A FAMILY OF PLANE CURVES WITH MODULI $3 g-4$

ABEL CASTORENA
Instituto de Matemáticas, Unidad Morelia, Universidad Nacional Autónoma de México Apdo, Postal 61-3(Xangari), C.P. 58089, Morelia, Michoacán, MEXICO
e-mail: abel@matmor.unam.mx

(Received 19 May, 2005; revised 10 June, 2006 and 14 February, 2007; accepted 31 March, 2007)

Abstract

In the moduli space \mathcal{M}_{g} of smooth and complex irreducible projective curves of genus g, let $\mathcal{G} \mathcal{P}_{g}$ be the locus of curves that do not satisfy the GiesekerPetri theorem. Let $\mathcal{G} \mathcal{P}_{g, d}^{1}$ be the subvariety of $\mathcal{G} \mathcal{P}_{g}$ formed by curves C of genus g with a pencil $g_{d}^{1}=(V, L) \in G_{d}^{1}(C)$ free of base points for which the Petri map μ_{V} : $V \otimes H^{0}\left(C, K_{C} \otimes L^{-1}\right) \rightarrow H^{0}\left(C, K_{C}\right)$ is not injective. For $g \geq 8$, we construct in this work a family of irreducible plane curves of genus g with moduli $3 g-4$ in $\mathcal{G} \mathcal{P}_{g, g-2}^{1}$.

2000 Mathematics Subject Classification. 14H15.

1. Statement of results. Let \mathcal{M}_{g} be the moduli space of smooth and complex irreducible projective curves of genus g. Let $C \in \mathcal{M}_{g}$ and let K_{C} be the canonical bundle of C. The Gieseker-Petri theorem (cf. [9, p. 285]) says that for every line bundle L on a general curve $C \in \mathcal{M}_{g}$, the Petri map $\mu_{L}: H^{0}(C, L) \otimes H^{0}\left(K_{C} \otimes L^{-1}\right) \rightarrow H^{0}\left(C, K_{C}\right)$ is injective. This implies that the Gieseker-Petri locus defined as

$$
\mathcal{G} \mathcal{P}_{g}:=\left\{C \in \mathcal{M}_{g} \mid C \text { does not satisfy the Gieseker-Petri theorem. }\right\}
$$

is a proper closed Zariski subset in \mathcal{M}_{g}. It is an old and open problem to show that $\mathcal{G} \mathcal{P}_{g}$ is a divisor. For $g=7, \mathcal{G} \mathcal{P}_{7}$ is a divisor (cf. [4]). Other results related with some components of $\mathcal{G} \mathcal{P}_{g}$ are given in ([1], [6], [7], [10], [11]).

Let $C \in \mathcal{M}_{g}$ be and $L \rightarrow C$ a line bundle of degree d with $r+1=h^{0}(C, L)$. The BrillNoether number is defined as $\rho(g, d, r):=h^{0}\left(C, K_{C}\right)-h^{0}(C, L) h^{0}\left(C, K_{C} \otimes L^{-1}\right)=$ $g-(r+1)(g-d+r)$. Consider the varieties $W_{d}^{r}:=\left\{L \in \operatorname{Pic}^{d}(C): h^{0}(C, L) \geq r+1\right\}$, and $G_{d}^{r}(C):=\left\{(V, L): V \subseteq H^{0}(C, L), \operatorname{dim} V=r+1\right\}$. Denote by $\mu_{V}: V \otimes H^{0}(C, K$ $\left.\otimes L^{-1}\right) \rightarrow H^{0}(C, K)$ the Petri map.

Given g, d, r, consider the variety \mathscr{C}_{d}^{r} which parametrizes couples $\left(C, g_{d}^{r}\right)$, with C a smooth curve of genus g, and $g_{d}^{r} \in G_{d}^{r}(C)$. The dimension of any component of \mathscr{C}_{d}^{r} is at least $3 g-3+\rho(g, d, r)$. (cf. [2]).

