A FAMILY OF PLANE CURVES WITH MODULI 3g - 4

ABEL CASTORENA

Instituto de Matemáticas, Unidad Morelia, Universidad Nacional Autónoma de México Apdo, Postal 61-3(Xangari), C.P. 58089, Morelia, Michoacán, MEXICO e-mail: abel@matmor.unam.mx

(Received 19 May, 2005; revised 10 June, 2006 and 14 February, 2007; accepted 31 March, 2007)

Abstract. In the moduli space \mathcal{M}_g of smooth and complex irreducible projective curves of genus g, let \mathcal{GP}_g be the locus of curves that do not satisfy the Gieseker-Petri theorem. Let $\mathcal{GP}_{g,d}^1$ be the subvariety of \mathcal{GP}_g formed by curves C of genus g with a pencil $g_d^1 = (V, L) \in G_d^1(C)$ free of base points for which the Petri map $\mu_V : V \otimes H^0(C, K_C \otimes L^{-1}) \to H^0(C, K_C)$ is not injective. For $g \ge 8$, we construct in this work a family of irreducible plane curves of genus g with moduli 3g - 4 in $\mathcal{GP}_{g,g-2}^1$.

2000 Mathematics Subject Classification. 14H15.

1. Statement of results. Let \mathcal{M}_g be the moduli space of smooth and complex irreducible projective curves of genus g. Let $C \in \mathcal{M}_g$ and let K_C be the canonical bundle of C. The Gieseker-Petri theorem (cf. [9, p. 285]) says that for every line bundle L on a general curve $C \in \mathcal{M}_g$, the Petri map $\mu_L : H^0(C, L) \otimes H^0(K_C \otimes L^{-1}) \to H^0(C, K_C)$ is injective. This implies that the Gieseker-Petri locus defined as

 $\mathcal{GP}_g := \{C \in \mathcal{M}_g | C \text{ does not satisfy the Gieseker-Petri theorem.} \}$

is a proper closed Zariski subset in \mathcal{M}_g . It is an old and open problem to show that \mathcal{GP}_g is a divisor. For g = 7, \mathcal{GP}_7 is a divisor (cf. [4]). Other results related with some components of \mathcal{GP}_g are given in ([1], [6], [7], [10], [11]).

Let $C \in \mathcal{M}_g$ be and $L \to C$ a line bundle of degree d with $r + 1 = h^0(C, L)$. The Brill-Noether number is defined as $\rho(g, d, r) := h^0(C, K_C) - h^0(C, L)h^0(C, K_C \otimes L^{-1}) = g - (r+1)(g - d + r)$. Consider the varieties $W_d^r := \{L \in \operatorname{Pic}^d(C) : h^0(C, L) \ge r + 1\}$, and $G_d^r(C) := \{(V, L) : V \subseteq H^0(C, L), \dim V = r + 1\}$. Denote by $\mu_V : V \otimes H^0(C, K \otimes L^{-1}) \to H^0(C, K)$ the Petri map.

Given g, d, r, consider the variety \mathscr{C}_d^r which parametrizes couples (C, g_d^r) , with C a smooth curve of genus g, and $g_d^r \in G_d^r(C)$. The dimension of any component of \mathscr{C}_d^r is at least $3g - 3 + \rho(g, d, r)$. (cf. [2]).

Let $\widetilde{\mathcal{GP}}_{g,d}^r := \{(C, (V, L)) \in \mathscr{C}_d^r : (V, L) \text{ is free of base points with rank}$ $(\mu_V : V \otimes H^0(C, K_C \otimes L^{-1}) \to H^0(C, K_C)) \le g - (\rho + 1)\}.$ Let $\pi : \mathscr{C}_d^r \to \mathcal{M}_g$ be the projection. Consider the image $\pi(\widetilde{\mathcal{GP}}_{g,d}^r) := \mathcal{GP}_{g,d}^r = \{C \in \mathcal{M}_g : \text{there exists a base point}\}$

The author was partially supported with grant PAPIIT-IN104906-2, Universidad Nacional Autonoma de Mexico (UNAM).

free $(V, L) \in G_d^r(C)$ with μ_V not injective.}. We have a commutative diagram:

The codimension of $\widetilde{\mathcal{GP}}_{g,d}^r$ is $\leq \rho + 1$.

