalent to the category of continuous u-modules.

THEOREM 9.2. There are natural isomorphisms

ExtiMTM‘ðOF;SÞ
ðQ‘;Q‘ðnÞÞ ffi

Q‘; when i ¼ n ¼ 0;
H1
ctsðGF;S;Q‘ðnÞÞ; when i ¼ 1 and n > 0;

0; otherwise:

8<:
Consequently, for all n 2 Z>0, there is a natural isomorphism

Ext1MTM‘ðOF;SÞ
ðQ‘;Q‘ðnÞÞ ffi K2n�1ðSpecOF;SÞ �Q‘:

Proof. Because of the previous lemma, we only need compute HiðAF;S;Q‘ðnÞÞ. It

is proved in [19] that there is a Leray–Serre type spectral sequence

HsðGm;H
tðKF;S;Q‘ðnÞÞÞ ) HsþtðAF;S;Q‘ðnÞÞ:

Since Gm is reductive and H�ðKF;SÞ ffi H�ctsðkF;SÞ, it follows that

HiðAF;S;Q‘ðnÞÞ ¼ ½H
i
ctsðkF;SÞ �Q‘ðnÞ�

Gm :

Since kF;S is negatively weighted, the right-hand side is zero when n4 0. Since

GrW� kF;S is free and Gr
W
� is exact,

GrW� Hi
ctsðkF;SÞ ¼ HiðGrW� kF;SÞ ¼ 0

when i > 1 and Hi
ctsðkF;SÞ vanishes if i5 2. When i ¼ 1, Theorem 7.2 gives the result.

For i ¼ 0, the assertion is obvious.
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The last assertion follows from Proposition B.2 and the fact that the regulator

mappings

c1: K2n�1ðOF;SÞ �Q‘ ! H1
étðSpec OF;S;Q‘ðnÞÞ

are isomorphisms for all n and ‘. This is due to Soulé [33] when ‘ 6¼ 2 and Rognes

and Weibel [27] when ‘ ¼ 2. &

9.3. CONSTRAINED WEIGHTED COMPLETION

In order to handle the case where ‘ is not contained in S, we need to consider a

variant of weighted completion. We use the notation of Section 4. Suppose that P

is a property of weighted G-modules that is closed under direct sums, tensor pro-
ducts, taking duals, and taking subquotients. Suppose also that the trivial represen-

tation k has property P.

The category of finite-dimensional weighted G-modules with property P is a full

subcategory of the category of weighted G-modules. In fact, it is a neutral full sub-
tannakian category of the category of weighted G-modules. The weighted completion

of G constrained by P is defined to be the tannakian fundamental group GP of this

subcategory. Denote the kernel of GP ! R by UP and its Lie algebra by uP.

By construction, the categories of weighted G-modules with property P and the

category of finite-dimensional GP-modules are equivalent. Suppose that V is a weigh-

ted G-module with property P. Denote by H1
ctsðG;V ÞP the subgroup of H1

ctsðG;V Þ
generated by the classes of extensions

0! V! E! k! 0

of G-modules in which E is also a weighted G-module with property P.

PROPOSITION 9.3. For all negatively weighted G-modules V with property P, there

is a natural isomorphism

H1ðGP;V Þ �!
’

H1
ctsðG;V ÞP:

When R is reductive and each H1
ctsðG;VaÞ is finite-dimensional,

H1ðUPÞ ffi H1
ctsðuPÞ ffi

M
fa : nðaÞ<0g

H1
ctsðG;VaÞP � V�a:

Here we are using the notation of Paragraph 4:3.

Proof. The first statement follows becauseH1
ctsðG;V ÞP classifies extensions of k by

V with property P. Since V is negative, each extension of k by V is a weighted

G-module and hence a GP-module. It therefore determines an element of H1ðGP;V Þ.
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The second assertion follows using the Leray–Serre Spectral Sequence [19] for the

extension

1! UP ! GP ! R! 1

and the fact that R is reductive, which implies that HsðR;HtðUP;VaÞÞ vanishes

whenever s > 0. We also use the fact that H�ctsðuPÞ ffi H�ðUPÞ. &

To obtain the analogue of Theorem 4.9 for H2
ctsðuPÞ, we need to impose an extra

condition on P.

DEFINITION 9.4. Assume that there is a natural number b such that for all

weighted G-modules V, GrWm V ¼ 0 when m is not a multiple of b. We say that

property P of weighted G-modules has the bootstrap property with index b if V has

property P whenever WmV=Wm�2bV has property P for all m.

Note that the assumption is always satisfied when b ¼ 1 and that it is satisfied

when b ¼ 2 in the mixed Tate case.

