
Glasgow Math. J. 49 (2007) 417–422. C© 2007 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089507003783. Printed in the United Kingdom

A FAMILY OF PLANE CURVES WITH MODULI 3g − 4

ABEL CASTORENA
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Abstract. In the moduli space Mg of smooth and complex irreducible projective
curves of genus g, let GPg be the locus of curves that do not satisfy the Gieseker-
Petri theorem. Let GP1

g,d be the subvariety of GPg formed by curves C of genus g
with a pencil g1

d = (V, L) ∈ G1
d(C) free of base points for which the Petri map µV :

V ⊗ H0(C, KC ⊗ L−1) → H0(C, KC) is not injective. For g ≥ 8, we construct in this
work a family of irreducible plane curves of genus g with moduli 3g − 4 in GP1

g,g−2.

2000 Mathematics Subject Classification. 14H15.

1. Statement of results. Let Mg be the moduli space of smooth and complex
irreducible projective curves of genus g. Let C ∈Mg and let KC be the canonical bundle
of C. The Gieseker-Petri theorem (cf. [9, p. 285]) says that for every line bundle L on a
general curve C ∈Mg, the Petri map µL : H0(C, L) ⊗ H0(KC ⊗ L−1) → H0(C, KC) is
injective. This implies that the Gieseker-Petri locus defined as

GPg := {C ∈ Mg|C does not satisfy the Gieseker-Petri theorem.}

is a proper closed Zariski subset in Mg. It is an old and open problem to show that
GPg is a divisor. For g = 7, GP7 is a divisor (cf. [4]). Other results related with some
components of GPg are given in ([1], [6], [7], [10], [11]).

Let C ∈Mg be and L → C a line bundle of degree d with r + 1 = h0(C, L). The Brill-
Noether number is defined as ρ(g, d, r) := h0(C, KC) − h0(C, L)h0(C, KC ⊗ L−1) =
g − (r + 1)(g − d + r). Consider the varieties W r

d := {L ∈ Picd(C) : h0(C, L) ≥ r + 1},
and Gr

d(C) := {(V, L) : V ⊆ H0(C, L), dim V = r + 1}. Denote by µV : V ⊗ H0(C, K
⊗ L−1) → H0(C, K) the Petri map.

Given g, d, r, consider the variety C r
d which parametrizes couples (C, gr

d), with C
a smooth curve of genus g, and gr

d ∈ Gr
d(C). The dimension of any component of C r

d is
at least 3g − 3 + ρ(g, d, r). (cf. [2]).

Let ˜GP r
g,d := {(C, (V, L)) ∈ C r

d : (V, L) is free of base points with rank
(µV : V ⊗ H0(C, KC ⊗ L−1) → H0(C, KC)) ≤ g − (ρ + 1)}. Let π : C r

d → Mg be the

projection. Consider the image π (˜GPr
g,d) := GP r

g,d = {C ∈Mg : there exists a base point
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free (V, L) ∈ Gr
d(C) with µV not injective.}. We have a commutative diagram:

˜GP r
g,d

inclusion−−−−→ C r
d

π

⏐⏐� π

⏐⏐�

GP r
g,d

inclusion−−−−→ Mg

The codimension of ˜GP r
g,d is ≤ ρ + 1.

Suppose that g, r, d ≥ 1 such that ρ ≥ 0. For integers g ≥ 4 and g + 2
2 ≤ k ≤ g − 1,

G. Farkas showed (cf. [8]) that GP1
g,k has a divisorial component Z. In such component

the author describes the elements in GP1
g,k ∩ �1, where �1 is the divisor in Mg, where

a general point of �1 consists of a smooth curve of genus g − 1 joined at one point to
a smooth curve of genus one.

