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Abstract

Normal functions and Bloch functions are respectively functions of bounded spherical expansion and
bounded Euclidean expansion. In this paper we discuss the behaviour of normal functions and of Bloch
functions in terms of the maximal ideal space of H°°, the Bergman projection and the Ahlfors-Shimizu
characteristic.

1991 Mathematics subject classification (Amer. Math. Soc): primary 30D35, 30D45, 30D55.

1. Introduction

A meromorphic function / on the open unit disc D = [z € C : \z\ < 1} of the
complex plane C is called normal if

||/ |U = sup(l - |z|2)/B(z) < oo,
zeD

where /"(z) is the spherical derivative of/ at z, which is invariant under spherical
rotations of / . Normal functions were first studied by Noshiro [16]. They were
rediscovered by Lehto and Virtanen [15] who named them and discovered some of
their deep properties. We shall denote by N the class of all meromorphic normal
functions in D. It was shown by Lappan [13] that N is not a linear space. However,
N contains an important linear subset, the class B of holomorphic Bloch functions,
which consists of all holomorphic functions in D for which

zeD
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[2] Functions of bounded expansion 169

In fact, B endowed with the norm ||/ || = \\f \\ B + \f (0) | is a Banach space. In spite
of this essential difference, N and B behave similarly in many respects.

Let Z and W be smooth manifolds with metrics p and a respectively. Let/ : Z ~>
W be a smooth mapping. For each z e Z, we have the induced linear transformation
(df) z from the normed tangent space (Tz, pz) at z to the normed tangent space (Tw, aw)
at w = / (z). We define the expansion factor of/ at z to be the norm || (df )z || of the
tangent mapping at z and we shall say that the mapping / is of bounded expansion
if sup{||(4f)J| : z € Z} < oo. Now let Z be the unit disc D endowed with the
hyperbolic metric and let W be the Riemann sphere C endowed with the spherical
metric (respectively, the finite complex plane C endowed with the Euclidean metric).
In this case we speak of functions of bounded spherical (respectively, Euclidean)
expansion. From || • \\N (respectively || • ||B), we see that a meromorphic (respectively
holomorphic) function in D is normal (respectively Bloch) if and only if it is of
bounded spherical (respectively Euclidean) expansion. Hence, the classes N and B
have extremely natural geometric characterizations.

The main purpose of this paper is to explore some new analogous characterizations
of the spaces N and B by means of the maximal ideal space of H°° (the space
of bounded holomorphic functions on D) and the Ahlfors-Shimizu characteristic
function. On the other hand, we shall point out some differences between N and B in
terms of the Bergman projection.

This paper is organized as follows. In Section 2, we study the boundary behaviour
of (1 - |z|2)/tt(z) and (1 - |z|2)/'(z) for/ in N and B respectively. In Section 3 we
consider the boundary behaviour of / in N and B alternately. In Section 4 we show
that the Bloch space B is equal to the Bergman projection of the space BMO (functions
of bounded mean oscillation on D) but the space iV has no such property. In Section
5 we find that the Ahlfors-Shimizu characteristic function reveals new resemblances
in the appearance or nature of the spaces N and B.

2. Boundary behaviour of derivatives

As usual, H°° denotes the Banach algebra of all bounded holomorphic functions
on D with the norm

||/||w<» = sup|/(z)| < oo.

Let M denote the maximal ideal space of H°°, which consists of all (complex)
multiplicative linear functionals on H°°. For basic properties of the maximal ideal
space M, we refer to [12] and [11]. With the Gelfand topology, M is a compact
Hausdorff space. The disc D can be viewed as a subset of M by identifying each
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170 P. M. Gauthier and J. Xiao [3]

point of D with the multiplicative linear functional given by evaluation at this point,
and hence the Gelfand topology coincides with the Euclidean topology on D. The
remarkable Corona Theorem of Carleson [9] asserts that D is dense in M with respect
to the Gelfand topology. Thus, if a function f on D has a continuous extension to
M (or any subset of M), then this extension is unique. Denote by / the maximal
spherically continuous extension of/. That is, / is the natural extension of/ to the
set of all points m € M \ D for which the cluster set C(f, m) is a singleton. Denote by
C(E) the family of continuous complex-valued functions on E, where £ is a subset
of M. Of course, any/ e C(E) is also spherically continuous. Conversely, if/ is
spherically continuous on E and finite-valued, then/ e C(E).

Recall that M is contained in the unit ball of the dual of H°°. Two points m\,m2 e
M are said to lie in the same Gleason part [12] if and only if

sup{|/(m2)| : / e H00, ||/ \\H~ < l , / (m,) = 0} < 1.