THEOREM 9.5. Assume that R is reductive and that H2
ctsðG;VaÞ is finite-dimen-

sional for each irreducible representation Va of R. Let P be a property of weighted

G-modules that it is closed under tensor products, direct sums, and taking duals and

subquotients as G-modules. Suppose also that the trivial module k has property P. If

there is a b5 1 such that P has the bootstrap property with index b, then there is a

natural injection

H2
ctsðuPÞ ,!

M
fa : nðaÞ4�2ng

H2
ctsðG;VaÞ � V�a;

where n is any positive integer such that Wn�1H
1
ctsðuPÞ ¼ 0 or, equivalently,

W�nuP ¼ uP.

Proof. As in the proof of Proposition 9.3, the Leray–Serre spectral sequence

implies that H2ðUP;VaÞ ffi ½H
2
ctsðuPÞ � Va�

R. It thus suffices to prove that the natural

mapping

H2ðGP;VaÞ ! H2
ctsðG;VaÞ ð9Þ

is injective. Let ½g� be a class in the left-hand side corresponding to a two-step
extension

1! Va! E2! E1! k! 1:

Since all GP-modules are locally finite, we may assume E2;E1 to be finite-dimen-

sional. By exactness of the weight filtration and the reductivity of R, we may assume

thatW0E1 ¼ E1,WnðaÞE1 ¼ 0, and thatW�1E2 ¼ E2,WnðaÞ�1E2 ¼ 0. We assume that

½g� is a trivial class in the right-hand side of (9). Since Ext2Gðk;VaÞ ! H2
ctsðG;VaÞ is
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injective (cf. Theorem A.1 in [14]), it follows that ½g� is a trivial class as a two step
extension of G-modules. Then [38, p. 575] implies the existence of a G-module E with

0! Va ! E! E1! 0 and 0! E2 ! E! k! 0. Now the bootstrap property

says that E has property P and, hence, is a weighted G-module with property P. Thus

this is a GP module, which says that ½g� is the trivial class as an extension of GP-mod-

ules, too. Thus injectivity is proved. &

9.4. THE CASE WHERE ‘ IS NOT CONTAINED IN S

We now show how to remove the hypothesis that S contain all primes over ‘. Let ½‘�

denote the set of primes of F above the rational prime ‘. Assume that S does not contain

½‘�. Then we define the category MTM‘ðOF;SÞ of ‘-adic mixed Tate modules over

SpecOF;S to be the full subcategory of MTM‘ðOF;S[½‘�Þ consisting of the modules M

with the property that for every prime p 2 ½‘�nS, the representation GFp !

GF;S[½‘� ! Aut M is crystalline, where GFp is the decomposition group of GF at the

prime p, and Fp is the completion of F at p. (See [3, 8] for crystalline representations.)
Let P be the condition that a weighted GF;S[½‘�-module is crystalline at every prime

p in ½‘� outside S. It is known [8] that P is closed under direct sums, tensor products,

taking subquotients and duals, and that the trivial representation is crystalline. We

can therefore consider the weighted completion of GF;S[½‘� with respect to the cyclo-

tomic character and constrained by P — it is the Tannakian fundamental group of

MTM‘ðOF;SÞ. We denote this completion by AF;S, its prounipotent radical by KF;S

and the Lie algebra of KF;S by kF;S.
The group H1

ctsðGF;S;V ÞP is the finite part H1
cts fðGK;V Þ of H1

ctsðGK;V Þ, which is

defined in [3, (3.7.2)] and [3, p. 354] where it is denoted simply by H1
f ðGK;V Þ.

One can show that the property P has the bootstrap property for b ¼ 2. The key

point of the proof is that for a short exact sequence

0! V1! V2! V3! 0

of crystalline ‘-adic representations of GFp , we have, by [3, Cor. 3.8.4], a long exact

sequence

0! H0ðGFp ;V1Þ ! H0ðGFp ;V2Þ ! H0ðGFp ;V3Þ

! H1
cts f ðGFp ;V1Þ ! H1

cts f ðGFp ;V2Þ ! H1
cts f ðGFp ;V3Þ ! 0:

PROPOSITION 9.6. The graded Lie algebra GrW� kF;S is free and

H1
cts ðkF;SÞ ffi

M1
n¼1

H1
cts f ðGF;S;Q‘ðnÞÞ �Q‘ð�nÞ ffi

M1
n¼1

Q‘ð�nÞdn ;

where dn is given as in Theorem 7:2.

Proof. By Theorem 9.5 we have an injection.

H2
cts ðkF;SÞ ,!

M1
n¼2

H2
cts ðGF;S;Q‘ðnÞÞ �Q‘ð�nÞ:

Since the right hand side vanishes, GrW� kF;S is free by Lemma 4.11.
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The computation of H1ðkF;SÞ follows from Proposition 9.3 and the facts (cf.