Suppose that $g, r, d \ge 1$ such that $\rho \ge 0$. For integers $g \ge 4$ and $\frac{g+2}{2} \le k \le g-1$, G. Farkas showed (cf. [8]) that $\mathcal{GP}_{g,k}^1$ has a divisorial component Z. In such component the author describes the elements in $\overline{\mathcal{GP}_{g,k}^1} \cap \Delta_1$, where Δ_1 is the divisor in $\overline{\mathcal{M}_g}$, where a general point of Δ_1 consists of a smooth curve of genus g-1 joined at one point to a smooth curve of genus one.

For $g \ge 8$, we construct explicitly a component of \mathcal{GP}_{g-2}^1 of pure codimension one in \mathcal{M}_g as follow.

Let *C* be a smooth curve of genus $g \ge 8$ with a pencil $g_{g-2}^1 = (V, L)$ free of base points on *C* such that the residual g_g^2 of the g_{g-2}^1 determines a birational map onto a plane curve Γ of degree *g* and geometric genus *g* with $\delta = \frac{(g-1)(g-2)}{2} - g$ nodes as singularities. In Lemma 2.2 we show that μ_V is not injective if and only if there exists a curve *G* of degree g-5 containing $\delta - 1$ nodes of Γ . Consider the Severi variety $\mathcal{V}^{g,g}$ of plane curves of degree *g* and geometric genus *g* having only nodes as singularities (cf. [9, p. 30]). We consider the subvariety $\mathcal{V}_{\delta}^{g,g} \subset \mathcal{V}^{g,g}/PGL(3, \mathbb{C})$ formed by plane curves with exactly $\delta = \frac{(g-1)(g-2)}{2} - g = \frac{g(g-5)}{2} + 1$ nodes. Let $\mathcal{V}_g := \{\Gamma \in \mathcal{V}_{\delta}^{g,g} : \delta - 1 = \frac{g(g-5)}{2}$ nodes lie on a curve of degree $g-5\}$.

Consider a curve *C* of genus $g \ge 8$, neither trigonal nor bi-elliptic such that *C* has a plane projective model as in Lemma 2.2. In Lemma 2.5 we show that there exist at most finitely many pencils $(V, L) \in G_{g-2}^1(C)$ free of base points, for which the Petri map μ_V is not injective. Let $\psi : \mathcal{V}_g \to \mathcal{M}_g$ be the natural morphism and denote $\mathcal{D}_g := \psi(\mathcal{V}_g) \subset \mathcal{GP}_{g,g-2}^1$. In this paper we prove the following theorem.

THEOREM. \mathcal{D}_g has pure codimension one in \mathcal{M}_g .

2. Two basic lemmas.

2.1. Let *C* be a smooth curve of genus *g* with a pencil $g_{g-2}^1 = (V, L) \in G_{g-2}^1(C)$ free of base points for which the Petri map μ_V is not injective. Assume that the residual g_g^2 of the pencil g_{g-2}^1 induces a birational map onto a plane curve in \mathbb{P}^2 . Let Γ be such a curve and $f: C \to \Gamma$ the normalization of Γ . We denote by Δ_{Γ} the scheme of singular points of Γ and $\Delta := f^*(\Delta_{\Gamma})$; note that Δ is a divisor of degree 2 δ . By the genus formula the length of $(\Delta_{\Gamma}) = \delta$, i.e. Δ_{Γ} is a curvilinear scheme consisting of δ double points which can be infinitely near. We only consider the case where all $\delta = \frac{(g-1)(g-2)}{2} - g$ singularities of Γ are distinct. The following lemma is a generalization of [4, Proposition 2.8].

LEMMA 2.2. Let Γ be a plane curve of degree g and geometric genus g such that Γ has only δ double points as singularities. Let $f : C \to \Gamma$ be the normalization of Γ . Then there is a curve G of degree g - 5 such that the scheme theoretic intersection of G with

 Δ_{Γ} has length equal to $\delta - 1$, i.e. $f^*(G)$ contains a divisor of degree $2\delta - 2$ contained in Δ if and only if C has a pencil $g_{g-2}^1 = (V, L) \in G_{g-2}^1(C)$ free of base points with μ_V not injective.