The Gleason part of a point m e M is denoted by P(m). Hoffman showed that P(m)
is either a singleton or an analytic disc. In the latter case the point m is said to be
regular and the part P(m) nontrivial. We denote by G the set of all regular points in
M. Note that D C G.

Although G is not compact, Axler and Zhu [5] proved that every continuous
bounded complex-valued function on D has a continuous bounded extension to G and
they gave a sufficient condition for an extension to be of this nature. Namely, they
showed the following.

LEMMA l.Letf:D^-Cbe continuous.

(i) / / / e C(G), then f is bounded on G.
(ii) Conversely, iff is bounded and

(1) sup(l - |z|2)lim
zeD

f(w)-f{z)

w — z
< 00,

thenf e C(G).

Recall tha t / e C(G) means that/ is (continuously) defined and finite on G. This
lemma is due to Axler and Zhu (see [5, Proposition 14 and Lemma 15]). Their proof
depends on Lappan's paper [14, Theorems 1 and 3] and also an idea of Brown and
Gauthier [8].

THEOREM 1. Letf be meromorphic on D and set u(z) = (1 - |z|2)/"tt(z), z € D.
Then, f € N if and only ifu has a continuous extension to G, that is u e C(G).
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[4] Functions of bounded expansion 171

PROOF. Sufficiency. Suppose u has a continuous extension u to G. We have noted
earlier that, since D is dense in M, this extension is unique. That is, u is (defined and)
finite on G and hence u <= C(G). Then, by the previous lemma, u is bounded on D,
that is, (1 - |z|2)/ t t(z) = 0(1), that i s / € N.

Necessity. Assume t h a t / € N. Then, u is bounded and, in order to show that u
has an extension ti e C(G), it is enough to show that (1) holds for u.

Set

s0 = sup (1 - Iz|2)lim

= sup (1 - |z|2)lmT

w

u(w)

w

-U(Z)

— z
-u(z)
-z

Observe that

sup(l - k|2)lim
u(w) - u(z)

W — Z
= mzx{s0,soo\.

Since

it suffices to estimate s0 above. To this end, we first establish a useful inequality.
Claim :lffeN and \f (z)| < 1 at a point ze D, then

" tanh2 (n-

In fact, fix a point zo e D and set

f (<p(z)) - f (zo)
g(z) =

+ f (zo)f (<P(Z))

Z + Zo
1 +ZoZ

Then, g(0) = 0 and g is / preceded by a Mobius transformation and followed by a
rotation of the sphere, and so g e N with \\g\\N = \\f \\N. For z € D, let € = [0, z] be
the segment from 0 to z. Then,

r\s(z)\ dt /•
arctan|g(z)| = / < / -

(3) 12 — 1 - l z l

https://doi.org/10.1017/S144678870003929X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003929X


172 P. M. Gauthier and J. Xiao [5]

It follows that \g(z)\ < 1 for \z\ < r = tanh;r/(4||/ \\N), and hence fc(£) = g(r£) is
a holomorphic function from D into itself. Thus, an elementary calculation gives that

l + l/(zo)l2

< \h"(0)\ + r2[2\\f fN+2\\f \\N] <2+r2[2\\f \\2
N+2\\f \\N],

which yields (2).
Now, let us return to estimating s0- Let z e D with \f (z)\ < 1. Then,

lim
w

w-*z

- « ( z )
— z

1 - M : )
w — z

- |u;|2) - (1 -

w — z

\w-z\

\f(w)\2) - 1/(1

2(1 -

^d-|z|2)|/"(z)l | 2(

2f*(z)

2/"

Consequently, from the above claim, we have that

1
•so < 2

tanh2 (jr/ (4||/ |U))

Of course, when z e D and \f (z)\ > 1, we may consider 1// (z) and obtain the same
estimate. Therefore, (1) holds for/ e N. This completes the proof. •

A function / meromorphic in D is said to be in the little normal space No, if

We could also say that / e No if and only if / is of vanishing spherical expansion.
Let 3D denote the unit circle \z\ = 1 and £> = D U dD, the closed unit disc |z| < 1.
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Let u be a function defined on D and let f e 3D. If u(m) is defined and takes the
same value for every point m e M \ D which lies in the fiber over £, then we can
define H(£) as this common value. Let C0(D) denote the space of functions which are
continuous on D and vanish on 3D.

REMARK 1. Le t / be meromorphic on D and set u(z) = (1 - \z\2)fHz). Then,
clearly, / € No if and only if u e C0(D).

For holomorphic functions, Axler and Zhu obtained the following stronger result
[5, Theorem 16].

THEOREM 2. Let f be a function holomorphic on D, let n > 1 be an integer and
set u(z) = (1 — \z\2)"fM(z). Thenf e B if and only ifu has a continuous extension
to G, that is u € C(G).