Example 3.9 in [3, p. 359]) that H1
cts f ðGF;S;Q‘ðnÞÞ ¼ H1

ctsðGF;S;Q‘ðnÞÞ when n5 2

and that there is an inclusion

H1
ctsf ðGF;S[½‘�;Q‘ð1ÞÞ ,!H1

ctsðGF;S[½‘�;Q‘ð1ÞÞ

corresponding to O
F;S,!O
F;S[½‘� via Kummer characters. Thus,

dimQ‘
H1
cts f ðGF;S[½‘�;Q‘ðnÞÞ ¼ dn

where dn is defined as in Theorem 7.2. &

For example, when OF;S ¼ Spec Z, GrW� kF;S is a free Lie algebra generated by
s3; s5; s7; . . ..
The formula for ExtiMTM‘ðOF;SÞ

ðQ‘;Q‘ðnÞÞ in Theorem 9.2 also holds for this case,

by replacing H1
ctsðGF;S;Q‘ð1ÞÞ with H1

cts f ðGF;S;Q‘ð1ÞÞ.

Remark 9:7. Shiho [32] has announced that his theory of the unipotent crystalline

fundamental group implies that the Lie algebra of Q‘-unipotent completion of the

fundamental group of a proper smooth curve is crystalline at p for any prime above ‘
if the curve has a good reduction at p.
The corresponding result for incomplete varieties, including the projective line

minus three points, will follow from the syntomic conjecture for incomplete varieties

(cf. [35] for proper case) together with Shiho’s methods.

Instead, we established the vanishing of s1 using Lemma 8.5. This and the above
theorem show conversely that the Q‘-unipotent completion of p1ðPð1=QÞ�

f0; 1;1gÞ is crystalline, since outer G‘-action factors through AQ;;.

THEOREM 9.8. The outer action G‘ ! Out P of G‘ on ‘-adic unipotent completion

of p1ðPð1=QÞ � f0; 1;1gÞ is crystalline at ‘.

Appendix A. Unipotent Completion

This appendix is a collection of results needed on unipotent completion. Some of this

material may be new, while other results are either folklore or implicit in the litera-

ture. Unipotent completion is also known as Malcev completion. One particularly

useful approach to unipotent completion is due to Quillen [26, Appendix A].

A.1. UNIPOTENT COMPLETION

Suppose that G is a group and that k is a field of characteristic zero. The unipotent

completion of G over k consists of a prounipotent k-group Gun=k together with a homo-
morphism y: G! Gun=k ðkÞ. These have the property that every homomorphism
G! UðkÞ from G to the k-rational points of a unipotent k-group U factors uniquely

through y.
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Unipotent completion is easily seen to exist:

Gun=k ¼ lim
r
 ���

Ur

where r ranges over all Zariski dense representations r: G! UrðkÞ from G into a
unipotent k-group.

The universal mapping property implies that unipotent completion is unique up to

a canonical isomorphism. The image of G in its unipotent completion is Zariski

dense, since the Zariski closure of the image has the requisite universal mapping

property.

Since all finite-dimensional vector spaces are unipotent k-groups, there is a

canonical isomorphism

H1ðGun=k ðkÞÞ ffi H1ðG; kÞ :¼ Gab �Z k; ð10Þ

whenever H1ðG; kÞ is finite-dimensional.
Unipotent completion behaves well under field extension. The following result is

proved in [12].

PROPOSITION A.1. Suppose that G is a group, that k is a field of characteristic zero

and that H1ðG; kÞ is finite-dimensional. If K is an extension field of k, then the natural

homomorphism G! Gun=k ðKÞ induces an isomorphism

Gun=K�!
!

Gun=k �k K:

In particular, if G is a finitely generated group, then there is a natural isomorphism

Gun=k �!
!

Gun=Q �Q k:

The lower central series

G ¼ L1G 	 L2G 	 L3G ' 
 
 


of a group G is defined inductively by

L1G ¼ G and Lmþ1G ¼ ½G;LmG�:

Define a filtration D�k of G by

Dm
k G ¼ ker fG! ðGun=k=L

mGun=k ÞðkÞg:

This is a central filtration of G, so it follows that LmG � Dm
k G for all m.

THEOREM A.2. If H1ðG; kÞ is finite-dimensional, then the subgroup Dm
k G is the

inverse image of the set of torsion elements of G=LmG under the quotient mapping

G! G=LmG. The central filtration D�k of G is the most rapidly descending central

series with the property that each G=Dm
k G is a torsion free nilpotent group of length

< m. If G is finitely generated, then each Grm
Dk
G is a finitely generated Abelian group,

and each Dm
k G=LmG is finite.
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Proof. First recall the elementary fact that the set of torsion elements of a

nilpotent group N forms a characteristic subgroup T and that N=T is torsion-free.

