A-BILINEAR FORMS AND GENERALISED A-QUADRATIC FORMS ON UNITARY LEFT A-MODULES

C.-S. Lin

Abstract

In this paper we shall define a generalised A-quadratic form and prove that in some way this form and an A-bilinear form are equivalent to each other. Our result characterises that of Vukman in the sense that we use any n vectors for a fixed $n \geqslant 2$, instead of any two vectors. Consequently, a new generalisation of an inner product space among vector spaces is obtained. This also leads to a new relationship between a 2 -inner product space and a 2 -normed space.

1. Introduction and definitions

It was shown by Vukman in a very recent paper [7 , Theorem 7] that given an A-quadratic form on a unitary left A-module, there exists an A-bilinear form with some kind of relation between them. The idea originated in a paper by the same author [6 , Theorem 2.1]. In this paper we shall define a generalised A-quadratic form and prove that in some sense the two forms are equivalent to each other. Therefore, our result characterises that of Vukman [6, 7] which in turn generalised Kurepa's extension $[4,5]$ of Jordan-Neumann's generalisation of inner product spaces among vector spaces. It may be noted that all well-known characterisations of an inner product space in the past used any two vectors in a normed vector space, in contrast to this we shall use any n vectors for a fixed $n \geqslant 2$. In the final section we shall present a new relstionship between a 2 -inner product space and a 2-normed space.

Let us recall first of all some standard definitions. A Banach *-algebra is a *algebra (an algebra with involution) which is also a Banach algebra. Let A be a *-algebra with a unity element e, and let X be a vector space which is also a left A-module. We call a mapping $B: X \times X \rightarrow A$ an A-bilinear form [$\mathbf{B}]$ if B is additive in both arguments, $B(a x, y)=a B(x, y)$ and $B(x, a y)=B(x, y) a^{\star}$ for all pairs x and y in X and all a in A. A left A-module X is said to be unitary if $e x=x$ for all x in X.

Definition 1: A mapping $Q: X \rightarrow A$ is called a generalised A-quadratic form if

$$
Q(a x)=a Q(x) a^{\star} \text { and }
$$

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

$$
\begin{gathered}
c Q\left(\sum_{i=1}^{n} v_{i}\right)+\sum_{j=2}^{n} Q\left(\sum_{i=1}^{n} v_{i}-(n+c-1) v_{j}\right) \\
=(n+c-1)\left(Q\left(v_{1}\right)+c \sum_{i=2}^{n} Q\left(v_{i}\right)+\sum_{\substack{i<j \\
j=3}}^{n} \sum_{i=2}^{n-1} Q\left(v_{i}-v_{j}\right)\right)
\end{gathered}
$$

for all a in A, all n vectors $v_{1}, v_{2}, \ldots, v_{n}$ in X, a constant $c \neq 0, \neq 1-n, \neq 1-\frac{1}{2} n$ and a fixed $n \geqslant 2$. Thus, when $n=2$ and $c=1$ it reduces to

$$
\begin{equation*}
Q\left(v_{1}+v_{2}\right)+Q\left(v_{1}-v_{2}\right)=2\left(Q\left(v_{1}\right)+Q\left(v_{2}\right)\right) \tag{**}
\end{equation*}
$$

which is known as an A-quadratic form [6].

2. The principal result

Theorem. Let A be a complex Banach *-algebra with a unity element e, and let X be a complex vector space which is also a unitary left A-module. If $B: X \times X \rightarrow A$ and $Q: X \rightarrow A$ are two mappings, then the following two statements are equivalent:
(1) B is an A-bilinear form and $Q(x)=B(x, x)$;
(2) The relation $B(x, y)=\frac{1}{4}(Q(x+y)-Q(x-y)+i Q(x+i y)-i Q(x-i y))$ holds and Q is a generalised A-quadratic form.