Let $\widetilde{\mathcal{G P}{ }_{g, d}^{r}}:=\left\{(C,(V, L)) \in \mathscr{C}_{d}^{r}:(V, L)\right.$ is free of base points with rank $\left.\left(\mu_{V}: V \otimes H^{0}\left(C, K_{C} \otimes L^{-1}\right) \rightarrow H^{0}\left(C, K_{C}\right)\right) \leq g-(\rho+1)\right\}$. Let $\pi: \mathscr{C}_{d}^{r} \rightarrow \mathcal{M}_{g}$ be the projection. Consider the image $\pi\left(\widetilde{\mathcal{G P} \mathcal{P}_{g, d}^{r}}\right):=\mathcal{G} \mathcal{P}_{g, d}^{r}=\left\{C \in \mathcal{M}_{g}\right.$: there exists a base point
free $(V, L) \in G_{d}^{r}(C)$ with μ_{V} not injective. $\}$. We have a commutative diagram:

The codimension of $\widetilde{\mathcal{G P} \mathcal{P}_{g, d}^{r}}$ is $\leq \rho+1$.
Suppose that $g, r, d \geq 1$ such that $\rho \geq 0$. For integers $g \geq 4$ and $\frac{g+2}{2} \leq k \leq g-1$, G. Farkas showed (cf. [8]) that $\mathcal{G} \mathcal{P}_{g, k}^{1}$ has a divisorial component Z. In such component the author describes the elements in $\overline{\mathcal{G} \mathcal{P}_{g, k}^{1}} \cap \Delta_{1}$, where Δ_{1} is the divisor in $\overline{\mathcal{M}_{g}}$, where a general point of Δ_{1} consists of a smooth curve of genus $g-1$ joined at one point to a smooth curve of genus one.

For $g \geq 8$, we construct explicity a component of $\mathcal{G} \mathcal{P}_{g-2}^{1}$ of pure codimension one in \mathcal{M}_{g} as follow.

Let C be a smooth curve of genus $g \geq 8$ with a pencil $g_{g-2}^{1}=(V, L)$ free of base points on C such that the residual g_{g}^{2} of the g_{g-2}^{1} determines a birational map onto a plane curve Γ of degree g and geometric genus g with $\delta=\frac{(g-1)(g-2)}{2}-g$ nodes as singularities. In Lemma 2.2 we show that μ_{V} is not injective if and only if there exists a curve G of degree $g-5$ containing $\delta-1$ nodes of Γ. Consider the Severi variety $\mathcal{V}^{g, g}$ of plane curves of degree g and geometric genus g having only nodes as singularities (cf. [9, p. 30]). We consider the subvariety $\mathcal{V}_{\delta}^{g, g} \subset \mathcal{V}^{g, g} / P G L(3, \mathbb{C})$ formed by plane curves with exactly $\delta=\frac{(g-1)(g-2)}{2}-g=\frac{g(g-5)}{2}+1$ nodes. Let $\mathcal{V}_{g}:=\left\{\Gamma \in \mathcal{V}_{\delta}^{g, g}\right.$: $\delta-1=\frac{g(g-5)}{2}$ nodes lie on a curve of degree $\left.g-5\right\}$.

Consider a curve C of genus $g \geq 8$, neither trigonal nor bi-elliptic such that C has a plane projective model as in Lemma 2.2. In Lemma 2.5 we show that there exist at most finitely many pencils $(V, L) \in G_{g-2}^{1}(C)$ free of base points, for which the Petri map μ_{V} is not injective. Let $\psi: \mathcal{V}_{g} \rightarrow \mathcal{M}_{g}$ be the natural morphism and denote $\mathcal{D}_{g}:=\psi\left(\mathcal{V}_{g}\right) \subset \mathcal{G} \mathcal{P}_{g, g-2}^{1}$. In this paper we prove the following theorem.

Theorem. \mathcal{D}_{g} has pure codimension one in $\mathcal{M g}_{g}$.