This implies that the set RmG of elements of G that are torsion modulo LmG is a
characteristic subgroup, that G=RmG is a torsion-free nilpotent group, and that

RmG=LmG is a torsion group. It follows that the central series R�G is the most

rapidly descending central series with each G=RmG torsion-free.
Let P ¼ Gun=k . Since H1ðG; kÞ is finite-dimensional, each P=LmP is unipotent. Since

unipotent groups are torsion-free, and since G=Dm
k G is a subgroup of PðkÞ=LmPðkÞ, it

follows that Dm
k G 	 RmG.

It follows from Quillen’s version [26, Appendix A] of Malcev’s Theorem [21] that

there is a unipotent k-group U that contains G=RmG as a Zariski dense subgroup.
The density implies that the length of U is < m. The homomorphism G! UðQ‘Þ

induces a homomorphism P ! U which factors through P=LmP as U is unipotent

of length < m. It follows that RmG 	 Dm
k G, and that RmG ¼ Dm

k G for all m, which
implies the result. &

A.2. ‘-ADIC UNIPOTENT COMPLETION

There is an obvious variant of unipotent completion for topological groups. Suppose

that G is a topological group and k a topological field with characteristic zero. We

shall say that a homomorphism G! GðkÞ from G into the k-rational points of an

algebraic k-group G is continuous if it is continuous with respect to the topology on

GðkÞ induced from that of k. A homomorphism G! GðkÞ from G to the k-points

of a proalgebraic k-group G is continuous if it is the inverse limit of continuous homo-

morphisms G! GaðkÞ from G to each of the finite-dimensional quotients Ga of G.

The continuous unipotent completion of G consists of a prounipotent k-group Gun=k
together with a continuous homomorphism y: G! Gun=k ðkÞ. These have the property
that every continuous homomorphism G! UðkÞ from G to the k-rational points of a

unipotent k-group U factors uniquely through y.
The continuous unipotent completion of a topological group G is constructed in

much the same way as the standard unipotent completion given above. The universal

mapping property of continuous unipotent completion implies that it is unique up to

canonical isomorphism.

From now on, we assume that G is a profinite group and that k ¼ Q‘ with the

‘-adic topology. Since compact subgroups of UðQ‘Þ are pro-‘ groups, the ‘-adic

unipotent completion of G factors through the pro-‘ completion Gð‘Þ of G. Moreover,

GunQ‘
! ðGð‘ÞÞunQ‘

is an isomorphism since both have the same universal mapping property. Thus, we

may assume, without loss of generality, that G is a pro-‘ group.
The lower central series

G ¼ L1G 	 L2G 	 L3G ' 
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of a profinite group G is defined inductively by

L1G ¼ G and Lmþ1G ¼ closure of ½G;LmG� in G:

Define a filtration D�‘ of G by

Dm
‘ G ¼ ker fG! ðG

un
=Q‘

=LmGun=Q‘
ÞðQ‘Þg:

This is a central filtration of G, so it follows that LmG � Dm
‘ G for all m.

THEOREM A.3. If G is a topologically finitely generated pro-‘ group, then the

subgroup Dm
‘ G is the inverse image of the set of torsion elements of G=LmG under the

quotient mapping G! G=LmG. The central filtration D�‘ of G is the most rapidly

descending central series with the property that each G=Dm
‘ G is a torsion-free nilpotent

group of length < m. Moreover, each Grm
D‘
G is a finitely generated Z‘-module and each

Dm
‘ G=L

mG is a finite ‘-group.

COROLLARY A.4. The ‘-adic unipotent completions of G=LmG and G=DmG are

both Gun=Q‘
=LmGun=Q‘

.

Proof. This follows by a proof that is essentially the same as that of Theorem A.2,

taking the continuity of G! UðQ‘Þ into consideration in the current setting. The

following lemma is a key ingredient. &

LEMMA A.5. If G is a torsion-free nilpotent pro-‘ group, which is topologically

finitely generated, then G is continuously embeddable in the Q‘-rational points of a

unipotent group U over Q‘.

Proof. The proof is similar to the proof of Proposition 3.6(a) in [26, Appendix A].