Proof. First we show the part "if". I will consider the case in which the support of $\Delta_{\Gamma} = \{x\}$.

If the support of $\Delta_{\Gamma} = \{x\}$, then Γ has δ infinitely near double points. Let $\eta : = f^*(x)$. η is a divisor of degree two and $\Delta = \delta \eta$. Our hypothesis means that the pullback f^*G on C contains $(\delta - 1)\eta$. Consider the g_{g-2}^1 cut out on C by the lines through x. Let ℓ_1, ℓ_2 be general such lines, cutting out on C two effective divisors $D_1, D_2 \in g_{g-2}^1$. The pullback of $G + \ell_1 + \ell_2$ contains $(\delta + 1)\eta + D_1 + D_2 \sim (\delta + 1)\eta + 2D$. By adjunction formula (cf. [3, p. 53]), $K_C \sim \mathcal{O}_C(g-3)(-\Delta)$, we have that $K_C(-2D)$ is effective where $|D| = g_{g-2}^1$. Since kernel $\mu_D \simeq H^0(C, K_C(-2D))$, (cf. [3, p. 126]), we have the assertion.

Other extra cases can occur. These cases depend on δ and can be proved in a similar way. For example consider the case when the support of Δ_{Γ} consists of $\delta - 2$ infinitely near singular double points and one tacnode p. By hypothesis, $f^*(G)$ contains a divisor B of degree $2\delta - 2$ contained in the divisor Δ which is of degree 2δ . Consider the g_{g-2}^1 cut out on C by the lines through the tacnode p of Γ . Let ℓ_1, ℓ_2 be general such lines, cutting out on C two effective divisors $D_1, D_2 \in g_{g-2}^1 = |D|$. Since ℓ_1, ℓ_2 are lines through p, note that the pullback of F := $G + \ell_1 + \ell_2$ contains $B + (f^*(p) + D_1) + (f^*(p) + D_2) \sim (B + f^*(p)) + 2D + f^*(p) \sim$ $\Delta + 2D + f^*(p)$. Since $K_C \sim \mathcal{O}_C(g - 3)(-\Delta)$, then $K_C(-2D)$ is effective, so we have a non-zero section of $H^0(C, K_C(-2D)) \simeq \ker \mu_D$.

The same argument works when the support of Δ_{Γ} consists of $\delta - 3$ infinitely near singular double points with an ordinary singular double point and one tacnode. Another case for which the proof is valid is when Γ has $\delta - 4$ singular double points and two tacnodes. Suppose now that the support of $\Delta_{\Gamma} = \{x_1, \dots, x_{\delta-k}, x\}$, where $x_j = 1, \dots, \delta - k$ are distinct singular double points; then Γ has k infinitely near singular double points. For k = 1 we have δ distinct ordinary singular double points which is the case we are interested in. For k = 2 is when Γ has one tacnode and $\delta - 2$ infinitely near singular double points. With this notation take in general any $k \leq \delta - 1$ and consider $\eta := f^*(x)$. So the lines through x cut out on C a $|D| = g_{g-2}^1$. Consider ℓ_1, ℓ_2 two general such lines. The pullback of $G + \ell_1 + \ell_2$ contains $\Delta + 2D + \eta$, this implies that ker $\mu_D \simeq H^0(C, K_C(-2D)) \neq 0$. Similarly other cases can be proved in this way.

Now suppose that ker $\mu_V \neq 0$ and consider the residual $g_g^2 = |K_C \otimes L^{-1}|$, where $g_{g-2}^1 = (V, L)$. This g_g^2 determines a birational morphism $C \to \Gamma \subset \mathbb{P}^2$. By assumption Γ has only double points as singularities. Since *C* fails the Gieseker-Petri theorem for the g_{g-2}^1 , we have that kernel $\mu_V \simeq H^0(C, K_C \otimes L^{-2})$, (cf. [3, p. 126]), but $|K_C \otimes L^{-2}| \sim g_g^2 - g_{g-2}^1$ is effective, so necessarily the g_{g-2}^1 is cut out by a pencil of lines through a singular double point *p* of Γ . By adjunction formula there is a curve *G* of degree g - 5 such that *G* contains $\Delta_{\Gamma} - \{p\}$. \Box