2. Two basic lemmas.

2.1. Let C be a smooth curve of genus g with a pencil $g_{g-2}^{1}=(V, L) \in G_{g-2}^{1}(C)$ free of base points for which the Petri map μ_{V} is not injective. Assume that the residual g_{g}^{2} of the pencil g_{g-2}^{1} induces a birational map onto a plane curve in \mathbb{P}^{2}. Let Γ be such a curve and $f: C \rightarrow \Gamma$ the normalization of Γ. We denote by Δ_{Γ} the scheme of singular points of Γ and $\Delta:=f^{*}\left(\Delta_{\Gamma}\right)$; note that Δ is a divisor of degree 2δ. By the genus formula the length of $\left(\Delta_{\Gamma}\right)=\delta$, i.e. Δ_{Γ} is a curvilinear scheme consisting of δ double points which can be infinitely near. We only consider the case where all $\delta=\frac{(g-1)(g-2)}{2}-g$ singularities of Γ are distinct. The following lemma is a generalization of [4, Proposition 2.8].

Lemma 2.2. Let Γ be a plane curve of degree g and geometric genus g such that Γ has only δ double points as singularities. Let $f: C \rightarrow \Gamma$ be the normalization of Γ. Then there is a curve G of degree $g-5$ such that the scheme theoretic intersection of G with
Δ_{Γ} has length equal to $\delta-1$, i.e. $f^{*}(G)$ contains a divisor of degree $2 \delta-2$ contained in Δ if and only if C has a pencil $g_{g-2}^{1}=(V, L) \in G_{g-2}^{1}(C)$ free of base points with μ_{V} not injective.

Proof. First we show the part "if". I will consider the case in which the support of $\Delta_{\Gamma}=\{x\}$.

If the support of $\Delta_{\Gamma}=\{x\}$, then Γ has δ infinitely near double points. Let η : $=f^{*}(x) . \eta$ is a divisor of degree two and $\Delta=\delta \eta$. Our hypothesis means that the pullback $f^{*} G$ on C contains $(\delta-1) \eta$. Consider the g_{g-2}^{1} cut out on C by the lines through x. Let ℓ_{1}, ℓ_{2} be general such lines, cutting out on C two effective divisors $D_{1}, D_{2} \in g_{g-2}^{1}$. The pullback of $G+\ell_{1}+\ell_{2}$ contains $(\delta+1) \eta+D_{1}+D_{2} \sim(\delta+1) \eta+2 D$. By adjunction formula (cf. [3, p. 53]), $K_{C} \sim \mathcal{O}_{C}(g-3)(-\Delta)$, we have that $K_{C}(-2 D)$ is effective where $|D|=g_{g-2}^{1}$. Since kernel $\mu_{D} \simeq H^{0}\left(C, K_{C}(-2 D)\right.$), (cf. [3, p. 126]), we have the assertion.

Other extra cases can occur. These cases depend on δ and can be proved in a similar way. For example consider the case when the support of Δ_{Γ} consists of $\delta-2$ infinitely near singular double points and one tacnode p. By hypothesis, $f^{*}(G)$ contains a divisor B of degree $2 \delta-2$ contained in the divisor Δ which is of degree 2δ. Consider the g_{g-2}^{1} cut out on C by the lines through the tacnode p of Γ. Let ℓ_{1}, ℓ_{2} be general such lines, cutting out on C two effective divisors $D_{1}, D_{2} \in g_{g-2}^{1}=|D|$. Since ℓ_{1}, ℓ_{2} are lines through p, note that the pullback of $F:=$ $G+\ell_{1}+\ell_{2}$ contains $B+\left(f^{*}(p)+D_{1}\right)+\left(f^{*}(p)+D_{2}\right) \sim\left(B+f^{*}(p)\right)+2 D+f^{*}(p) \sim$ $\Delta+2 D+f^{*}(p)$. Since $K_{C} \sim \mathcal{O}_{C}(g-3)(-\Delta)$, then $K_{C}(-2 D)$ is effective, so we have a non-zero section of $H^{0}\left(C, K_{C}(-2 D)\right) \simeq \operatorname{ker} \mu_{D}$.

