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A -BILINEAR FORMS AND GENERALISED A-QUADRATIC
FORMS ON UNITARY LEFT A-MODULES

C.-S. Lm

In this paper we shall define a generalised .A-quadratic form and prove that in some way
this form and an A-bilinear form are equivalent to each other. Our result characterises
that of Vukman in the sense that we use any n vectors for a fixed n ^ 2, instead of any
two vectors. Consequently, a new generalisation of an inner product space among vector
spaces is obtained. This also leads to a new relationship between a 2-inner product space
and a 2-normed space.

1. INTRODUCTION AND DEFINITIONS

It was shown by Vukman in a very recent paper [7, Theorem 7] that given an
A-quadratic form on a unitary left A-module, there exists an A-bilinear form with some
kind of relation between them. The idea originated in a paper by the same author [6,
Theorem 2.1]. In this paper we shall define a generalised A-quadratic form and prove
that in some sense the two forms are equivalent to each other. Therefore, our result
characterises that of Vukman [6, 7] which in turn generalised Kurepa's extension [4, 5]
of Jordan-Neumann's generalisation of inner product spaces among vector spaces. It
may be noted that all well-known characterisations of an inner product space in the
past used any two vectors in a normed vector space, in contrast to this we shall use any
n vectors for a fixed n > 2. In the final section we shall present a new relstionship
between a 2-inner product space and a 2-normed space.

Let us recall first of all some standard definitions. A Banach + -algebra is a •-
algebra (an algebra with involution) which is also a Banach algebra. Let A be a
• -algebra with a unity element e, and let Z be a vector space which is also a left
A-module. We call a mapping B: X x X —* A an A-bilinear form [6] if B is additive
in both arguments, B(ax,y) = aB(x,y) and B(x,ay) = B(x,y)a* for all pairs x and
y in X and all a in A. A left A -module X is said to be unitary if ex = x for all x

in X.

DEFINITION 1: A mapping Q: X —> A is called a generalised A-quadratic formii

( + ) Q{ax) = aQ{x)a* and
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for all a in .4, all n vectors vi,V2, • • • ,vn in X, a constant c ^ O , ^ 1 — n , ^ 1 — | n

a n d a fixed n ^ 2 . Thus , when n. = 2 and c = 1 it reduces to

(**) Q(vi +v2) + Q(Vl -v2) = 2(Q(Vl) + Q(v2))

which is known as an A -quadratic form [6].

2. T H E PRINCIPAL RESULT

THEOREM. Let A be a complex Banach * -algebra with a unity element e, and let

X he a complex vector space which is also a unitary left A -module. If B: X x X —• A

and Q : X —> A are two mappings, then the following two statements are equivalent:

(1) B is an A-bilinear form and Q{x) = B(x,x);

(2) The relation B(x, y) = \{Q(x + y) - Q(x - y) + iQ(x + iy) - iQ(x - iy))

holds and Q is a generalised A -quadratic form.

PROOF: (1) =̂  (2): Starting from the righthand side, the first relation is a direct

computation. That Q(ax) — aQ(x)a* is obvious. To show the second identity in (*),

since

( n \ n n n—1

J2vi) = cJ2Q^ + cJ2J2
i=l / t = l i<j t=l

j=2

t=l / t=l

t=2

n n —1

i<j t=l
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the rest is straight-forward computation.

(2) =4- (1): since Q(0) = 0 by (*) (the condition that c ̂  1 — | n is required
to assure this result), Q(x) = B(x,x) is evident from the relation. To prove that
B{x + y, z) = B(x, z) + B(y, z) , we first assert that

n + c — 1 \

={n -1)B {-1^T-U'z) =cB u'z)

for all u , z and Wi in X, with i = 1,2, . . . , n — 1. To this end, let v1 = u + z and

Vi = u>i_i/(n — 1) for i = 2 , 3 , . . . , n in the second identity of (-*•), so

T-i
i . — . \

cQ u

n-l ., n-ln-2

= (n + c - 1) I Q(u + z)-\ —;

If z is replaced by — z, by iz and by —iz in (b), we shall get three equations. From
these three equations together with (b) we obtain easily an identity expressed in terms
of the mapping B, namely

( n-l \ n-l / n-l \

1 \ 1 + 1 \= (n + c~l)B{u,z).