Recall that a function / holomorphic on D is said to be in the little Bloch space
Bo, if

We could also say that / € Bo if and only if/ is of vanishing Euclidean expansion.
[28, Theorem 5.26] tells us the following.

REMARK 2. Let / be holomorphic on D; let n > 1 be an integer and set u(z) =
(1 - \z\2yf(n)(.z). Then/ 6 Bo if and only if u € C0(D).

QUESTION 1. Do Theorem 1 and its Remark 1 have versions for higher derivatives,
similar to Theorem 2 and its Remark 2?

3. Boundary behaviour of functions

In this section we discuss the boundary behaviour of functions in the classes TV and
B.

For z,weD, let k(z, w) (respectively p(z, w)) denote the pseudohyperbolic
(respectively hyperbolic) distance between z and w.

The following characterization of H°° is essentially due to Hoffman [12].

THEOREM 3. Let f be holomorphic on D. Then, the following statements are
equivalent.

(i) / 6 H°°.
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(ii) / can be extended continuously to M, that is f € C(M).
(iii) / 15 uniformly continuous with respect to the pseudohyperbolic distance. In

fact, there is a constant C, depending only on f, such that

\f(z)-f(w)\<CX(z,w).

PROOF, (iii) =>• (i) is obvious. (i)=>(iii) follows from applying Schwarz's lemma
to the function

(i) <$• (ii) is a well known fact due to Hoffman. •

For N, we have the following analogous characteterization, where the Euclidean
distance | • | is replaced by the spherical distance x and the pseudohyperbolic distance
by the hyperbolic distance.

THEOREM 4. Let f be meromorphic on D. Then, the following statements are
equivalent.

G) / 6 N.
(ii) / can be extended spherically continuously to G, that is, f is defined on G.

(iii) / is uniformly spherically continuous with respect to the hyperbolic metric.
In fact, there is a constant C, depending only onf, such that

xif(z),f(w))<Cp(z,w).

PROOF, (i) •<$• (ii) is due to Brown and Gauthier [8]. (i) <$• (iii) is worked out
essentially by Lappan (see the proof of [14, Theorem 3]). In fact, this follows from
the fact that functions in N are precisely functions of bounded spherical expansion. •

Brown and Gauthier also showed that this result is sharp in the following sense.
They constructed a meromorphic normal function / 0 whose cluster set at each bound-
ary point m € M \ G is the entire Riemann sphere C. Thus, for this function / 0 ,
the natural domain of definition of/o is precisely G; in fact, the worst possible dis-
continuity is achieved at all points of M \ G. Moreover, the following proposition
asserts that such normal functions are actually dense in the space of all meromorphic
functions on D equipped with the topology of uniform convergence on compacta. A
neighbourhood basis of a meromorphic function / is constructed as follows. Let E
be a compact subset of D and let € > 0. Then, a basic neighbourhood V(f, E, e)
consists of all meromorphic functions g on D having the same poles with the same
principal parts a s / on £ and such that \f — g\ < e on E. For the sake of brevity, we
shall call this topology the uniform topology.
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[8] Functions of bounded expansion 175

PROPOSITION 1. For each function f meromorphic on D and for each neighbour-
hood V(f, E, e) off, there is a meromorphic normal function g such that

(i) g 6 V(f, E,j),
(ii) C(g, m) = C, for each m € M \ G.

PROOF. Let f0 be the normal function mentioned above, whose cluster set at each
point of M \ G is the entire Riemann sphere C. Let Zj, j = 1 , . . . , n be the poles of
/ — /o on E and, for each j = 1 , . . . , n, let

be the principal part of/ —f0 at the pole u. Set

Then, / — f0 — p is holomorphic on the compact set E and so, by Runge's theorem,
there is a rational function r, having no poles on E nor on the unit circle \z\ — 1, such
that \(f - /o — p) — r\ < € on E. Now set g = / 0 + (p + r). Since g is the sum of
a normal function and a rational function with no poles on the unit circle, it follows
from Theorem 4 that g is normal. By construction, g satisfies (i). Finally, g satisfies
(ii) since f0 satisfies (ii) and since p + r is continuous and finite valued at each point
of the unit circle and, a fortiori, at each point m € M. This completes the proof. •

The previous proposition is in terms of the uniform topology. The other natural
topology on the space of meromorphic functions is the topology which is associated
to spherically uniform convergence on compacta. For brevity, we shall call this the
spherically uniform topology. Fix a metric x on the Riemann sphere C. Then, in
the spherically uniform topology, a basic neighbourhood V(f, E, e) consists of all
meromorphic functions g on D such that x(f, g) < f on E. It is easy to see that these
two topologies are different; indeed, the sequence (z — I /")"1 converges to 1/z in the
spherically uniform topology but not in the uniform topology. On the other hand, on
compacta, uniform convergence implies spherically uniform convergence, and so the
uniform topology is (strictly) stronger than the spherically uniform topology. It follows
that any family of meromorphic functions which is dense in the uniform topology is
automatically dense in the spherically uniform topology. Thus, the above proposition,
which is stated in terms of the uniform topology, also holds in the spherically uniform
topology.