Since Gab is finitely generated, there is a central filtration of G by closed normal

subgroups, each of whose graded quotients is either Z‘ or Z=‘. We prove the lemma

by induction on the length of this filtration. There is an exact sequence

1! G1! G! C! 1;

where C is Z‘ or Z=‘. By induction, G1 is embedded in its ‘-adic unipotent comple-
tion U1, which is algebraic by induction. If C ffi Z‘, then G ffi C j
G1. The conjugacy
action of C on G1 lifts by functoriality to a unipotent action on the Lie algebra of U1,

and thus extends to a unipotent action of Ga on U1. It follows that C j
G1 can be
continuously embedded in the unipotent group Ga j
U1. If C ffi Z=‘, then choose

x 2 G whose image generates C. Then x‘ 2 U1ðQ‘Þ, and since U1ðQ‘Þ is uniquely

divisible, there is a unique x 0 2 U1ðQ‘Þ with x‘ ¼ x 0‘. Then G can be imbedded in
U1ðQ‘Þ by mapping x to x 0. &

A.3. A COMPARISON THEOREM

There is a close relation between the unipotent completion of a finitely generated

group and the ‘-adic unipotent completion of its profinite and ‘-adic completions.
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THEOREM A.6. If G is a finitely generated discrete group with pro-‘ completion Gð‘Þ

and profinite completion ĜG, then the three groups

Gun=Q �Q Q‘; Gð‘Þ
un

=Q‘
and ĜG

un

=Q‘

are all canonically isomorphic as prounipotent Q‘-groups.

The proof reduces to the following result:

LEMMA A.7. Suppose that G is a finitely generated group with pro-‘ completion Gð‘Þ.
If U is a prounipotent group over Q‘, then every homomorphism r: G! UðQ‘Þ is

continuous with respect to the pro-‘ topology on G, so that r induces a continuous

homomorphism Gð‘Þ ! UðQ‘Þ.

Proof. We may assume that U is the upper triangular unipotent subgroup of

GLNðQ‘Þ for some N. We denote by Uð‘mZ‘Þ the group of matrices whose ijth entry

lies in ‘ði�jÞmZ‘ when i > j, is 1 when i ¼ j, and 0 when i < j. Since G is finitely

generated, the image of r is contained inside Uð‘mZ‘Þ for some m 2 Z. The filtration


 
 
 ' Uð‘ nZ‘Þ ' Uð‘nþ1Z‘Þ ' 
 
 


is a basic set of neighbourhoods of the identity in UðQ‘Þ; each quotient is a finite-

group of ‘-power order. Since G � Uð‘mZ‘Þ, the inverse image of each Uð‘ nZ‘Þ is

a finite index subgroup of G of ‘-power order. The result follows. &

Proof of Theorem A.6. It follows from the lemma that G! Gun=QðQ‘Þ is

continuous and induces continuous homomorphisms

ĜG! Gð‘Þ ! Gun=QðQ‘Þ:

By the universal mapping property of ‘-adic unipotent completion, these induce

homomorphisms

ĜG
un

=Q‘
! Gð‘Þ

un

=Q‘
! Gun=Q �Q Q‘: ð11Þ

But the homomorphism G! ĜG! ĜG
un

=Q‘
ðQ‘Þ induces a homomorphism Gun=Q�Q

Q‘ ! ĜG
un

=Q‘
whose composite with (11) is the canonical isomorphism of Proposition

A.1. This completes the proof as the image of Gð‘Þ ! Gð‘Þ
un

=Q‘
ðQ‘Þ is Zariski dense. &

A.4. AUTOMORPHISMS

Suppose that U is a prounipotent group over a field k of characteristic zero with Lie

algebra u. Standard Lie theory implies that there is a natural isomorphism

H1ðUÞ ffi H1ðuÞ. Suppose that this vector space is finite-dimensional over k. For each

field extension K of k, define the group of continuous automorphisms of UðKÞ by
Aut UðKÞ ¼ lim

 �
m

Autðu�k K=Lmu�k KÞ

where Lmu denotes the mth term of the lower central series of u.
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PROPOSITION A.8. If H1ðuÞ is finite-dimensional over k, then there is a proalge-

braic group AutðUÞ defined over k that represents the functor

K 7!� AutðUðKÞÞ

from field extensions of k to groups. The kernel K of the natural homomorphism

AutðUÞ ! AutH1ðUÞ is prounipotent. The Lie algebra of AutU is isomorphic to

Deru, the Lie algebra of continuous derivations of u.