Let Wi = ^ u in (c) for i = 1,2,. . . ,n - 1. Then

(d) c 5 (n + C
c
1u, z\ = (n + c - 1)B(«, 2).

Also let toi = —tt in (c) for i = 1,2, . . . , n — 1. Then

(e) (n-l)B[?-t^-u,z\ = {n +c-l)B{u,

Thus, the identities (c), (d) and (e) constitute our assertion.
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Next, let u = " ~ y in (d) and (e). Then cB ( H ~ y, z) = (n - l)B(y, z).
n + c — 1 \ c /

n — 1 . . 1— n (7i — l ) . , •> ,
Also let u = (x + y) and w; = x -\—7s —-y in (a) for 1 =

n + c — 1 n + c-1 c(n + c— 1)
l , 2 , . . . , n - l . Then

that is, B(y,z) + B(x,z) = B(x + y,z). Analogously one can show the additivity in
the second argument and we shall omit the details.

It remains to verify that B(ax,y) = aB(x,y) and B(x,ay) = B(x,y)a* for all
pairs x and y in X and all a in A. We shall omit the proof since the result was
mentioned in [7, Theorem 7], and was proved in detail in [6, Theorem 2.1]. This
completes the proof of the theorem. fl

3 . COROLLARIES

When X is a real (complex) normed vector space and A is the field of real (com-

plex) numbers, we have

COROLLARY 1. X is a real (complex) inner product space if and only if the norm
in X satisfies the condition:

t = l >=2 «=1

for any n vectors Vi, V2, • • •, vn in X , a constant c ^ O , ^ 1 — n, and a fixed n > 2 ,

a n d the inner product is defined by

( , y) = \ {\\x + y\\2 - \\x - y||2 + i)\x + iyf - i\\x - iy||

PROOF: Let us consider the real case first. The proof of the relation (x + y,z) =

(x,z) + (y,z) is merely changes of notations in our Theorem: B(x,y) =

—(Q(x+y) — Q(x — y)), where B(x,y) — (x,y) the usual real inner product of x

and y, and Q{x) = \\x\\2 . This same relation implies the identity (ax,y) = a(x,y) for

https://doi.org/10.1017/S0004972700027970 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027970


[5] Bilinear forms and generalised quadratic forms 53

all real a which can be found in [1, p.175]. As for the complex version it can easily be
derived from the real case [1, p.176] and we shall omit the details. R

When n = 2 and c = 1 the equation (i) is reduced to

which is the classical condition of the Jordan-Neumann generalisation of an inner prod-
uct space. It is also known as the parallelogram law in an inner product space. This
leads, with the aid of Corollary 1, to:

COROLLARY 2. Statements in Corollary 1 still hold if (i) is replaced by

( i ' ) \\x + y\\2 + \\x - y\\2 + \\x + z\\2 + \\x - z\\2 = 4\\x\\2 + \\y + z||2 + \\y - zf

for all triplets x , y and z in X •

PROOF: In virtue of Corollary 1, we shall prove the real case only.

(=>): obviously (iii) implies ( i ' ) .

(•£=): after interchanging x and y in ( i ' ) we have

| |« + Vt + \\x - y \ \ 2 + \\y + z \ \ 2 + \\y - z \ \ 2 = A\\y\\2 + \\x + z \ \ 2 + \\x - z \ \ 2 .

Adding this to equation ( i ' ) we get equation (iii). PI

Corresponding to Corollary 2 we have

COROLLARY 3. Statements in the Theorem still hold if Q in (2), instead of being

a generalised A-quadratic form, satisfies the conditions:

Q(ax) — aQ(x)a* and

Q{x +y) + Q{x -y) + Q{x + z) + Q{x - z) = AQ(x) + Q{y + z) + Q(y - z)

for all triplets x , y and z in X .