LEMMA 2. Let {ga} be a bounded net of holomorphic functions on D and suppose
ga —• g. Then, g is holomorphic and g'a -*• g'.
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PROOF. The fact that g is holomorphic is well known. However, that we may
interchange the limit with derivation is perhaps less well known, so we give a proof.
Fix zo £ D and e > 0 and write

g'(Zo) - g'a(Zo)

,, , S(z) ~ g(z0) , g(z) - g(z0)
= g (zo) 1

z Zz — Zo z — Zo
ga(z)-ga(Zo) ga(z) ~

+Z-Zo Z-Zo
ga(Zo)

Since [ga] is uniformly bounded, it follows from the Cauchy formula that the deriva-
tives are uniformly bounded on compacta. Thus, since

\Aa\ =
Z-Zo

< 2 max \g'a(S)\,
feb.zol

we may choose z € D such that \Aa\ < e /3 , for all or and also \A0\ < e /3 . For this z,
there exists an af such that a > a( implies that \Ba\ < e /3 . Hence, a > a( implies
that \g'(zo) — g'a(zo)\ < e /3 . This proves the lemma. •

Of course, the lemma also holds for locally bounded pointwise convergence. A
similar result holds for meromorphic functions provided we allow the constant oo as a
meromorphic function. Let {ga} be a net of meromorphic functions on D and suppose
ga —*• g spherically. We shall say that the net is locally spherically bounded if, for
each zo 6 D, there is a proper compact subset K c C and a neighbourhood Vo of zo
such that ga(z) e K, for each z € Vo and for each ga. Since the spherical derivative
is invariant under rotations, it is then easy to check that the following lemma is a
consequence of the previous one.

LEMMA 3. Let [ga] be a locally spherically bounded net of meromorphic functions
on D and suppose ga —> g. Then, g is meromorphic and gl —> g".

THEOREM 5. Letf e N. Then, the following statements are equivalent.

(i) /€tf0.
(ii) / is constant on each nontrivial Gleason part in M \ D.

(iii) For any r € (0, oo),

hm sup = 0.
M^' P(ZW)
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PROOF, (i) 4> (iii) follows readily from the definition of No and Lappan's proof for
[14, Theorem 3].

For (i) -^ (ii), we recall that each nontrivial Gleason part P{m) has a holomorphic
structure obtained as follows [12, p. 75]. If Za e D converges to m, then

T ( \ Z + Z a

1+ZaZ

converges pointwise to Lm, a bijection of D onto P(m). Brown and Gauthier [8,
Theorem 5] showed that, if/ is normal, then, on each nontrivial Gleason part P{m), the
function/ (which is well defined by Theorem 4) is identically infinite or meromorphic,
in the sense that / o Lm is meromorphic.

Also, we recall that Hoffman [12, p. 75] proved that a point m e M \ D is a regular
point if and only if it lies in the closure of an interpolating sequence [zn] in D.

Let us return to the proof of the theorem. Brown and Gauthier concluded that
/ o Lm is meromorphic from the convergence / o La -*• f o Lm and the first part of
the previous lemma. From the lemma, we also have that (f o La)

a —> (/ o Lm)s.
Sufficiency. Suppose/ is constant on each nontrivial Gleason part P(m) in M \ D.

Then (f o Lmf = 0. We claim that (1 - \z\2)fKz) tends to 0 as |z| - • 1 and
hence/ e No. Suppose not. Then, (1 — \zn\

2)fi{zn) is bounded away from zero, for
some interpolating sequence {zn}. Let m be any point of M \ D in the closure of this
sequence. Then, m e G and there is a subnet {zc} of {zn} which converges to m. Now

0 = ( / o U ' ( 0 ) = lim(/ o La)»(0) =

This is a contradiction which proves the sufficiency.
Necessity. Assume that f e No. Let m be a regular point. Then m lies in the

closure of an interpolating sequence {zn} in D. Since/ € No,

Fix e > 0. By omitting finitely many terms of this sequence, we may assume that

d-\Zn\2)\fHZn)\<€, H = l , 2

It follows, as in the proof of sufficiency, that (f o Lm)i{m) = 0. Since every point of
a nontrivial part is regular, it follows that / is constant on any nontrivial part. This
concludes the proof of the theorem. •

Henceforth, let dm denote the usual two-dimensional Lebesgue measure.