Proof: (1) \Rightarrow (2): Starting from the righthand side, the first relation is a direct computation. That $Q(a x)=a Q(x) a^{\star}$ is obvious. To show the second identity in (\star), since

$$
\begin{aligned}
& c Q\left(\sum_{i=1}^{n} v_{i}\right)=c \sum_{i=1}^{n} Q\left(v_{i}\right)+c \sum_{\substack{i<j \\
j=2}}^{n} \sum_{i=1}^{n-1}\left(B\left(v_{i}, v_{j}\right)+B\left(v_{j}, v_{i}\right)\right) \text { and } \\
& \sum_{j=2}^{n} Q\left(\sum_{i=1}^{n} v_{i}-(n+c-1) v_{j}\right)=(n-1) \sum_{i=1}^{n} Q\left(v_{i}\right) \\
& -(n+c-1) \sum_{j=2}^{n}\left(B\left(\sum_{i=1}^{n} v_{i}, v_{j}\right)+B\left(v_{j}, \sum_{i=1}^{n} v_{i}\right)\right) \\
& +(n+c-1)^{2} \sum_{i=2}^{n} B\left(v_{i}, v_{i}\right) \\
& \\
& +(n-1) \sum_{\substack{i<j \\
j=2}}^{n} \sum_{i=1}^{n-1}\left(B\left(v_{i}, v_{j}\right)+B\left(v_{j}, v_{i}\right)\right)
\end{aligned}
$$

the rest is straight-forward computation.
$(2) \Rightarrow(1)$: since $Q(0)=0$ by (\star) (the condition that $c \neq 1-\frac{1}{2} n$ is required to assure this result), $Q(x)=B(x, x)$ is evident from the relation. To prove that $B(x+y, z)=B(x, z)+B(y, z)$, we first assert that
(a)

$$
c B\left(u+\frac{1}{n-1} \sum_{i=1}^{n-1} w_{i}, z\right)+\sum_{j=1}^{n-1} B\left(u+\frac{1}{n-1} \sum_{i=1}^{n-1} w_{i}-\frac{n+c-1}{n-1} w_{j}, z\right)
$$

$$
=(n-1) B\left(\frac{n+c-1}{n-1} u, z\right)=c B\left(\frac{n+c-1}{c} u, z\right)
$$

for all u, z and w_{i} in X, with $i=1,2, \ldots, n-1$. To this end, let $v_{1}=u+z$ and $v_{i}=w_{i-1} /(n-1)$ for $i=2,3, \ldots, n$ in the second identity of (\star), so

$$
c Q\left(u+z+\frac{1}{n-1} \sum_{i=1}^{n-1} w_{i}\right)+\sum_{j=1}^{n-1} Q\left(u+z+\frac{1}{n-1} \sum_{i=1}^{n-1} w_{i}-\frac{n+c-1}{n-1} w_{j}\right)
$$

(b)

$$
=(n+c-1)\left(Q(u+z)+\frac{c}{(n-1)^{2}} \sum_{i=1}^{n-1} Q\left(w_{i}\right)+\frac{1}{(n-1)^{2}} \sum_{\substack{i<j \\ j=2}}^{n-1} \sum_{i=1}^{n-2} Q\left(w_{i}-w_{j}\right)\right)
$$

If z is replaced by $-z$, by $i z$ and by $-i z$ in (b), we shall get three equations. From these three equations together with (b) we obtain easily an identity expressed in terms of the mapping B, namely

$$
\begin{align*}
c B\left(u+\frac{1}{n-1} \sum_{i=1}^{n-1} w_{i}, z\right) & +\sum_{j=1}^{n-1} B\left(u+\frac{1}{n-1} \sum_{i=1}^{n-1} w_{i}-\frac{n+c-1}{n-1} w_{j}, z\right) \tag{c}\\
& =(n+c-1) B(u, z)
\end{align*}
$$

Let $w_{i}=\frac{n-1}{c} u$ in (c) for $i=1,2, \ldots, n-1$. Then

$$
\begin{equation*}
c B\left(\frac{n+c-1}{c} u, z\right)=(n+c-1) B(u, z) . \tag{d}
\end{equation*}
$$

Also let $w_{i}=-u$ in (c) for $i=1,2, \ldots, n-1$. Then

$$
\begin{equation*}
(n-1) B\left(\frac{n+c-1}{n-1} u, z\right)=(n+c-1) B(u, z) . \tag{e}
\end{equation*}
$$

Thus, the identities (c), (d) and (e) constitute our assertion.