4. REMARKS

1) When n = 2 and c = 1 the implication (1) =$• (2) in the Theorem is immediate,

and that (2) =$> (1) is precisely [7, Theorem 7].

2) If c = 1 in particular) we can show that
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in the proof of (2) => (1) in the Theorem. This goes as follows: from our assertion in
(a) we have, when c = 1,

(
u + X)w«'z +J2B\U + f E W i - A ^ ' z =B(nu,z).n l ) n L n L )

The desired result follows by setting u — — Y"1 Xi and to; = - — for
n i=1 n

i = 1 ,2 , . . . , n — 1 in the above.
3) A closer look ad Kurepa's papers ([4] and [5]) shows that many results appear-

ing there can be generalised by just replacing the quadratic form by our generalised

quadratic form (i).

5. 2-NORMED AND 2-INNER PRODUCT SPACES

The following standard defintions are from [3] and [2]. If X is a real linear space
of dimension greater than one, and if ||.,.|| and (.,-|.) are real functions on X x X and
X x X x X respectively, then X is called a real 2-normed space with a 2-norm ||.,.||
if the following conditions are satisfied:

(1) 11̂ )2/11 = 0 if and only if % and y are linearly dependent;

(2) | |*,y|| = | |y,*| | ;
(3) ||a:c,y|| = \a\ \\x,y\\ for every real a;

(4) ||* + y , * | | ^ | | * , * | | + ||y,*||.

X is called a real 2-inner product space with a 2-inner producet (., .|.) if the
following conditions are satisfied:

( I 1 ) (x,x\y) ^ 0; (x,x\y) = 0 if and only if x and y are linearly dependent;
(2 ' ) (x,x\y) = (y,y\x);

(3 ' ) (x,y\z) = (y,x\z);

(4 ' ) (ax,y\z) = a[x,y\z) for every real a;

(5 ' ) (x+y,z\s) = (x,z\s) + {y,z\s).

It may be noted that in other papers, including [3] and [2], these are simply called
a 2-normed space and a 2-inner product space. In this last section we shall present a
new generalisation of a real 2-inner product space among real 2-normed spaces. We also
define in an obvious fashion a complex 2-normed space and a complex 2-inner product
space, and give a similar generalisation.

COROLLARY 4. The following two statements are equiva/ent:

(I) X is a read 2-inner product space and
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(II) X is a real 2-normed space and

(g) (x,y\ l 2f(x,y\z) (\\x

and the 2-novm in X satisfies the relation

n n

> s i i 2 + E ii E V i - ( n + c - 1 ) V J '

(h)

= (n + c - 1) |K*||2 + cY, IK.̂ II2 + E E ll»* - "i'
1

E E
«=2 t < j t=2

for any vectors Vi, t>2, •. •, vn and s in X , a constant c ^ 0, ^ 1 — n and
n > 2.

PROOF: (I) => (II). It is known [2, Theorem 4] that X is a real 2-normed space
with the 2-norm in (f), and that (g) holds. The equality (h) is similar to (i) in Corollary
1.

(II) => (I). That (g) implies (f) is obvious. It may be noted that a 2-norm is
nonnegative [3], and the condition (5') implies (4') [2, Theorem 5]. Thus it suffices to
show that (h) implies (5'). We remark that the claim (a) in the Theorem is now

for u, z, s and Wi in X , and i = 1,2,... ,n — 1. The rest of the proof is clear. H

It seems natural to consider the complex variant of the space X, and that of
Corollary 4. We shal begin with two definitions.

DEFINITION 2: Let X be a complex linear space of dimension greater than one,
and let ||., .|| be a real function on X x X, and [., .|.] a complex function on X x X x X ,
then X is called a complex 2-normed space with a 2-norm ||., .|| if all four conditions in
a real 2-normed space are satisfied, where a is a complex number in (3). X is called a
complex 2-inner product space with a 2-inner product [., .|.] if the following conditions,
are satisfied:

(1") [x,z|y] ^ 0; [z,z|y] = 0 if and only if x and y are linearly dependent;
(2") [x,x\y} = {y,y\x};
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(3") [x,y\z] = \y,x\z]*;
(4") [a:c,2/|z] = a[s,j/|z] for every complex a;
(5 " ) [x +y, z\s] = [x, z\s] + [y, z\s]; where * denotes the conjugate of a complex

number.