The same argument works when the support of Δ_{Γ} consists of $\delta-3$ infinitely near singular double points with an ordinary singular double point and one tacnode. Another case for which the proof is valid is when Γ has $\delta-4$ singular double points and two tacnodes. Suppose now that the support of $\Delta_{\Gamma}=\left\{x_{1}, \ldots, x_{\delta-k}, x\right\}$, where $x_{j}=1, \ldots, \delta-k$ are distinct singular double points; then Γ has k infinitely near singular double points. For $k=1$ we have δ distinct ordinary singular double points which is the case we are interested in. For $k=2$ is when Γ has one tacnode and $\delta-2$ infinitely near singular double points. With this notation take in general any $k \leq \delta-1$ and consider $\eta:=f^{*}(x)$. So the lines through x cut out on C a $|D|=g_{g-2}^{1}$. Consider ℓ_{1}, ℓ_{2} two general such lines. The pullback of $G+\ell_{1}+\ell_{2}$ contains $\Delta+2 D+\eta$, this implies that ker $\mu_{D} \simeq H^{0}\left(C, K_{C}(-2 D)\right) \neq 0$. Similarly other cases can be proved in this way.

Now suppose that ker $\mu_{V} \neq 0$ and consider the residual $g_{g}^{2}=\left|K_{C} \otimes L^{-1}\right|$, where $g_{g-2}^{1}=(V, L)$. This g_{g}^{2} determines a birational morphism $C \rightarrow \Gamma \subset \mathbb{P}^{2}$. By assumption Γ has only double points as singularities. Since C fails the Gieseker-Petri theorem for the g_{g-2}^{1}, we have that kernel $\mu_{V} \simeq H^{0}\left(C, K_{C} \otimes L^{-2}\right.$), (cf. [3, p. 126]), but $\left|K_{C} \otimes L^{-2}\right| \sim$ $g_{g}^{2}-g_{g-2}^{1}$ is effective, so necessarily the g_{g-2}^{1} is cut out by a pencil of lines through a singular double point p of Γ. By adjunction formula there is a curve G of degree $g-5$ such that G contains $\Delta_{\Gamma}-\{p\}$.
2.3. In general it is complicated to construct an irreducible and reduced plane curve of degree g and geometric genus g with projective model as in Lemma 2.2. However at least for $6 \leq g \leq 10$ such kind of curves exist. In ([5, p. 148-156]), the author show the existence of canonical surfaces in \mathbb{P}^{3} with $p_{g}=4$, degree $d=6,7,8,9,10$ and sectional genus $g=7,8,9,10,11$ with ordinary singularities. The general plane section is semicanonical with number of nodes $\delta=3,7,12,18,25$
lying respectively on a curve of degree $1,2,3,4,5$. A tangent general section has degree $d=6,7,8,9,10$ and the corresponding genus is $g=6, \ldots, 10$. Such curves have respectively nodes $\delta=4,8,13,19,26$ with $3,7,12,18,25$ lying respectively on a curve of degree $1,2,3,4,5$.
2.4. Let C be a smooth curve of genus g. Consider the morphism $\operatorname{Pic}^{d}(C) \rightarrow$ $\mathrm{Pic}^{2 d}(C)$ given by $L \rightarrow L^{2}$ inside the Jacobian of $C, J(C)$. Note that this morphism has finite kernel.

Suppose that C is a smooth curve of genus $g \geq 8$, neither trigonal nor bi-elliptic. By Mumford theorem (cf. [3, p. 193]), the dimension of $W_{g-2}^{1}(C)$ is exactly the BrillNoether number $\rho(g, g-2,1)=g-6$. Then we have that the subvariety $X_{1}:=\left\{L^{2}\right.$: $\left.L \in W_{g-2}^{1}(C)\right\}$ has dimension $\rho=g-6$ and $T_{L}\left(W_{g-2}^{1}(C)\right) \simeq T_{L^{2}} X_{1}$ inside $H^{1}\left(C, \mathcal{O}_{C}\right)$.