Next, let $u=\frac{n-1}{n+c-1} y$ in (d) and (e). Then $c B\left(\frac{n-1}{c} y, z\right)=(n-1) B(y, z)$. Also let $u=\frac{n-1}{n+c-1}(x+y)$ and $w_{i}=\frac{1-n}{n+c-1} x+\frac{(n-1)^{2}}{c(n+c-1)} y$ in (a) for $i=$ $1,2, \ldots, n-1$. Then

$$
c B\left(\frac{n-1}{c} y, z\right)+(n-1) B(x, z)=(n-1) B(x+y, z),
$$

that is, $B(y, z)+B(x, z)=B(x+y, z)$. Analogously one can show the additivity in the second argument and we shall omit the details.

It remains to verify that $B(a x, y)=a B(x, y)$ and $B(x, a y)=B(x, y) a^{\star}$ for all pairs x and y in X and all a in A. We shall omit the proof since the result was mentioned in [7, Theorem 7], and was proved in detail in [6, Theorem 2.1]. This completes the proof of the theorem.

3. Corollaries

When X is a real (complex) normed vector space and A is the field of real (complex) numbers, we have

Corollary 1. X is a real (complex) inner product space if and only if the norm in X satisfies the condition:

$$
c\left\|\sum_{i=1}^{n} v_{i}\right\|^{2}+\sum_{j=2}^{n}\left\|\sum_{i=1}^{n} v_{i}-(n+c-1) v_{j}\right\|^{2}
$$

(i)

$$
=(n+c-1)\left(\left\|v_{1}\right\|^{2}+c \sum_{i=2}^{n}\left\|v_{i}\right\|^{2}+\sum_{\substack{i<j \\ j=3}}^{n} \sum_{i=2}^{n-1}\left\|v_{i}-v_{j}\right\|^{2}\right)
$$

for any n vectors $v_{1}, v_{2}, \ldots, v_{n}$ in X, a constant $c \neq 0, \neq 1-n$, and a fixed $n \geqslant 2$, and the inner product is defined by

$$
(x, y)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)
$$

$$
\begin{equation*}
\left((x, y)=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right)\right) \tag{ii}
\end{equation*}
$$

Proof: Let us consider the real case first. The proof of the relation $(x+y, z)=$ $(x, z)+(y, z)$ is merely changes of notations in our Theorem: $B(x, y)=$ $\frac{1}{4}(Q(x+y)-Q(x-y))$, where $B(x, y)=(x, y)$ the usual real inner product of x and y, and $Q(x)=\|x\|^{2}$. This same relation implies the identity $(a x, y)=a(x, y)$ for
all real a which can be found in [1, p.175]. As for the complex version it can easily be derived from the real case $[1, p .176]$ and we shall omit the details.

When $n=2$ and $c=1$ the equation (i) is reduced to

$$
\begin{equation*}
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) \tag{iii}
\end{equation*}
$$

which is the classical condition of the Jordan-Neumann generalisation of an inner product space. It is also known as the parallelogram law in an inner product space. This leads, with the aid of Corollary 1 , to:

Corollary 2. Statements in Corollary 1 still hold if (i) is replaced by
(i') $\quad\|x+y\|^{2}+\|x-y\|^{2}+\|x+z\|^{2}+\|x-z\|^{2}=4\|x\|^{2}+\|y+z\|^{2}+\|y-z\|^{2}$
for all triplets x, y and z in X.
Proof: In virtue of Corollary 1, we shall prove the real case only.
(\Rightarrow) : obviously (iii) implies (i^{\prime}).
(\Leftarrow) : after interchanging x and y in (i^{\prime}) we have

$$
\|x+y\|^{2}+\|x-y\|^{2}+\|y+z\|^{2}+\|y-z\|^{2}=4\|y\|^{2}+\|x+z\|^{2}+\|x-z\|^{2}
$$

Adding this to equation (i^{\prime}) we get equation (iii).
Corresponding to Corollary 2 we have
Corollary 3. Statements in the Theorem still hold if Q in (2), instead of being a generalised \boldsymbol{A}-quadratic form, satisfies the conditions:

$$
\begin{gather*}
Q(a x)=a Q(x) a^{\star} \text { and } \\
Q(x+y)+Q(x-y)+Q(x+z)+Q(x-z)=4 Q(x)+Q(y+z)+Q(y-z)
\end{gather*}
$$

for all triplets x, y and z in X.