It follows easily that [x,aj/|2] = a*[a;,y|z] for every complex a, |[x,j/|^]| <

[a;,a;|z]7[t/, y\z\? (the proof is a slight change in that of [2, Lemma 1]), and [K,3/|2/] = 0 .

Examples of such spaces can easily be found. In fact, it is not difficult to show that

every inner product space, that is, a complex pre-Hilbert space, of dimension greater

than one with the usual inner product (.|.) is a complex 2-inner product space if the

2-inner space is defined by

[x,y\z) = (x\y)\\z\\2-(x\z)(Z\y).

On the other hand, if X is a complex 2-inner product space, then it is a complex
2-normed space if the 2-norm is defined by

COROLLARY 5. The following two statements are equivalent:

(I) X is a complex 2-inner product space and

(f) \\x,y\\ = [x,x\y}^

(II) X is a complex 2-normed space and

(g') lx,y\z} = \{\\x + y,42-\\x-y,42 + M\* + iy,42-i\\x-iy,42),

and the 2-norm in X satisfies the relation in (h).

PROOF: (I) =$• (II). With the 2-norm in (f') it follows easily that X is a complex

2-normed space (here, we use the aforementioned inequality |[x,3/|z]| ^ [sjjjclzjjft/^lx:]!

to show the inequality (4)). That (f ) implies (g') is straightforward. The relation (h)

holds exactly as in Corollary 4 except replacing (., .|.) by [., . | . ] .

(II) => (I). That (g') implies (f') is immediate, and hence conditions (1") and

(2") hold. We shall use Corollary 4 and adapt the device developed in [1, p.176]

to verify the other three conditions, and proceed as follows: we may regard X as a

real 2-inner product space; in view of Corolary 4, (g) defines a real-bilinear form with

||a:,j/|| = (x,x\y)^ and (y,x\z) = (x,y\z). Rewriting (g') in the form

[x,y\z] - {x,y\z) +i(x,iy\z),

https://doi.org/10.1017/S0004972700027970 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027970


[9] Bilinear forms and generalised quadratic forms 57

then [£,y|z] is also real-bilinear, and hence (5" ) holds.

Using (g) in Corollary 4, that is, (x,y\z) = (ix,iy\z), ( 3 " ) follows from

[y,x\z]* = (y,x\z)-i(y,ix\z) = {x,y\z) + i(ix, -y\z)

To show ( 4 " ) at last, in view of real-bilinearity it will be sufficient if we prove that
[ix,j/|z] = t[w,j/|z]; indeed

[i:c,y|z] ={ix,y\z) +i(ix,iy\z) = -(x,iy\z) +i(x,y\z)

= i{(x,y\z)+i{x,iy\z)) = i[x,y\z].

n
Corresponding to Corollary 2, we have

COROLLARY 6. The following two statements are equivalent:

(I) X is a real (complex) 2-inner product space and (f) holds (respectively,

(f) holds);

(II) X is a real (complex) 2-normed space and (g) holds (respectively, (g')

holds), and the 2-norm in X satisfies tiie relation

4||x,z||2 = \\y + z,x\\2 + \\y - z,x\\2 + \\x +y,z\\2 + \\x - y,z| |2

-\\x + z,y\f-\\x-z,y\\2

for any vectors x, y and z in X .

In conclusion, it should be noted that when c = 1 and n = 2 in particular, (h)
becomes

||fi + v2,s\\2 + | K - v2,s\\2 = 2 ( | | V l ) 5 | | 2 + | |v2,3| |2) .

Thus, Theorem 4 and 5 in [2] are special cases of our Corollary 4. When c = 1 we can

show that

\i=l / i=l
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