Proof. Suppose that f is an automorphism of u. Since H1ðuÞ ffi Gr
1
Lu, and since

the bracket mapping

Gr n
Lu�Gr

1
Lu! Grnþ1L u

is surjective and commutes with f, we see that f acts trivially on H1ðuÞ if and only if
it acts trivially on Gr�Lu. It follows that the kernel K of Autu! AutH1ðuÞ is a
prounipotent group. The last statement follows from standard Lie theory as

AutU ¼ Autu. &

Dividing out by the subgroup of inner automorphisms, we obtain:

COROLLARY A.9. If H1ðuÞ is finite-dimensional over k, then there is a proalgebraic

group OutðUÞ defined over k that represents the functor

K 7!� OutðUðKÞÞ
from field extensions of k to groups. There is a canonical homomorphism

OutU ! AutH1ðUÞ whose kernel is prounipotent. The Lie algebra of OutU is natu-

rally isomorphic to OutDeru, the Lie algebra of continuous outer derivations of u.

COROLLARY A.10. For each finitely generated group G, there are natural homo-

morphisms

AutGð‘Þ ! AutðGun=Q �Q Q‘Þ ! OutðGun=Q �Q Q‘Þ:

Proof. This follows from Theorem A.6 as there is a natural action of AutGð‘Þ on
AutðGð‘Þun=Q‘

Þ. &

From this we recover a result of Nakamura and Takao [25].

COROLLARY A.11. Suppose that k is a subfield of C and that X is a variety over k.

Then for each k-rational point x of X, there is a natural homomorphism

Galð �kk=kÞ ! Aut p1ðXðCÞ; xÞun=Q �Q‘:

Appendix B. Continuous Cohomology of Galois Groups

In this appendix we prove a result, stated below, that gives a computation of the

continuous cohomology of the Galois groups needed in this paper. This is well
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known to the experts (cf. [18]), but we have included a proof for the convenience of

readers.

B.1. THE RESULT

Let F be a number field, OF its ring of integers, ‘ a rational prime number, S a finite

set of closed points of SpecOF containing all the primes of OF over ‘. Let OF;S be the

ring of S-integers, so that SpecOF;S ¼ SpecOF � S. Let GF;S denote p1ðSpecOF;S;

Spec �FFÞ, the Galois group of the maximal algebraic extension of F unramified outside

S. Let r1 and r2 be the number of real and imaginary places of F, respectively.

The goal of this appendix is to prove the following result.

THEOREM B.1 ðSouléÞ. With notation as above,

dimQ‘
H1
ctsðGF;S;Q‘ðnÞÞ ¼

r1 þ r2 þ #S� 1; if n ¼ 1;
r1 þ r2; if n is odd and5 3;
r2; if n is even and positive:

8<:
In addition, H2

ctsðGF;S;Q‘ðnÞÞ vanishes for all n5 2.

The continuous cohomology H�cts is the one defined in [34, Sect. 2]. We reduce

the proof to the computation of the étale cohomology of SpecOF;S by the following

proposition.

PROPOSITION B.2. For i ¼ 1; 2 and all n 2 Z, there is a natural isomorphism

Hi
ctsðGF;S;Q‘ðnÞÞ �!

’
Hi
étðSpec OF;S;Q‘ðnÞÞ:

In étale cohomology we have (cf. [23]) a canonical isomorphism

Hi
étðSpec OF;S;Q‘ðnÞÞ ffi ½lim

m
 ���

Hi
étðSpec OF;S;Z‘ðnÞ=‘

mÞ� �Z‘
Q‘:

(For an Abelian group M, let M=‘m ¼M=‘mM and denote the ‘m-torsion of M by

M½‘m�.) Since the canonical map

Hi
ctsðGF;S;Z‘ðnÞ=‘

mÞ ! Hi
étðSpec OF;S;Z‘ðnÞ=‘

mÞ ði5 1Þ

is isomorphic [24, Proposition 2.9], Proposition 11.2 is a consequence of the

following lemma.

LEMMA B.3. When i ¼ 1; 2, there is a natural isomorphism

Hi
ctsðGF;S;Q‘ðnÞÞ ffi ½lim

m
 ���

Hi
ctsðGF;S;Z‘ðnÞ=‘

mÞ� �Z‘
Q‘:

Note that H�ctsðG;Z‘ðnÞ=‘
mÞ is the usual cohomology of profinite groups defined,

for example, in [29].
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Proof. The short exact sequence

0! Z‘ðnÞ ! Q‘ðnÞ ! ðQ‘=Z‘ÞðnÞ ! 0

gives a long exact sequence [34, p. 259]


 
 
 ! Hi
ctsðGF;S;Z‘ðnÞÞ ! Hi

ctsðGF;S;Q‘ðnÞÞ

! Hi
ctsðGF;S; ðQ‘=Z‘ÞðnÞÞ ! Hiþ1

cts ðGF;S;Z‘ðnÞÞ ! 
 