4. Remarks

1) When $n=2$ and $c=1$ the implication (1) \Rightarrow (2) in the Theorem is immediate, and that $(2) \Rightarrow(1)$ is precisely $[7$, Theorem 7$]$.
2) If $c=1$ in particular, we can show that

$$
B\left(\sum_{i=1}^{n} x_{i}, z\right)=\sum_{i=1}^{n} B\left(x_{i}, z\right)
$$

in the proof of $(2) \Rightarrow(1)$ in the Theorem. This goes as follows: from our assertion in (a) we have, when $c=1$,

$$
B\left(u+\frac{1}{n-1} \sum_{i=1}^{n-1} w_{i}, z\right)+\sum_{j=1}^{n-1} B\left(u+\frac{1}{n-1} \sum_{i=1}^{n-1} w_{i}-\frac{n}{n-1} w_{j}, z\right)=B(n u, z)
$$

The desired result follows by setting $u=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ and $w_{i}=\frac{(n-1)\left(x_{1}-x_{i+1}\right)}{n}$ for $i=1,2, \ldots, n-1$ in the above.
3) A closer look ad Kurepa's papers ([4] and [5]) shows that many results appearing there can be generalised by just replacing the quadratic form by our generalised quadratic form (i).

5. 2-NORMED AND 2-INNER PRODUCT SPACES

The following standard defintions are from [3] and [2]. If X is a real linear space of dimension greater than one, and if $\|.$,$\| and (.,.|.) are real functions on X \times X$ and $X \times X \times X$ respectively, then X is called a real 2-normed space with a 2-norm $\|., \cdot\|$ if the following conditions are satisfied:
(1) $\|x, y\|=0$ if and only if x and y are linearly dependent;
(2) $\|x, y\|=\|y, x\|$;
(3) $\|a x, y\|=|a|\|x, y\|$ for every real a;
(4) $\|x+y, z\| \leqslant\|x, z\|+\|y, z\|$.
X is called a real 2-inner product space with a 2 -inner producet (., |.) if the following conditions are satisfied:
(1') $(x, x \mid y) \geqslant 0 ;(x, x \mid y)=0$ if and only if x and y are linearly dependent;
(2') $(x, x \mid y)=(y, y \mid x)$;
(3') $(x, y \mid z)=(y, x \mid z)$;
(4') $(a x, y \mid z)=a(x, y \mid z)$ for every real a;
$\left(5^{\prime}\right) \quad(x+y, z \mid s)=(x, z \mid s)+(y, z \mid s)$.
It may be noted that in other papers, including [3] and [2], these are simply called a 2 -normed space and a 2 -inner product space. In this last section we shall present a new generalisation of a real 2 -inner product space among real 2 -normed spaces. We also define in an obvious fashion a complex 2 -normed space and a complex 2 -inner product space, and give a similar generalisation.

Corollary 4. The following two statements are equivalent:
(I) X is a real 2-inner product space and

$$
\begin{equation*}
\|x, y\|=(x, x \mid y)^{\frac{1}{2}} \tag{f}
\end{equation*}
$$

(II) X is a real 2-normed space and
(g)

$$
(x, y \mid z)=\frac{1}{4}\left(\|x+y, z\|^{2}-\|x-y, z\|^{2}\right)
$$

and the 2 -norm in X satisfies the relation

$$
c\left\|\sum_{i=1}^{n} v_{i}, s\right\|^{2}+\sum_{j=2}^{n}\left\|\sum_{i=1}^{n} v_{i}-(n+c-1) v_{j}, s\right\|^{2}
$$

(h)

$$
=(n+c-1)\left(\left\|v_{1}, s\right\|^{2}+c \sum_{i=2}^{n}\left\|v_{i}, s\right\|^{2}+\sum_{\substack{i<j \\ j=3}}^{n} \sum_{i=2}^{n-1}\left\|v_{i}-v_{j}, s\right\|^{2}\right)
$$

for any vectors $v_{1}, v_{2}, \ldots, v_{n}$ and s in X, a constant $c \neq 0, \neq 1-n$ and $n \geqslant 2$.