THEOREM 6. Let f be holomorphic in D. Then, the following statements are
equivalent.
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(i) / € B.

(ii) / is the Bergman projection of some function g e C{G), that is,

(iii) / 15 uniformly continuous with respect to the hyperbolic metric on D. In fact,
there is a constant, depending only on f, such that

\f(z)-f(w)\<Cp(z,w).

PROOF. For the equivalence (i) •&• (iii), see [24, Theorem 2.1]. In fact, this follows
from the fact that Bloch functions are precisely functions of bounded Euclidean
expansion. The equivalence (i) 4> (ii) follows from the following argument. Let
f e B. Since all polynomials are in B (even in Bo), we may, without loss of
generality, assume that / has a zero of order at least 2n at 0. Then, by [5, Lemma 4],

, , , 1 f (l-\w\2)"f^(w) J 1 f g(w) Jf(z) = — / — =-rn dm(w) = - / —- dm(w),
n\n JD (1 - zw)2W 7i JD (1 - zw)2

where

1 (l-\z\2)"fM(z)

Also, by [5, Theorem 16], it follows that g € C(G), since / € B. Moreover, since
g € C(G) must be bounded by Lemma l(i), / given by (ii) belongs to B (see [5,
Table 2]). •

The following is well known.

REMARK 3. Let / e H°°. Then, the following statements are equivalent.

(i) / e f l o -
(ii) / is finite and constant on each Gleason part in M \ D.

(iii) For any r € (0, oo),

.. \f(z)-f(w)\
hm sup = 0.

M^lp(z.w)<r P(Z,W)

The equivalence (i) o- (ii) is in [11, p. 442] and (i) <£> (iii) is in [25, Theorem 2.1].
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4. The Bergman projection

The theorems of the previous section together with those of the present section
point out some significant differences between the spaces N, B and H°°.

For p e [1, oo), let Lp and L°° be the Lebesgue spaces of all measurable functions
/ : D -*• C with

and

|£, = [ \f \" dm < oo
JD

=esssup|/(z)| < oo,
zeD

respectively. For any bounded measurable set £ c R 2 and/ e Ll(E),

/* = -7FT f fdmm(E) JB

denotes the average of/ on E. Let Q be a domain in R2. Following Reimann (see
[20]) we define the space BMO (Q) (bounded mean oscillation on Q) as the set of all
functions/ € L'0C(J2) satisfying

1 f
11/ WBMOCSI) = sup — — / | / - / A | dm < oo,

where the supremum is taken over all Euclidean discs A c & In the present paper,
BMO = BMO (D) stands for BMO of the unit disc D.

We also introduce the space VMO of functions of vanishing mean oscillation. These
are the functions / in BMO for which

1
hm sup

VMO is the closure of C(D) in the BMO norm. This fact is due to Jones (see [7,
p. 310]). Using this fact, Reimann has shown (see [19]) that any function/ in BMO
of the disc can be extended to a function / in the well known space BMO (R2), from
which it follows that

L°° c BMO C P | LP,
l<p<OO

where the inclusions are strict. Coifman, Rochberg and Weiss [10] gave a different
definition for BMO of the disc, by replacing A by A n D, where A ranges over all
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Euclidean discs A whose centers lie in D. Noting that, for each bounded measurable
set E c R2, each / € Lx (E) and each a e C,

am,
m(E)

f \f -a\JE

we obtain the equivalence of the two definitions for BMO of the disc by taking
E = A n D and a = / A , where / is in BMO in the sense of Reimann and / is the
above mentioned extension thereof.

Moreover, H°°, B, Bo and the Bergman spaces Lp
a are the subspaces of holomorphic

functions in L°°, BMO, VMO and Lp respectively. The first and last identifications
are true by definition. For the middle identification, see [10].

On L1 we define a linear operator, usually called the Bergman projection, as follows

= 1 /" /(w)

X JD (1 -2U>)
(4) P(f)(z) = - _ - rfwi(tt>), / € L1.

7T JD (1 -2u>)

It is well known [5, p. 130] that P boundedly sends U onto LJ, for p > 1 and
L°° onto B. However, we note that there cannot exist any 'projection', such as (4)
mapping some class onto N. This is because N is not a linear space, in other words,
|| • || N is not a semi-norm. Here, we are interested in the images under P of BMO and
C(G), noting that C(G) c L°° c BMO, where the inclusions are strict.

THEOREM 7. P(C(G)) = P(BMO) = B.