2.3. In general it is complicated to construct an irreducible and reduced plane curve of degree g and geometric genus g with projective model as in Lemma 2.2. However at least for $6 \le g \le 10$ such kind of curves exist. In ([5, p. 148–156]), the author show the existence of canonical surfaces in \mathbb{P}^3 with $p_g = 4$, degree d = 6, 7, 8, 9, 10 and sectional genus g = 7, 8, 9, 10, 11 with ordinary singularities. The general plane section is semicanonical with number of nodes $\delta = 3, 7, 12, 18, 25$

lying respectively on a curve of degree 1, 2, 3, 4, 5. A tangent general section has degree d = 6, 7, 8, 9, 10 and the corresponding genus is g = 6, ..., 10. Such curves have respectively nodes $\delta = 4, 8, 13, 19, 26$ with 3, 7, 12, 18, 25 lying respectively on a curve of degree 1, 2, 3, 4, 5.

2.4. Let *C* be a smooth curve of genus *g*. Consider the morphism $\text{Pic}^d(C) \rightarrow \text{Pic}^{2d}(C)$ given by $L \rightarrow L^2$ inside the Jacobian of *C*, J(C). Note that this morphism has finite kernel.

Suppose that *C* is a smooth curve of genus $g \ge 8$, neither trigonal nor bi-elliptic. By Mumford theorem (cf. [3, p. 193]), the dimension of $W_{g-2}^1(C)$ is exactly the Brill-Noether number $\rho(g, g-2, 1) = g - 6$. Then we have that the subvariety $X_1 := \{L^2 : L \in W_{g-2}^1(C)\}$ has dimension $\rho = g - 6$ and $T_L(W_{g-2}^1(C)) \simeq T_{L^2}X_1$ inside $H^1(C, \mathcal{O}_C)$. Let $g_{g-2}^1 = (V, L) \in G_{g-2}^1(C)$ be free of base points such that μ_V is not

Let $g_{g-2}^1 = (V, L) \in G_{g-2}^1(C)$ be free of base points such that μ_V is not injective. Since *C* is in particular non-hyperelliptic we have that dimension of kernel $\mu_V = h^0(C, K_C \otimes L^{-2}) = 1$, so there exist points $p, q \in C$ such that $K_C \otimes L^{-2} = \mathcal{O}_C(p+q)$ with $h^0(C, \mathcal{O}_C(p+q)) = 1$, then $h^0(C, K_C(-p-q)) = g-2$. If p = q, then L + p is a theta characteristic. So we only consider the case $p \neq q$. Define inside the Jacobian of *C*, J(C), the subvariety $X_2 := K_C - W_2(C) = \{K_C - (p+q):$ $p+q \in W_2(C)\} \subset W_{2g-4}^r(C)$ for $r = h^0(C, K_C(-p-q)) - 1 = g - 3$. We have that the dimension of $X_2 = 2$. Let $\mathcal{L} = K_C - (p+q) \in X_2$ be any point, then $K_C - \mathcal{L} = p + q$. The image of $\mu_{\mathcal{L}} : H^0(C, \mathcal{L}) \otimes H^0(C, K_C \otimes \mathcal{L}^{-1}) \to H^0(C, K_C)$ is equal to $H^0(C, K_C(-p-q))$, since $h^0(C, \mathcal{O}_C(p+q)) = 1$, $\mu_{\mathcal{L}}$ is injective and $T_{\mathcal{L}}X_2$ is a two dimensional subspace of $H^1(C, \mathcal{O}_C) \simeq T_0(J(C))$.

LEMMA 2.5. Let C be a smooth curve of genus $g \ge 8$ neither trigonal nor bi-elliptic. Suppose that there exists a pencil $g_{g-2}^1 = (V, L) \in G_{g-2}^1(C)$ free of base points such that the residual $g_g^2 = |K_C \otimes L^{-1}|$ induces a birational morphism from C to a plane curve Γ of degree g in \mathbb{P}^2 with x_1, \ldots, x_δ nodes all distinct and $x_1, \ldots, x_{\delta-1}$ lying on curve of degree g - 5. Then there are at most finitely many pencils $g_{g-2}^1 = (V, L)$, $L \in W_{g-2}^1(C)$, free of base points with μ_V not injective.