 


Since GF;S is compact, the proof of [34, 2.3] shows that Hi
ctsðGF;S; ðQ‘=Z‘ÞðnÞÞ is

torsion. So, after tensoring with Q‘, we have an isomorphism

Hi
ctsðGF;S;Q‘ðnÞÞ ffi Hi

ctsðGF;S;Z‘ðnÞÞ �Z‘
Q‘:

When i ¼ 0; 1, Hi
ctsðGF;S;Z‘ðnÞ=‘

mÞ is finite. This is obvious when i ¼ 0. When

i ¼ 1 it follows from class field theory. Indeed, reduce to the case where Z‘ðnÞ=‘
m

has trivial Galois action by passing to a finite extension. Then

H1
ctsðGF;S;Z‘ðnÞ=‘

mÞ is HomctsðGF;S;Z‘=‘
mÞ, which is finite. The corollary to [34,

Prop. 2.2] then implies that

Hi
ctsðGF;S;Z‘ðnÞÞ ¼ lim

m
 ���

Hi
ctsðGF;S;Z‘ðnÞ=‘

mÞ:

Tensoring with Q‘ completes the proof. &

B:2. Proof of Theorem B.1. First, we dispense with the case where n ¼ 1 by showing

that

dimQ‘
H1
étðSpec OF;S;Q‘ð1ÞÞ ¼ r1 þ r2 þ #S� 1: ð12Þ

Take the projective limit over m of the Kummer sequence [23, p. 128]

0! H0
étðSpecOF;S;GmÞ=‘

m! H1
étðSpecOF;S; m‘m Þ

! H1
étðSpecOF;S;GmÞ½‘

m� ! 0:

The limit of the center term is H1
étðSpec OF;S;Z‘ð1ÞÞ. Since the ideal class group

H1
étðSpec OF;S;GmÞ is finite and the maps in the inverse system are multiplication

by powers of ‘, the limit of the right hand term vanishes. It follows that the limits

of the first two terms are isomorphic. Assertion (12) now follows as O
F;S has rank
r1 þ r2 þ #S� 1 by the Dirichlet Unit Theorem.

To address the case where n > 1, we need the following result of Soulé [33,

p. 376]. &

THEOREM B.4 ½Soulé�. If F is a number field and ‘ an odd prime number, then

dimQ‘
H1
étðSpecOF½1=‘�;Q‘ðnÞÞ ¼

r1 þ r2; if n is odd and53;
r2; if n is even and positive:




In addition, H2
étðSpecOF½1=‘�;Q‘ðnÞÞ vanishes for all n5 2.
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This theorem is also true when ‘ ¼ 2, following from [27]. An explicit proof for the

case of F ¼ Q has been written down by Sharifi [31].

Theorem B.1 follows directly from this computation when S is the set of primes

lying over ‘. For the general case, it is enough to prove the following statement

(cf. one may use [18, Eqn. 13]).

LEMMA B.5. If z is a closed point of Spec OF;S and S 0 ¼ S [ fzg, then

Hi
étðSpec OF;S;Q‘ðnÞÞ ffi Hi

étðSpecOF;S 0 ;Q‘ðnÞÞ

for all i5 0 provided n 6¼ 0; 1.

Proof. Let X ¼ Spec OF;S and U ¼ Spec OF;S 0 . By [23, p. 92, Prop. 1.25] there is a

long exact sequence


 
 
 ! Hi
zðX;Q‘ðnÞÞ ! Hi

étðX;Q‘ðnÞÞ ! Hi
étðU;Q‘ðnÞÞ ! Hiþ1

z ðX;Q‘ðnÞÞ ! 
 
 


where H�z denotes étale cohomology with support on z. Thus it is enough to show

that Hi
zðX;Q‘ðnÞÞ vanishes for all i unless n ¼ 0 or 1.

Let X denote the Henselization of Spec OF at z. Then by [23, p. 93 Cor. 1.28] we

have

Hi
zðX;Q‘ðnÞÞ ffi Hi

zðX ;Q‘ðnÞÞ;

so it suffices to establish the vanishing of the right-hand side.

Set U ¼ X � z and note that this is just SpecKðX Þ. By a second application of the
long exact sequence [23, p. 92, Prop. 1.25] applied to ðX ;UÞ, we see that
if Hi

étðX ;Q‘ðnÞÞ and Hi
étðU;Q‘ðnÞÞ both vanish when n 6¼ 0; 1, then Hi

zðX ;Q‘ðnÞÞ

vanishes.

Firstly, by [23, p. 224, Cor. 2.7], we have

Hi
étðX ;Q‘ðnÞÞ ¼ Hi

étðz;Q‘ðnÞÞ ¼ Hi
ctsðẐZ;Z‘ðnÞÞ �Q‘:

As in Example 4.12, the right-hand group is trivial unless n ¼ 0.