Let $g_{g-2}^{1}=(V, L) \in G_{g-2}^{1}(C)$ be free of base points such that μ_{V} is not injective. Since C is in particular non-hyperelliptic we have that dimension of kernel $\mu_{V}=h^{0}\left(C, K_{C} \otimes L^{-2}\right)=1$, so there exist points $p, q \in C$ such that $K_{C} \otimes L^{-2}=\mathcal{O}_{C}(p+q)$ with $h^{0}\left(C, \mathcal{O}_{C}(p+q)\right)=1$, then $h^{0}\left(C, K_{C}(-p-q)\right)=g-2$. If $p=q$, then $L+p$ is a theta characteristic. So we only consider the case $p \neq q$. Define inside the Jacobian of $C, J(C)$, the subvariety $X_{2}:=K_{C}-W_{2}(C)=\left\{K_{C}-(p+q)\right.$: $\left.p+q \in W_{2}(C)\right\} \subset W_{2 g-4}^{r}(C)$ for $r=h^{0}\left(C, K_{C}(-p-q)\right)-1=g-3$. We have that the dimension of $X_{2}=2$. Let $\mathcal{L}=K_{C}-(p+q) \in X_{2}$ be any point, then $K_{C}-\mathcal{L}=p+q$. The image of $\mu_{\mathcal{L}}: H^{0}(C, \mathcal{L}) \otimes H^{0}\left(C, K_{C} \otimes \mathcal{L}^{-1}\right) \rightarrow H^{0}\left(C, K_{C}\right)$ is equal to $H^{0}\left(C, K_{C}(-p-\right.$ $q)$), since $h^{0}\left(C, \mathcal{O}_{C}(p+q)\right)=1, \mu_{\mathcal{L}}$ is injective and $T_{\mathcal{L}} X_{2}$ is a two dimensional subspace of $H^{1}\left(C, \mathcal{O}_{C}\right) \simeq T_{0}(J(C))$.

Lemma 2.5. Let C be a smooth curve of genus $g \geq 8$ neither trigonal nor bi-elliptic. Suppose that there exists a pencil $g_{g-2}^{1}=(V, L) \in G_{g-2}^{1}(C)$ free of base points such that the residual $g_{g}^{2}=\left|K_{C} \otimes L^{-1}\right|$ induces a birational morphism from C to a plane curve Γ of degree g in \mathbb{P}^{2} with $x_{1}, \ldots, x_{\delta}$ nodes all distinct and $x_{1}, \ldots, x_{\delta-1}$ lying on curve of degree $g-5$. Then there are at most finitely many pencils $g_{g-2}^{1}=(V, L), L \in W_{g-2}^{1}(C)$, free of base points with μ_{V} not injective.

Proof. We are going to show that $X_{1} \cap X_{2}$ is a finite set, where X_{1} and X_{2} are the subvarieties of $J(C)$ defined in 2.4. Without loss of generality we can assume that g_{g-2}^{1} is complete, that is, $|L|=g_{g-2}^{1}$. Let L be as in the hypothesis with kernel $\mu_{L} \neq 0$. By Lemma 2.2 we can assume that $|L|$ is cut out by lines through the node x_{δ} of Γ. We have that $L^{2} \in X_{1} \cap X_{2}$. If we show that $T_{L^{2}} X_{1} \cap T_{L^{2}} X_{2}=\{0\}$ inside $H^{1}\left(C, \mathcal{O}_{C}\right)$ we obtain that $L \in W_{g-2}^{1}(C)$ is an isolated point and this implies that $X_{1} \cap X_{2}$ is a finite set.