For g ≥ 8, we construct explicity a component of GP1
g−2 of pure codimension one

in Mg as follow.
Let C be a smooth curve of genus g ≥ 8 with a pencil g1

g−2 = (V, L) free of base
points on C such that the residual g2

g of the g1
g−2 determines a birational map onto

a plane curve � of degree g and geometric genus g with δ = (g−1)(g−2)
2 − g nodes as

singularities. In Lemma 2.2 we show that µV is not injective if and only if there
exists a curve G of degree g − 5 containing δ − 1 nodes of �. Consider the Severi
variety Vg,g of plane curves of degree g and geometric genus g having only nodes as
singularities (cf. [9, p. 30]). We consider the subvariety Vg,g

δ ⊂ Vg,g/PGL(3, �) formed
by plane curves with exactly δ = (g−1)(g−2)

2 − g = g(g−5)
2 + 1 nodes. Let Vg := {� ∈Vg,g

δ :
δ − 1 = g(g−5)

2 nodes lie on a curve of degree g − 5}.
Consider a curve C of genus g ≥ 8, neither trigonal nor bi-elliptic such that C

has a plane projective model as in Lemma 2.2. In Lemma 2.5 we show that there
exist at most finitely many pencils (V, L) ∈ G1

g−2(C) free of base points, for which the
Petri map µV is not injective. Let ψ : Vg → Mg be the natural morphism and denote
Dg := ψ(Vg) ⊂ GP1

g,g−2. In this paper we prove the following theorem.

THEOREM. Dg has pure codimension one in Mg.

2. Two basic lemmas.

2.1. Let C be a smooth curve of genus g with a pencil g1
g−2 = (V, L) ∈ G1

g−2(C)
free of base points for which the Petri map µV is not injective. Assume that the residual
g2

g of the pencil g1
g−2 induces a birational map onto a plane curve in �2. Let � be

such a curve and f : C → � the normalization of �. We denote by 
� the scheme
of singular points of � and 
 : = f ∗(
�); note that 
 is a divisor of degree 2δ. By
the genus formula the length of (
�) = δ, i.e. 
� is a curvilinear scheme consisting
of δ double points which can be infinitely near. We only consider the case where all
δ = (g−1)(g−2)

2 − g singularities of � are distinct. The following lemma is a generalization
of [4, Proposition 2.8].

LEMMA 2.2. Let � be a plane curve of degree g and geometric genus g such that �

has only δ double points as singularities. Let f : C → � be the normalization of �. Then
there is a curve G of degree g − 5 such that the scheme theoretic intersection of G with

https://doi.org/10.1017/S0017089507003783 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003783


PLANE CURVES WITH MODULI 3g − 4 419


� has length equal to δ − 1, i.e. f ∗(G) contains a divisor of degree 2δ − 2 contained in

 if and only if C has a pencil g1

g−2 = (V, L) ∈ G1
g−2(C) free of base points with µV not

injective.

Proof. First we show the part “if”. I will consider the case in which the support of

� = {x}.

If the support of 
� = {x}, then � has δ infinitely near double points. Let η :
= f ∗(x). η is a divisor of degree two and 
= δη. Our hypothesis means that the pullback
f ∗G on C contains (δ − 1)η. Consider the g1

g−2 cut out on C by the lines through x. Let
�1, �2 be general such lines, cutting out on C two effective divisors D1, D2 ∈ g1

g−2. The
pullback of G + �1 + �2 contains (δ + 1)η + D1 + D2 ∼ (δ + 1)η + 2D. By adjunction
formula (cf. [3, p. 53]), KC ∼ OC(g − 3)(−
), we have that KC(−2D) is effective where
|D| = g1

g−2. Since kernel µD  H0(C, KC(−2D)), (cf. [3, p. 126]), we have the assertion.
Other extra cases can occur. These cases depend on δ and can be proved in

a similar way. For example consider the case when the support of 
� consists of
δ − 2 infinitely near singular double points and one tacnode p. By hypothesis,
f ∗(G) contains a divisor B of degree 2δ − 2 contained in the divisor 
 which is
of degree 2δ. Consider the g1

g−2 cut out on C by the lines through the tacnode
p of �. Let �1, �2 be general such lines, cutting out on C two effective divisors
D1, D2 ∈ g1

g−2 = |D|. Since �1, �2 are lines through p, note that the pullback of F : =
G + �1 + �2 contains B + (f ∗(p) + D1) + (f ∗(p) + D2) ∼ (B + f ∗(p)) + 2D + f ∗(p) ∼

+ 2D + f ∗(p). Since KC ∼ OC(g − 3)(−
), then KC(−2D) is effective, so we have a
non-zero section of H0(C, KC(−2D))  ker µD.