PROOF. P(C(G)) = B is in fact already shown in (i) <s> (ii) of Theorem 6. Since
B = P(L°°), we need only check that P(BMO) c B. Suppose/ e P(BMO). Then,
there is a g e BMO such that / = P(g). Thus,

Since

f (z) = - —rdm(w).
n JD (1 - wz)4

1 /" 1
1 = - / T: r^rfmCu;),

* JD (1 - wz)2

6 f w2 6 f w2

0 = — / — =—-am(ifl) = - / ;—-(g o <pz)Ddm(w),
n JD (1 — wz) K JD (1 ~ wz)

where

z - w
<pz{w) =

1 — zw
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Furthermore,

ft C ~,2

f"(z) = — [g(w) -(go <pz)D]- r-77 dm(w)
n JD

6

Thus,

f^ »>«> < , ^ . i ^ , ^ ; ; : g : *•»>.

<~ [ \(g°

The last inequality comes from the fact (see [19]) that || • \\BMO is equivalent under
automorphisms of D. Therefore, / e B and the proof is complete. •

As a consequence of the previous theorem, we have the following.

THEOREM 8. P(C(D)) = P(VMO) = BO-

PROOF. P(C(D)) = Bo is known (see, for example [5, p. 130]). As in the previous
theorem, it remains to show that P(VMO) C Bo. Since P{BMO) = B and P maps
polynomials of the form

{zmz" : m, n nonnegative integers}

(which are dense in VMO), to holomorphic polynomials (which are dense in Bo), we
have P(VM0) C Bo, which completes the proof. •

5. The Ahlfors-Shimizu characteristic

In this section, we shall provide criteria for functions to be in the classes N and B
in terms of the generalized Ahlfors-Shimizu characteristic.

For/ meromorphic on D and r < 1, let S(f, r) (respectively s(f, r)) denote the
spherical area of the image/ (\z\ < r) with multiplicity taken (respectively not taken)
into account. Thus,

S(f,r)= f fi(z)dm(z)
J\z\<r

is the spherical area of the Riemannian image over the image f (\z\ < r), while s(f,r)
is the spherical area of the image f (\z\ < r) itself.
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For p € (0, oo), the generalized Ahlfors-Shimizu characteristic function of/ is
defined as

In particular, T*(f, r, 1) = T*(f, r) is the Ahlfors-Shimizu characteristic function of
/ . This quantity is related to the Nevanlinna characteristic function T(f, r) via the
following inequality [21, p. 26]:

- l o g + < ^ log 2.

Stroethoff [22] gave a Nevanlinna type characterization for B, extending the work
of Baernstein [6, Corollary 2]. We shall give an Ahlfors-Shimizu type characterization
for the classes N and B.

In the sequel, for a function/ meromorphic on D, we shall denote (see [17])

f (I'M)) - f (w)
I+TTUO/W-U)) 1

z + iy
1 + wz

THEOREM 9. Let f be meromorphic on D. Then, the following statements are
equivalent.

(0 / € N.
(ii) supweD T*(fw, \,p) < oo,p e ( l .oo) .

(iii) sup^o - / log''"1 I - ) s(fw, t) — < oo, p e (0, oo).
n Jo \t) t

PROOF. Step 1: (i) ^ (ii).
If/ € N, then, forp e (1, oo),

weD Lsup / /9(z)2log"
1 — wz

w — z
dm(z) < sup

weD
f 11/II*

JD

log"
1 — wz

w - z

dm(z)

2 logp - dt < oo.

Conversely, if the first expression in the above inequalities is finite, then

sup
wsD

ff\z)2

JD

log"
1 — wz 1

w — z

Hence, there is an r e (0, 1) such that

dm(z) > sup f f\zf log" -dm(z).
weD J\w-z\/\l-wz\<r r

1 J\w-z
sup/ f\zYdm(z)<7t.

J\w-z\l\l-wz\<r
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From this inequality and Yamashita's criterion [26, Lemma 3.2], we have/ e N.
Also, since

if oirj^fl

(see, [18, p. 261]), it follows that

1 — wzI
JD

\z)2f\z)
w — z

dm(z)

• l{z)2 \ogp —dm{z)
D | Z |

= f/'/><»>>.o8'(I)
= / / fw(re ) i

Jo Jo

rdrdO

\\c^\rdrd9

Jo

r f'
.Jo Jo

f f:
U\z\<t

for all p e (0, oo). Combining the above equations, we arrive at (i) •&• (ii).
Step 2: (i) o (iii).
Note that (iii) => (i) is easy. Indeed, suppose, for some fixed p e (0, oo),

C = sup - f log""1 (-) s(fw, t) — < oo.
W€D ?I Jo \ t J t

Then, for each r e (0, 1), and w e D,

-)s(fw,t)j>

Therefore, there is an r0 € (0, 1) such that

sups(fw, 7b) < n.
weD

By a result of Yamashita [27, Theorem 2], then, f & N.
Conversely, suppose / e N. It is known that (i) <^ (ii). Further, (ii) =» (iii) from

the inequality S(fw, t) > s(fw,t), and thus (i) =>• (iii). This completes the proof. •
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THEOREM 10. Letf € A'. Then, the following statements are equivalent:

G) / 6 No;
( i i ) \ i m M ^ T*(fw, I , p ) = 0 , p € ( l , o o ) ;

(iii) lim - f log""1 (-\ s(fw, t)—=O,pe (0, oo).
H-*' n Jo \t) t

PROOF. In view of the proof of the previous theorem, we need only verify that (iii)

Suppose, then, that (iii) holds. Then, we can find r, 6 (0,1), such that s(fw, rt) ->•
0, as |to| ->• 1 and hence/ 6 A'o, from

and Aulaskari's criterion [1, Theorem 2].
The proof that (i) =» (iii) is the same as for Theorem 9. D

REMARK 4. For p e (0, oo), denote by QP or Qs
p 0 the set of all meromorphic

functions f on D with

respectively,

weD

lim

Lsup / /»(z)2log'
1 — wz

w -z

1 — wz

w — z

dm(z) < oo,

dm(z) < oo.

Then, we see from the above argument that, for p e (0, oo), we have

f e Qp if and only if s u p T * ^ , \,p) < oo,
weD

respectively,

/ e Q" if and only if lim T*(fw,\,p) = 0.
M-+1

The case p = 1 is essentially due to Yamashita [26]. In addition, our argument for
(i) •O- (ii) in fact gives a new proof for Qp = N or QP<0 = No, whenever p > 1 (see
[2]). In particular, if we denote by UM the class of univalent meromorphic functions
in D, then, for all p e (0, oo),

n UM= UM and Qp >0 n UM = Non UM.
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For a holomorphic function/ on D, we write

fw(z)=f(fw(z))-f(w).

Also, let

where

A(f,t)= I \f'(z)\2dm(z),
J\z\<i

which is bigger than

a(f, t) = I dm(z).

Of course, the last two expressions are the area of f (\z\ < t) with (respectively

without) multiplicity.

THEOREM 11. Let f be holomorphic on D. Then, the following statements are

equivalent:

(i) / 6 B\
(ii) s u p ^ W " , l , p ) < o o , p €( l ,oo) ;

(iii) sup / log""1 ( - ) a(fw, t) — < oo, p e (0, oo).
weD Jo \ * / t

PROOF. The argument is completely similar to that of the previous theorem. How-
ever, in the present situation, we make use of a result of Axler [4, Theorem 1 ], namely,

f e B <& sup A(fw, r) < oo, for each r e (0, 1).
weD

In addition, the following inequality is used:

(5) ! / - ( , ) ! < i O £ l Q g l ± M , zeD.

We leave the details to the reader. •

THEOREM 12. Letf e B. Then the following statements are equivalent:

(i) / 6 BQ;
(ii) lim Tt(f

w,l,p)=0,p€(l,oo);
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(in) lim f log""1 (-] a(fw,t)—=0,p€ (0, oo).

PROOF. This follows easily from (5) and the idea in the proof of Theorem 10. D

REMARK 5. Let Qp be the set of all holomorphic functions / in D, with

1 — wz
sup
U)6£>

and let

Then,

and

QP,o = [f e QP : lim.

w - z

^'(z)l2logp

dm(z) < oo.

1 — wz

w — z

f eQp *> sup Tt(f
w',1, p)<oo

/ e

which may be considered as a characterization of Ahlfors-Shimizu type for Qp-
functions.

The case p = 1 is due to Yamashita [26, p. 365]. Of course, our idea in proving (i)
O (ii) can be used to prove again that Qp = B and <2p,o = So, for p > 1 [2]. The
case Qi = B and Q2,o = #o was first proved in [24] and [25].

In addition, since/ 6 Qp,o <$ f e Qp and

r ' ( z ) l 2 w — z
1 — wz

2\P

dm(z) = 0,

the same idea as in the proof of (i)-o-(ii) of Theorem 12 yields that / e Qp,0 if and
only if

lim /" ( 1 - O""1 A (fw, t)dt = O, pe(0,oo)

and / e Bo if and only if

lim I (1 - t)p-la(fw, t)dt = O, p e (0, oo).
*/0

This gives a complete answer to the question which remained open in [23].

https://doi.org/10.1017/S144678870003929X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003929X


[20] Functions of bounded expansion 187

REMARK 6. Let UH denote the class of univalent holomorphic functions on D.
Then,

QPD UH = S n UH and Qpfi n UH = B0D UH.

See [3, Theorem 6.1].

References

[1] R. Aulaskari, 'On the boundary behaviour of Bloch and normal functions', Bull. Austral. Math.
Soc. 30(1984), 299-305.