Set Uur ¼ SpecFðX Þ, where FðX Þ is the maximal algebraic extension of KðX Þ unra-
mified at z. To prove the second vanishing we consider the Hochshild–Serre spectral

sequence (cf. [23, p. 105, Thm. 2.20])

Ha
étðz;H

b
étðUur;Q‘ðnÞÞÞ ) Haþb

ét ðU;Q‘ðnÞÞ:

According to [29], Uur has cohomological dimension at most 1, so that

Hb
étðUur;Q‘ðnÞÞ ¼ 0 when b > 1:

Since the pro-‘ Abelianization of the inertia group p1ðUurÞ is Zlð1Þ as a Galois mod-

ule, we have

H1
étðUur;Q‘ðnÞÞ ¼ Hom

ctsðp1ðUurÞ;Q‘ðnÞÞ ffi Q‘ðn� 1Þ:

The required vanishing follows by plugging this, and the fact that H0
étðUur;Q‘ðnÞÞ is

Q‘ðnÞ, into the spectral sequence. &
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Sup. 31 (1998), 47–92.
14. Hain, R. and Matsumoto, M.: Tannakian fundamental groups associated to Galois

groups, In: Galois groups and Fundamental Groups, Leila Schneps (ed.), MSRI Publ. 41,

Cambridge Univ. Press, 2003, pp. 183–216.

166 RICHARD HAIN AND MAKOTO MATSUMOTO

https://doi.org/10.1023/B:COMP.0000005077.42732.93 Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000005077.42732.93


15. Ihara, Y.: Profinite braid groups, Galois representations and complex multiplications,

Ann. of Math. 123 (1986), 43–106.
16. Ihara, Y.: The Galois representation arising from P

1
� f0; 1;1g and Tate twists of

even degree, In: Galois Groups over Q, Publ. MSRI, 16, Springer-Verlag, New York,

1989, pp. 299–313.
17. Ihara, Y.: Some arithmetic aspects of Galois actions in the pro-p fundamental group of

P
1
� f0; 1;1g, Arithmetic Fundamental Groups and Noncommutative Algebra ðBerkeley,

CA, 1999Þ, Proc. Sympos, Pure Math. 70, Amer. Math. Soc., Providence, 2002, pp.
247–273.

18. Jannsen, U.: On the ‘-adic cohomology of varieties over number fields and its Galois
cohomology, In: Galois Groups over Q, Publ. MSRI, 16, Springer-Verlag, New York,

1989, pp. 315–360.
19. Jantzen, J. C.: Representations of Algebraic Groups, Pure Appl. Math. 131, Academic

Press, New York, 1987.

20. Levine, M.: Mixed Motives, Math. Surveys Monogr., 57, Amer. Math. Soc., Providence,
1998.

21. Malcev, A.: Nilpotent torsion–free groups, (Russian) Izvestiya Akad. Nauk. SSSR. Ser.

Mat. 13 (1949), 201–212.
22. Matsumoto, M.: On the Galois image in derivation ofp1 of the projective line minus three

points, In: Recent Developments in the Inverse Galois Problem ðSeattle, WA, 1993Þ,
Contemp. Math. 186 (1995), 201–213.

23. Milne, J. S.: Étale Cohomology, Princeton Math. Ser. 33, Princeton Univ. Press, 1980.
24. Milne, J. S.: Arithmetic Duality Theorems, Perspect. Math. 1, Academic Press, New York,

1986.

25. Nakamura, H. and Takao, N.; Galois rigidity of pro-l pure braid groups of algebraic
curves, Trans. Amer. Math. Soc. 350 (1998), 1079–1102.

26. Quillen, D.: Rational homotopy theory, Ann. Math. 90 (1969), 205–295.

27. Rognes J. and Weibel, C.: Two-primary algebraic K-theory of rings of integers in number
fields, (Appendix A by Manfred Kolster), J. Amer. Math. Soc. 13 (2000), 1–54.

28. Serre, J.-P.: Local Fields, Translated from the French by Marvin Jay Greenberg, Grad.

Texts in Math. 67, Springer-Verlag, New York, 1979.
29. Serre, J.-P.: Cohomologie galoisienne, Lecture Notes in Math. 5, Heidelberg, 1964. English

translation: Galois Cohomology, Springer-Verlag, Berlin, 1997.
30. Serre, J.-P.: Lie Algebras and Lie Groups, 1964 Lectures given at Harvard University, 2nd

edn, Lecture Notes in Math., 1500, Springer-Verlag, Berlin, 1992.
31. Sharifi, R.: Letter to Matsumoto, April 28, 2000.
32. Shiho, A.: Fundamental groups, homotopy groups and p-adic Hodge Theory, in

preparation.
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