The same argument works when the support of 
� consists of δ − 3 infinitely
near singular double points with an ordinary singular double point and one tacnode.
Another case for which the proof is valid is when � has δ − 4 singular double points
and two tacnodes. Suppose now that the support of 
� = {x1, . . , xδ−k, x}, where
xj = 1, . . . , δ − k are distinct singular double points; then � has k infinitely near singular
double points. For k = 1 we have δ distinct ordinary singular double points which is the
case we are interested in. For k = 2 is when � has one tacnode and δ − 2 infinitely near
singular double points. With this notation take in general any k ≤ δ − 1 and consider
η : = f ∗(x). So the lines through x cut out on C a |D| = g1

g−2. Consider �1, �2 two
general such lines. The pullback of G + �1 + �2 contains 
+ 2D + η, this implies that
ker µD  H0(C, KC(−2D)) �= 0. Similarly other cases can be proved in this way.

Now suppose that ker µV �= 0 and consider the residual g2
g = |KC ⊗ L−1|, where

g1
g−2 = (V, L). This g2

g determines a birational morphism C → � ⊂ �2. By assumption
� has only double points as singularities. Since C fails the Gieseker-Petri theorem for
the g1

g−2, we have that kernel µV  H0(C, KC ⊗ L−2), (cf. [3, p. 126]), but |KC ⊗ L−2| ∼
g2

g − g1
g−2 is effective, so necessarily the g1

g−2 is cut out by a pencil of lines through a
singular double point p of �. By adjunction formula there is a curve G of degree g − 5
such that G contains 
� − {p}. �

2.3. In general it is complicated to construct an irreducible and reduced plane
curve of degree g and geometric genus g with projective model as in Lemma 2.2.
However at least for 6 ≤ g ≤ 10 such kind of curves exist. In ([5, p. 148–156]),
the author show the existence of canonical surfaces in �3 with pg = 4, degree
d = 6, 7, 8, 9, 10 and sectional genus g = 7, 8, 9, 10, 11 with ordinary singularities.
The general plane section is semicanonical with number of nodes δ = 3, 7, 12, 18, 25
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lying respectively on a curve of degree 1, 2, 3, 4, 5. A tangent general section has
degree d = 6, 7, 8, 9, 10 and the corresponding genus is g = 6, . . . , 10. Such curves have
respectively nodes δ = 4, 8, 13, 19, 26 with 3, 7, 12, 18, 25 lying respectively on a curve
of degree 1, 2, 3, 4, 5.

2.4. Let C be a smooth curve of genus g. Consider the morphism Picd(C) →
Pic2d(C) given by L → L2 inside the Jacobian of C, J(C). Note that this morphism has
finite kernel.

Suppose that C is a smooth curve of genus g ≥ 8, neither trigonal nor bi-elliptic.
By Mumford theorem (cf. [3, p. 193]), the dimension of W 1

g−2(C) is exactly the Brill-
Noether number ρ(g, g − 2, 1) = g − 6. Then we have that the subvariety X1 : = {L2 :
L ∈ W 1

g−2(C)} has dimension ρ = g − 6 and TL(W 1
g−2(C))  TL2 X1 inside H1(C,OC).

Let g1
g−2 = (V, L) ∈ G1

g−2(C) be free of base points such that µV is not
injective. Since C is in particular non-hyperelliptic we have that dimension
of kernel µV = h0(C, KC ⊗ L−2) = 1, so there exist points p, q ∈ C such that
KC ⊗ L−2 =OC(p + q) with h0(C,OC(p + q)) = 1, then h0(C, KC(−p − q)) = g − 2. If
p = q, then L + p is a theta characteristic. So we only consider the case p �= q. Define
inside the Jacobian of C, J(C), the subvariety X2 : = KC − W2(C) = {KC − (p + q) :
p + q ∈ W2(C)} ⊂ W r

2g−4(C) for r = h0(C, KC(−p − q)) − 1 = g − 3. We have that the
dimension of X2 = 2. LetL= KC − (p + q) ∈ X2 be any point, then KC − L= p + q. The
image of µL : H0(C,L) ⊗ H0(C, KC ⊗L−1) → H0(C, KC) is equal to H0(C, KC(−p −
q)), since h0(C,OC(p + q)) = 1, µL is injective and TLX2 is a two dimensional subspace
of H1(C,OC)  T0(J(C)).