[2] R. Aulaskari and P. Lappan, 'Criteria for an analytic function to be Bloch and a harmonic or
meromorphic function to be normal', in: Complex analysis and its applications, Pitman Res.
Notes Math. 305 (Longman Sci. Tech., Harlow, 1994) pp. 136-146.

[3] R. Aulaskari, P. Lappan, J. Xiao and R. Zhao, 'On a-Bloch spaces and multipliers of Dirichlet
spaces', J. Math. Anal. Appl. 209 (1997), 103-121.

[4] S. Axler, "The Bergman space, the Bloch space, and commutators of multiplication operators',
Duke Math. J. 53 (1986), 315-332.

[5] S. Axler and K. Zhu, 'Boundary behavior of derivatives of analytic functions', Michigan Math. J.
39(1992), 129-143.

[6] A. Baernstein II, 'Analytic functions of bounded mean oscillation', in: Aspects of contemporary
complex analysis (eds. D. A. Brannan and J. G. Clunie) (Academic Press, London, 1980) pp. 3-36.

[7] H. Brezis and L. Nirenberg, 'Degree theory and BMO; Part II: Compact manifolds with boundaries',
Selecta Math., Soviet New Sen 2 (1996), 309-368.

[8] L. Brown and P. M. Gauthier, 'Behavior of normal meromorphic functions on the maximal ideal
space of H°°', Michigan Math. J. 18 (1971), 365-371.

[9] L. Carleson, 'Interpolation by bounded analytic functions and the corona problem', Ann. of Math.
76 (1962), 547-559.

[10] R. Coifman, R. Rochberg and G. Weiss, 'Factorization theorems for Hardy spaces in several
complex variables', Ann. of Math. 103 (1976), 611-635.

[11] J. Garnett, Bounded analytic functions (Academic Press, New York, 1981).
[12] K. Hoffman, 'Bounded analytic functions and Gleason parts', Ann. of Math. 86 (1969), 74-111.
[13] P. Lappan, 'Non-normal sums and products of unbounded normal functions', Michigan Math. J. 8

(1961), 187-192.
[14] , 'Some results on harmonic normal functions', Math. Z. 90 (1965), 155-159.
[15] O. Lehto and K. I. Virtanen, 'Boundary behaviour and normal meromorphic functions', Ada Math.

97 (1951), 47-65.
[16] K. Noshiro, 'On the theory of cluster sets of analytic functions', J. Fac. Sci. Hokkaido Univ. 7

(1938), 149-159.
[17] Ch. Pommerenke, 'Estimates for normal functions', Ann. Acad. Sci. Fenn. Ser A I Math. 476

(1970), 1-10.
[18] , Univalent functions (Vandenhoeck and Ruprecht, Gottingen, 1975).
[19] H. M. Reimann, 'Functions of bounded mean oscillation and quasiconformal mappings', Comm.

Math. Helv. 49 (1974), 260-276.
[20] H. M. Reimann and T. Rychener, Funktionen beschrankter mittlerer Ozillation, Lect. Notes in

Math. 487 (Springer, Heidelberg, 1975).

https://doi.org/10.1017/S144678870003929X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003929X


188 P. M. Gauthier and J. Xiao [21]

[21] J. L. Schiff, Normal families (Springer, Heidelberg, 1993).
[22] K. Stroethoff, 'Nevanlinna-type characterizations for the Bloch space and related spaces', Proc.

Edinburgh Math. Soc. 33 (1990), 123-141.
[23] K. Wirths and J. Xiao, 'Image areas of functions in the Dirichlet type spaces and their Mobius

invariant subspaces', Maria Curie-Slowdkowska, Sect. A 22 (1996), 239-245.
[24] J. Xiao, 'Carleson measure, atomic decomposition and free interpolation from Bloch space', Ann.

Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 35^6.
[25] J. Xiao and L. Zhong, 'On little Bloch space and its Carleson measure, atomic decomposition and

free interpolation', Complex Variables 27 (1995), 175-184.
[26] S. Yamashita, 'Functions of uniformly bounded characteristic', Ann. Acad. Sci. Fenn. Ser. AI Math.

7 (1982), 349-367.
[27] , 'Area criteria for functions to be Bloch, normal and Yosida', Proc. Japan Academy 59

(1983), 462^164.
[28] K. Zhu, Operator theory injunction spaces, Pure and Applied Math. 139 (Marcel Dekker, New

York, 1990).

Departement de mathematiques et de statistique School of Mathematical Sciences
Universite de Montreal Peking University
Montreal H3C3J7 Beijing 100871
Canada P. R. China
e-mail: gauthier@dms.umontreal.ca e-mail: jxiao@sxxxo.math.pku.edu.cn

https://doi.org/10.1017/S144678870003929X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003929X