Consider the normalization map $f: C \rightarrow \Gamma$. Let $f^{*}\left(x_{\delta}\right)=\{p, q\}$ be for some points $p, q \in C$, where $p \neq q$ because x_{δ} is a node. Since $L^{2} \in X_{1} \cap X_{2}$, then $K_{C} \otimes L^{-2} \simeq \mathcal{O}_{C}(p+q)$ and $h^{0}\left(C, K_{C} \otimes L^{-2}\right)=$ dimension of kernel $\mu_{L}=1$, since C is in particular non-hyperelliptic. We have that dimension of $T_{L^{2}} X_{1}=$ dimension of $T_{L}\left(W_{g-2}^{1}(C)\right)=\rho+$ dimension of kernel $\mu_{L}=g-5$, and the dimension of $T_{L^{2}} X_{2}=2$, so $T_{L^{2}} X_{1} \cap T_{L^{2}} X_{2}=\{0\}$ if and only if $\left(T_{L^{2}} X_{1}\right)^{\perp}+\left(T_{L^{2}} X_{2}\right)^{\perp}$ generates all of $H^{0}\left(C, K_{C}\right)$, where \perp means orthogonal complement with respect to Serre duality pairing $<,>$ (cf. [3, p. 7]). The dimension of $\left(T_{L^{2}} X_{1}\right)^{\perp}+$ dimension of $\left(T_{L^{2}} X_{2}\right)^{\perp}=g+3=h^{0}\left(C, K_{C}\right)+3$, that is, dimension of $\left(T_{L^{2}} X_{1}\right)^{\perp}+$ dimension of $\left(T_{L^{2}} X_{2}\right)^{\perp}-h^{0}\left(C, K_{C}\right)=3$. So $\left(T_{L^{2}} X_{1}\right)^{\perp}+\left(T_{L^{2}} X_{2}\right)^{\perp}$ generates all of $H^{0}\left(C, K_{C}\right)$ if p and q impose independent conditions to image $\mu_{L} \subset H^{0}\left(C, K_{C}\right)$, that is, p and q
impose independent conditions to image μ_{L}, if the dimension of $\mathscr{L}(-p-q)=3$, where $\mathscr{L}(-p-q):=$ image $\mu_{L} \cap H^{0}\left(C, K_{C}(-p-q)\right)$. We denote by |image $\mu_{L} \mid$ the linear system determined by the subvector space (image $\left.\mu_{L}\right) \subset H^{0}\left(C, K_{C}\right)$

Claim. The dimension of $\mathscr{L}(-p-q)=3$.
Proof of the claim. Let $D \in\left|K_{C}-L\right|, D$ not containing $p+q$, and consider $D+|L|:=\{D+E: E \in|L|\} \subseteq \mid$ image $\mu_{L} \mid$; then if $p+q$ imposes independent conditions to $D+|L|$, then $p+q$ imposes independent conditions to the linear system \mid image $\mu_{L} \mid$, and in this case the dimension of $\mathscr{L}(-p-q)=3$. Let ℓ be a line through the node x_{δ} determined by p and q. Then the intersection $\ell \cdot \Gamma$, of ℓ with Γ, is $\ell \cdot \Gamma=p+q+E_{\ell}$, where $E_{\ell} \in|L|$. Since x_{δ} is a node there exist two different lines ℓ_{p}, ℓ_{q} through the node such that $\ell_{p} \cdot \Gamma=2 p+q+E_{p}$, where q is not in the support of the divisor E_{p}, and $\ell_{q} \cdot \Gamma=2 q+p+E_{q}$, with p not in the support of E_{q}. Then $E_{p}+p \in|L|$ is the unique divisor given by the tangent line ℓ_{p} to the branch through p not containing q. Similarly $q+E_{q}$ is the unique divisor given by the tangent line ℓ_{q} through the branch q not containing the point p. So we have that $p+q$ imposes independent conditions to $D+|L|$.
3. Proof of the Theorem. Now we are going to show that $\psi\left(\mathcal{V}_{g}\right)=\mathcal{D}_{g} \subset \mathcal{G} \mathcal{P}_{g, g-2}^{1}$ has pure codimension one in $\mathcal{M g}_{g}$.

Is well known that \mathscr{C}_{d}^{1} is a smooth and irreducible variety of dimension $\operatorname{dim} \mathcal{M}_{g}+\rho(g, d, 1)=2 g+2 d-5$, (cf. [2]). Let C be a smooth curve of genus $g \geq 8$ neither trigonal nor bi-elliptic and suppose that there exists a pencil $g_{g_{-2}}^{1}=$ $(V, L) \in G_{g-2}^{1}(C)$ free of base points such that the residual $g_{g}^{2}=\left|K_{C} \otimes L^{-1}\right|$ induces a projective model as in Lemma 2.5. We have that $(C,(V, L)) \in \widetilde{\mathcal{G P}}_{g, g-2}^{1} \subset \mathscr{C}_{g-2}^{1}$. Consider the subvariety of \mathscr{C}_{g-2}^{1} defined as

$$
\widetilde{\mathcal{D}}:=\left\{(C,(V, L)) \in \widetilde{\mathcal{G} \mathcal{P}_{g, g-2}^{1}}:(C,(V, L)) \text { as in Lemma 2.5. }\right\}
$$