Proof. We are going to show that $X_1 \cap X_2$ is a finite set, where X_1 and X_2 are the subvarieties of J(C) defined in 2.4. Without loss of generality we can assume that g_{g-2}^1 is complete, that is, $|L| = g_{g-2}^1$. Let L be as in the hypothesis with kernel $\mu_L \neq 0$. By Lemma 2.2 we can assume that |L| is cut out by lines through the node x_δ of Γ . We have that $L^2 \in X_1 \cap X_2$. If we show that $T_{L^2}X_1 \cap T_{L^2}X_2 = \{0\}$ inside $H^1(C, \mathcal{O}_C)$ we obtain that $L \in W_{g-2}^1(C)$ is an isolated point and this implies that $X_1 \cap X_2$ is a finite set.

Consider the normalization map $f: C \to \Gamma$. Let $f^*(x_{\delta}) = \{p, q\}$ be for some points $p, q \in C$, where $p \neq q$ because x_{δ} is a node. Since $L^2 \in X_1 \cap X_2$, then $K_C \otimes L^{-2} \simeq \mathcal{O}_C(p+q)$ and $h^0(C, K_C \otimes L^{-2}) =$ dimension of kernel $\mu_L = 1$, since Cis in particular non-hyperelliptic. We have that dimension of $T_{L^2}X_1 =$ dimension of $T_L(W_{g-2}^1(C)) = \rho +$ dimension of kernel $\mu_L = g - 5$, and the dimension of $T_{L^2}X_2 = 2$, so $T_{L^2}X_1 \cap T_{L^2}X_2 = \{0\}$ if and only if $(T_{L^2}X_1)^{\perp} + (T_{L^2}X_2)^{\perp}$ generates all of $H^0(C, K_C)$, where \perp means orthogonal complement with respect to Serre duality pairing <, > (cf. [3, p. 7]). The dimension of $(T_{L^2}X_1)^{\perp} +$ dimension of $(T_{L^2}X_2)^{\perp} = g + 3 = h^0(C, K_C) + 3$, that is, dimension of $(T_{L^2}X_1)^{\perp} +$ dimension of $(T_{L^2}X_2)^{\perp} - h^0(C, K_C) = 3$. So $(T_{L^2}X_1)^{\perp} + (T_{L^2}X_2)^{\perp}$ generates all of $H^0(C, K_C)$ if pand q impose independent conditions to image $\mu_L \subset H^0(C, K_C)$, that is, p and q impose independent conditions to image μ_L , if the dimension of $\mathscr{L}(-p-q) = 3$, where $\mathscr{L}(-p-q) := \text{image } \mu_L \cap H^0(C, K_C(-p-q))$. We denote by $|\text{image } \mu_L|$ the linear system determined by the subvector space (image $\mu_L) \subset H^0(C, K_C)$

Claim. The dimension of $\mathscr{L}(-p-q) = 3$.

Proof of the claim. Let $D \in |K_C - L|$, D not containing p + q, and consider $D + |L| := \{D + E : E \in |L|\} \subseteq |\text{image } \mu_L|$; then if p + q imposes independent conditions to D + |L|, then p + q imposes independent conditions to the linear system $|\text{image } \mu_L|$, and in this case the dimension of $\mathcal{L}(-p - q) = 3$. Let ℓ be a line through the node x_δ determined by p and q. Then the intersection $\ell \cdot \Gamma$, of ℓ with Γ , is $\ell \cdot \Gamma = p + q + E_\ell$, where $E_\ell \in |L|$. Since x_δ is a node there exist two different lines ℓ_p , ℓ_q through the node such that $\ell_p \cdot \Gamma = 2p + q + E_p$, where q is not in the support of the divisor E_p , and $\ell_q \cdot \Gamma = 2q + p + E_q$, with p not in the support of E_q . Then $E_p + p \in |L|$ is the unique divisor given by the tangent line ℓ_p to the branch through p not containing q. Similarly $q + E_q$ is the unique divisor given by the tangent line ℓ_p to the branch up of ℓ_q through the branch q not containing the point p. So we have that p + q imposes independent conditions to D + |L|. \Box

3. Proof of the Theorem. Now we are going to show that $\psi(\mathcal{V}_g) = \mathcal{D}_g \subset \mathcal{GP}_{g,g-2}^1$ has pure codimension one in \mathcal{M}_g .