LEMMA 2.5. Let C be a smooth curve of genus g ≥ 8 neither trigonal nor bi-elliptic.
Suppose that there exists a pencil g1

g−2 = (V, L) ∈ G1
g−2(C) free of base points such that

the residual g2
g = |KC ⊗ L−1| induces a birational morphism from C to a plane curve � of

degree g in �2 with x1, . . . , xδ nodes all distinct and x1, . . . , xδ−1 lying on curve of degree
g − 5. Then there are at most finitely many pencils g1

g−2 = (V, L), L ∈ W 1
g−2(C), free of

base points with µV not injective.

Proof. We are going to show that X1 ∩ X2 is a finite set, where X1 and X2 are the
subvarieties of J(C) defined in 2.4. Without loss of generality we can assume that g1

g−2
is complete, that is, |L| = g1

g−2. Let L be as in the hypothesis with kernel µL �= 0. By
Lemma 2.2 we can assume that |L| is cut out by lines through the node xδ of �. We have
that L2 ∈ X1 ∩ X2. If we show that TL2 X1 ∩ TL2 X2 = {0} inside H1(C,OC) we obtain
that L ∈ W 1

g−2(C) is an isolated point and this implies that X1 ∩ X2 is a finite set.
Consider the normalization map f : C → �. Let f ∗(xδ) = {p, q} be for some

points p, q ∈ C, where p �= q because xδ is a node. Since L2 ∈ X1 ∩ X2, then
KC ⊗ L−2 OC(p + q) and h0(C, KC ⊗ L−2) = dimension of kernel µL = 1, since C
is in particular non-hyperelliptic. We have that dimension of TL2 X1 = dimension
of TL(W 1

g−2(C)) = ρ + dimension of kernel µL = g − 5, and the dimension of
TL2 X2 = 2, so TL2 X1 ∩ TL2 X2 = {0} if and only if (TL2 X1)⊥ + (TL2 X2)⊥ generates
all of H0(C, KC), where ⊥ means orthogonal complement with respect to Serre
duality pairing < , > (cf. [3, p. 7]). The dimension of (TL2 X1)⊥ + dimension of
(TL2 X2)⊥ = g + 3 = h0(C, KC) + 3, that is, dimension of (TL2 X1)⊥ + dimension of
(TL2 X2)⊥ − h0(C, KC) = 3. So (TL2 X1)⊥ + (TL2 X2)⊥ generates all of H0(C, KC) if p
and q impose independent conditions to image µL ⊂ H0(C, KC), that is, p and q
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impose independent conditions to image µL, if the dimension of L (−p − q) = 3, where
L (−p − q) : = image µL ∩ H0(C, KC(−p − q)). We denote by |image µL| the linear
system determined by the subvector space (image µL) ⊂ H0(C, KC)

Claim. The dimension of L (−p − q) = 3.

Proof of the claim. Let D ∈ |KC − L|, D not containing p + q, and consider
D + |L| : = {D + E : E ∈ |L|} ⊆ |image µL|; then if p + q imposes independent
conditions to D + |L|, then p + q imposes independent conditions to the linear system
|image µL|, and in this case the dimension of L (−p − q) = 3. Let � be a line through
the node xδ determined by p and q. Then the intersection � · �, of � with �, is
� · � = p + q + E�, where E� ∈ |L|. Since xδ is a node there exist two different lines
�p, �q through the node such that �p · � = 2p + q + Ep, where q is not in the support
of the divisor Ep, and �q · � = 2q + p + Eq, with p not in the support of Eq. Then
Ep + p ∈ |L| is the unique divisor given by the tangent line �p to the branch through
p not containing q. Similarly q + Eq is the unique divisor given by the tangent line
�q through the branch q not containing the point p. So we have that p + q imposes
independent conditions to D + |L|. �

3. Proof of the Theorem. Now we are going to show that ψ(Vg) =Dg ⊂ GP1
g,g−2

has pure codimension one in Mg.
Is well known that C 1

d is a smooth and irreducible variety of dimension
dim Mg + ρ(g, d, 1) = 2g + 2d − 5, (cf. [2]). Let C be a smooth curve of genus
g ≥ 8 neither trigonal nor bi-elliptic and suppose that there exists a pencil g1

g−2 =
(V, L) ∈ G1

g−2(C) free of base points such that the residual g2
g = |KC ⊗ L−1| induces a

projective model as in Lemma 2.5. We have that (C, (V, L)) ∈ G̃P1
g,g−2 ⊂ C 1

g−2. Consider
the subvariety of C 1

g−2 defined as

D̃ := {(C, (V, L)) ∈ ˜GP1
g,g−2 : (C, (V, L)) as in Lemma 2.5.}.

Let (C, (V, L)) ∈ D̃. We have that kernel µV is one dimensional, so µV has rank
five. We can assume that C is outside a locus B in Mg of codimension ≥ 2. In
a small open neighborhood UC ⊂ Mg − B containing C, we have a finite cover Ũ
and pairs (C̃, (Ṽ , L̃)) ∈C 1

g−2, C̃ ∈ Ũ, L̃ ∈ Picg−2(C̃) such that locally the Petri map is a
homomorphism of vector bundles

µ|(C̃,(Ṽ ,L̃)) : Ṽ ⊗ H0(C̃, KC̃ ⊗ (L̃)−1) → H0(C̃, KC̃).

For each (C̃, (Ṽ , L̃)) ∈ D̃, the homomorphism µ|(C̃,(Ṽ ,L̃)) has rank ≤ 5, so the subvariety
D̃ has codimension ≤ g − 5 = ρ + 1, that is, dim D̃≥ dim C 1

g−2 − (ρ + 1) = 3g −
3 + ρ − (ρ + 1) = 3g − 4. The Lemma 2.5 implies that the projection π |D̃ : D̃ →
GP1

g,g−2 is generically finite. This show that π |D̃(D̃) =Dg ⊂ GP1
g,g−2 has dimension

3g − 4. Let Y ⊂ Dg be an irreducible component and C ∈ Y . By Lemma 2.5 we have
that (π |D̃)−1(C) is zero-dimensional; this implies that Y is of codimension one, so each
irreducible component of Dg has dimension 3g − 4, that is, Dg has pure codimension
one in Mg. �.

REMARK. From 2.3 we see that the variety Vg �= ∅ for 7 ≤ g ≤ 10. Suppose that
for g ≥ 11, Vg �= ∅. We are going to show that for g′ = g + 1, Vg + 1 �= ∅.
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Consider �1 ⊂ Mg′ , where a generic point of �1 is obtained by identifying a point
in a smooth curve of genus g with a point in a smooth curve of genus one. Take a general
curve C ∈Dg = ψ(Vg) ⊂ GP1

g,g−2 with birational projective model � ∈Vg. Choose a
general point p ∈ C and set X0 : = C ∪p E, where E is a elliptic curve. We have that
X0 ∈GP1

g′,g′−2 ∩ �1, and there is a smooth curve C′ near X0 such that C′ ∈GP1
g′,g′−2,

(cf. [8]). Consider the rational map ψ : Vg′,g′
δ′ → Mg′ , and let F be the graph of ψ .

Consider the projections π1, π2 fromF toVg′,g′
δ′ andMg′ respectively. Denote ψ−1(X0) :

=π1(π−1
2 (X0)), with X0 ∈GP1

g′,g′−2 ∩ �1 as above. We have that there is an arc W = {�t}
in Vg′,g′

δ′ with parameter t such that for t �= 0, W − {�0} ⊂ Vg′,g′
δ′ , {�0} /∈ Vg′,g′

δ′ , and such
that the stable limit of the normalization of the curves �t is a curve which is stably
equivalent to X0. We have that for some t0 �= 0, there is a curve �t0 ⊂ W such that Ct0 ,
the normalization of �t0 , is contained inGP1

g′,g′−2 with Ct0 near X0. Since Ct0 ∈GP1
g′,g′−2

and �t0 ∈Vg′,g′
δ′ , the Lemma 2.2 implies that δ′ − 1 = g′(g′−5)

2 nodes of �t0 lie on a curve
of degree g′ − 5. This show that Vg + 1 �= ∅.
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