Let $(C,(V, L)) \in \widetilde{\mathcal{D}}$. We have that kernel μ_{V} is one dimensional, so μ_{V} has rank five. We can assume that C is outside a locus \mathcal{B} in \mathcal{M}_{g} of codimension ≥ 2. In a small open neighborhood $U_{C} \subset \mathcal{M}_{g}-\mathcal{B}$ containing C, we have a finite cover \widetilde{U} and pairs $(\tilde{C},(\tilde{V}, \tilde{L})) \in \mathscr{C}_{g-2}^{1}, \tilde{C} \in \tilde{U}, \tilde{L} \in \operatorname{Pic}^{g-2}(\tilde{C})$ such that locally the Petri map is a homomorphism of vector bundles

$$
\left.\mu\right|_{(\tilde{C},(\tilde{V}, \tilde{L}))}: \tilde{V} \otimes H^{0}\left(\tilde{C}, K_{\tilde{C}} \otimes(\tilde{L})^{-1}\right) \rightarrow H^{0}\left(\tilde{C}, K_{\tilde{C}}\right)
$$

For each $(\tilde{C},(\tilde{V}, \tilde{L})) \in \widetilde{\mathcal{D}}$, the homomorphism $\left.\mu\right|_{(\tilde{C},(\tilde{V}, \tilde{L}))}$ has rank ≤ 5, so the subvariety $\widetilde{\mathcal{D}}$ has codimension $\leq g-5=\rho+1$, that is, $\operatorname{dim} \widetilde{\mathcal{D}} \geq \operatorname{dim} \mathscr{C}_{g-2}^{1}-(\rho+1)=3 g-$ $3+\rho-(\rho+1)=3 g-4$. The Lemma 2.5 implies that the projection $\left.\pi\right|_{\tilde{\mathcal{D}}}: \widetilde{\mathcal{D}} \rightarrow$ $\mathcal{G} \mathcal{P}_{g, g-2}^{1}$ is generically finite. This show that $\left.\pi\right|_{\tilde{\mathcal{D}}}(\widetilde{\mathcal{D}})=\mathcal{D}_{g} \subset \mathcal{G} \mathcal{P}_{g, g-2}^{1}$ has dimension $3 g-4$. Let $Y \subset \mathcal{D}_{g}$ be an irreducible component and $C \in Y$. By Lemma 2.5 we have that $\left(\left.\pi\right|_{\tilde{\mathcal{D}}}\right)^{-1}(C)$ is zero-dimensional; this implies that Y is of codimension one, so each irreducible component of \mathcal{D}_{g} has dimension $3 g-4$, that is, \mathcal{D}_{g} has pure codimension one in \mathcal{M}_{g}.

Remark. From 2.3 we see that the variety $\mathcal{V}_{g} \neq \emptyset$ for $7 \leq g \leq 10$. Suppose that for $g \geq 11, \mathcal{V}_{g} \neq \emptyset$. We are going to show that for $g^{\prime}=g+1, \mathcal{V}_{g+1} \neq \emptyset$.