Is well known that \mathscr{C}_d^1 is a smooth and irreducible variety of dimension $\dim \mathcal{M}_g + \rho(g, d, 1) = 2g + 2d - 5$, (cf. [2]). Let *C* be a smooth curve of genus $g \ge 8$ neither trigonal nor bi-elliptic and suppose that there exists a pencil $g_{g-2}^1 = (V, L) \in G_{g-2}^1(C)$ free of base points such that the residual $g_g^2 = |K_C \otimes L^{-1}|$ induces a projective model as in Lemma 2.5. We have that $(C, (V, L)) \in \widetilde{\mathcal{GP}}_{g,g-2}^1 \subset \mathscr{C}_{g-2}^1$. Consider the subvariety of \mathscr{C}_{g-2}^1 defined as

$$\widetilde{\mathcal{D}} := \{ (C, (V, L)) \in \widetilde{\mathcal{GP}}_{g,g-2}^1 : (C, (V, L)) \text{ as in Lemma 2.5.} \}.$$

Let $(C, (V, L)) \in \tilde{\mathcal{D}}$. We have that kernel μ_V is one dimensional, so μ_V has rank five. We can assume that *C* is outside a locus \mathcal{B} in \mathcal{M}_g of codimension ≥ 2 . In a small open neighborhood $U_C \subset \mathcal{M}_g - \mathcal{B}$ containing *C*, we have a finite cover \tilde{U} and pairs $(\tilde{C}, (\tilde{V}, \tilde{L})) \in \mathscr{C}_{g-2}^1, \tilde{C} \in \tilde{U}, \tilde{L} \in \operatorname{Pic}^{g-2}(\tilde{C})$ such that locally the Petri map is a homomorphism of vector bundles

$$\mu|_{(\tilde{C},(\tilde{V},\tilde{L}))}:\tilde{V}\otimes H^0(\tilde{C},K_{\tilde{C}}\otimes(\tilde{L})^{-1})\to H^0(\tilde{C},K_{\tilde{C}}).$$

For each $(\tilde{C}, (\tilde{V}, \tilde{L})) \in \tilde{D}$, the homomorphism $\mu|_{(\tilde{C}, (\tilde{V}, \tilde{L}))}$ has rank ≤ 5 , so the subvariety \tilde{D} has codimension $\leq g - 5 = \rho + 1$, that is, dim $\tilde{D} \geq \dim \mathscr{C}_{g-2}^1 - (\rho + 1) = 3g - 3 + \rho - (\rho + 1) = 3g - 4$. The Lemma 2.5 implies that the projection $\pi|_{\tilde{D}} : \tilde{D} \to \mathcal{GP}_{g,g-2}^1$ is generically finite. This show that $\pi|_{\tilde{D}}(\tilde{D}) = \mathcal{D}_g \subset \mathcal{GP}_{g,g-2}^1$ has dimension 3g - 4. Let $Y \subset \mathcal{D}_g$ be an irreducible component and $C \in Y$. By Lemma 2.5 we have that $(\pi|_{\tilde{D}})^{-1}(C)$ is zero-dimensional; this implies that Y is of codimension one, so each irreducible component of \mathcal{D}_g has dimension 3g - 4, that is, \mathcal{D}_g has pure codimension one in \mathcal{M}_g . \Box .

REMARK. From 2.3 we see that the variety $\mathcal{V}_g \neq \emptyset$ for $7 \leq g \leq 10$. Suppose that for $g \geq 11$, $\mathcal{V}_g \neq \emptyset$. We are going to show that for g' = g + 1, $\mathcal{V}_{g+1} \neq \emptyset$.