Consider $\Delta_{1} \subset \overline{\mathcal{M}}_{g^{\prime}}$, where a generic point of Δ_{1} is obtained by identifying a point in a smooth curve of genus g with a point in a smooth curve of genus one. Take a general curve $C \in \mathcal{D}_{g}=\psi\left(\mathcal{V}_{g}\right) \subset \mathcal{G} \mathcal{P}_{g, g-2}^{1}$ with birational projective model $\Gamma \in \mathcal{V}_{g}$. Choose a general point $p \in C$ and set $X_{0}:=C \cup_{p} E$, where E is a elliptic curve. We have that $X_{0} \in \overline{\mathcal{G} \mathcal{P}_{g^{\prime}, g^{\prime}-2}^{1}} \cap \Delta_{1}$, and there is a smooth curve C^{\prime} near X_{0} such that $C^{\prime} \in \mathcal{G} \mathcal{P}_{g^{\prime}, g^{\prime}-2}^{1}$, (cf. [8]). Consider the rational map $\psi: \overline{\mathcal{V}_{\delta^{\prime}}^{g^{\prime}, g^{\prime}}} \rightarrow \overline{\mathcal{M}_{g^{\prime}}}$, and let \mathcal{F} be the graph of ψ. Consider the projections π_{1}, π_{2} from \mathcal{F} to $\widehat{\mathcal{V}_{\delta^{\prime}}^{g^{\prime}, g^{\prime}}}$ and $\overline{\mathcal{M}_{g^{\prime}}}$ respectively. Denote $\psi^{-1}\left(X_{0}\right)$:
 in $\overline{\mathcal{V}_{\delta^{\prime}}^{g^{\prime}, g^{\prime}}}$ with parameter t such that for $t \neq 0, W-\left\{\Gamma_{0}\right\} \subset \mathcal{V}_{\delta^{\prime}}^{g^{\prime}, g^{\prime}},\left\{\Gamma_{0}\right\} \notin \mathcal{V}_{\delta^{\prime}}^{g^{\prime}, g^{\prime}}$, and such that the stable limit of the normalization of the curves Γ_{t} is a curve which is stably equivalent to X_{0}. We have that for some $t_{0} \neq 0$, there is a curve $\Gamma_{t_{0}} \subset W$ such that $C_{t_{0}}$, the normalization of $\Gamma_{t_{0}}$, is contained in $\mathcal{G} \mathcal{P}_{g^{\prime}, g^{\prime}-2}^{1}$ with $C_{t_{0}}$ near X_{0}. Since $C_{t_{0}} \in \mathcal{G} \mathcal{P}_{g^{\prime}, g^{\prime}-2}^{1}$ and $\Gamma_{t_{0}} \in \mathcal{V}_{\delta^{\prime}}^{g^{\prime}, g^{\prime}}$, the Lemma 2.2 implies that $\delta^{\prime}-1=\frac{g^{\prime}\left(g^{\prime}-5\right)}{2}$ nodes of $\Gamma_{t_{0}}$ lie on a curve of degree $g^{\prime}-5$. This show that $\mathcal{V}_{g+1} \neq \emptyset$.

REFERENCES

1. E. Arbarello and M. Cornalba, Su una congettura di Petri, Comment. Math Helvetici. 56 (1981), 1-38.
2. E. Arbarello and M. Cornalba, A few remarks about the variety of irreducible plane curves of given degree and genus, Ann. Scient. Éc. Norm. Sup. 4 serie, 16 (1983), 467-488.
3. E. Arbarello, M. Cornalba, P. Griffiths and J. Harris, Geometry of algebraic curves Volume I, Grundlehrem der Mathematischen Wissenschaften No. 267 (Springer-Verlag 1984).
4. A. Castorena, Curves of genus seven that do not satisfy the Gieseker-Petri theorem, Bolletino U.M.I. 8 (2005), 697-706.
5. C. Ciliberto, Canonical surfaces with $p_{g}=p_{a}=4$ and $K^{2}=5, \ldots, 10$, Duke Math. J. 48 (1981), 121-157.
6. D. Eisenbud and J. Harris, The Kodaira dimension of the moduli space of curves of genus $g \geq 23$, Invent. Math. 90 (1987), 359-387.
7. D. Eisenbud and J. Harris, Irreducibility of some families of linear series with BrillNoether Number -1, Ann. Scient. Éc. Norm. Sup. 4 série t. 22 (1989) 33-53.
8. Gavril Farkas, Gaussian maps, Gieseker-Petri loci and large theta-characteristics, J. Reine Angew. Math. 581 (2005), 151-173.
9. J. Harris and I. Morrison, Moduli of curves. Graduate Texts in Mathematics No. 187 (Springer-Verlag 1998).
10. M. Teixidor i Bigas, Half-canonical series on algebraic curves, Trans. Amer. Math. Soc. 302 (1987) 99-115.
11. M. Teixidor i Bigas, The divisor of curves with a vanishing theta-null, Compositio Math. 66 (1988) 15-22.