Consider $\Delta_1 \subset \overline{\mathcal{M}}_{g'}$, where a generic point of Δ_1 is obtained by identifying a point in a smooth curve of genus g with a point in a smooth curve of genus one. Take a general curve $C \in \mathcal{D}_g = \psi(\mathcal{V}_g) \subset \mathcal{GP}_{g,g-2}^1$ with birational projective model $\Gamma \in \mathcal{V}_g$. Choose a general point $p \in C$ and set $X_0 := C \cup_p E$, where E is a elliptic curve. We have that $X_0 \in \overline{\mathcal{GP}_{g',g'-2}^1} \cap \Delta_1$, and there is a smooth curve C' near X_0 such that $C' \in \mathcal{GP}_{g',g'-2}^1$, (cf. [8]). Consider the rational map $\psi : \overline{\mathcal{V}_{\delta'}^{g',g'}} \to \overline{\mathcal{M}}_{g'}$, and let \mathcal{F} be the graph of ψ . Consider the projections π_1, π_2 from \mathcal{F} to $\mathcal{V}_{g',g'}^{g',g'}$ and $\overline{\mathcal{M}}_{g'}$ respectively. Denote $\psi^{-1}(X_0)$: $= \pi_1(\pi_2^{-1}(X_0))$, with $X_0 \in \overline{\mathcal{GP}_{g',g'-2}^1} \cap \Delta_1$ as above. We have that there is an arc $W = \{\Gamma_t\}$ in $\overline{\mathcal{V}_{\delta'}^{g',g'}}$ with parameter t such that for $t \neq 0$, $W - \{\Gamma_0\} \subset \mathcal{V}_{\delta'}^{g',g'}$, $\{\Gamma_0\} \notin \mathcal{V}_{\delta'}^{g',g'}$, and such that the stable limit of the normalization of the curves Γ_t is a curve which is stably equivalent to X_0 . We have that for some $t_0 \neq 0$, there is a curve $\Gamma_{t_0} \subset W$ such that C_{t_0} , the normalization of Γ_{t_0} , is contained in $\mathcal{GP}_{g',g'-2}^1$ with C_{t_0} near X_0 . Since $C_{t_0} \in \mathcal{GP}_{g',g'-2}^1$ and $\Gamma_{t_0} \in \mathcal{V}_{\delta'}^{g',g'}$, the Lemma 2.2 implies that $\delta' - 1 = \frac{g'(g'-5)}{2}$ nodes of Γ_{t_0} lie on a curve of degree g' - 5. This show that $\mathcal{V}_{g+1} \neq \emptyset$.

REFERENCES

1. E. Arbarello and M. Cornalba, Su una congettura di Petri, *Comment. Math Helvetici.* 56 (1981), 1–38.

2. E. Arbarello and M. Cornalba, A few remarks about the variety of irreducible plane curves of given degree and genus, *Ann. Scient. Éc. Norm. Sup.* 4 serie, **16** (1983), 467–488.

3. E. Arbarello, M. Cornalba, P. Griffiths and J. Harris, *Geometry of algebraic curves Volume I*, Grundlehrem der Mathematischen Wissenschaften No. 267 (Springer-Verlag 1984).

4. A. Castorena, Curves of genus seven that do not satisfy the Gieseker-Petri theorem, *Bolletino U.M.I.* **8** (2005), 697–706.

5. C. Ciliberto, Canonical surfaces with $p_g = p_a = 4$ and $K^2 = 5, ..., 10$, *Duke Math. J.* **48** (1981), 121–157.

6. D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus $g \ge 23$, *Invent. Math.* 90 (1987), 359–387.

7. D. Eisenbud and J. Harris, Irreducibility of some families of linear series with Brill-Noether Number -1, Ann. Scient. Éc. Norm. Sup. 4 série t. 22 (1989) 33–53.

8. Gavril Farkas, Gaussian maps, Gieseker-Petri loci and large theta-characteristics, *J. Reine Angew. Math.* **581** (2005), 151–173.

9. J. Harris and I. Morrison, *Moduli of curves*. Graduate Texts in Mathematics No. 187 (Springer-Verlag 1998).

10. M. Teixidor i Bigas, Half-canonical series on algebraic curves, *Trans. Amer. Math. Soc.* 302 (1987) 99–115.

11. M. Teixidor i Bigas, The divisor of curves with a vanishing theta-null, *Compositio Math.* **66** (1988) 15–22.