Proof: (I) \Rightarrow (II). It is known [2, Theorem 4] that X is a real 2-normed space with the 2 -norm in (f), and that (g) holds. The equality (h) is similar to (i) in Corollary 1.
(II) \Rightarrow (I). That (g) implies (f) is obvious. It may be noted that a 2-norm is nonnegative [3], and the condition (5^{\prime}) implies (4^{\prime}) [2, Theorem 5]. Thus it suffices to show that (h) implies (5^{\prime}). We remark that the claim (a) in the Theorem is now

$$
\begin{gathered}
c\left(u+\frac{1}{n-1} \sum_{i=1}^{n-1} w_{i}, z \mid s\right)+\sum_{j=1}^{n-1}\left(u+\frac{1}{n-1} \sum_{i=1}^{n-1} w_{i}-\frac{n+c-1}{n-1} w_{j}, z \mid s\right) \\
=(n-1)\left(\frac{n+c-1}{n-1} u, z \mid s\right)=c\left(\frac{n+c-1}{c} u, z \mid s\right)
\end{gathered}
$$

for u, z, s and w_{i} in X, and $i=1,2, \ldots, n-1$. The rest of the proof is clear.
It seems natural to consider the complex variant of the space X, and that of Corollary 4. We shal begin with two definitions.

DEFINITION 2: Let X be a complex linear space of dimension greater than one, and let $\|.,$.$\| be a real function on X \times X$, and [., .|.] a complex function on $X \times X \times X$, then X is called a complex 2-normed space with a 2 -norm $\|.,$.$\| if all four conditions in$ a real 2 -normed space are satisfied, where a is a complex number in (3). X is called a complex 2 -inner product space with a 2 -inner product [., I.] if the following conditions. are satisfied:
(1") $\quad[x, x \mid y] \geqslant 0 ;[x, x \mid y]=0$ if and only if x and y are linearly dependent; (2") $\quad[x, x \mid y]=[y, y \mid x]$;
(3") $[x, y \mid z]=[y, x \mid z]^{\star}$;
(4") $[a x, y \mid z]=a[x, y \mid z]$ for every complex a;
($5^{\prime \prime}$) $\quad[x+y, z \mid s]=[x, z \mid s]+[y, z \mid s]$; where * denotes the conjugate of a complex number.

It follows easily that $[x, a y \mid z]=a^{*}[x, y \mid z]$ for every complex $a,|[x, y \mid z]| \leqslant$ $[x, x \mid z]^{\frac{1}{2}}[y, y \mid z]^{\frac{1}{2}}$ (the proof is a slight change in that of $[2$ Lemma 1$]$), and $[x, y \mid y]=0$.

Examples of such spaces can easily be found. In fact, it is not difficult to show that every inner product space, that is, a complex pre-Hilbert space, of dimension greater than one with the usual inner product (.|.) is a complex 2-inner product space if the 2 -inner space is defined by

$$
[x, y \mid z]=(x \mid y)\|z\|^{2}-(x \mid z)(z \mid y) .
$$

On the other hand, if X is a complex 2 -inner product space, then it is a complex 2 -normed space if the 2 -norm is defined by

$$
\|x, y\|=[x, x \mid y]^{\frac{1}{2}} .
$$

Corollary 5. The following two statements are equivalent:
(I) X is a complex 2-inner product space and

$$
\|x, y\|=[x, x \mid y]^{\frac{1}{2}} .
$$

(II) X is a complex 2-normed space and
($\left.\mathrm{g}^{\prime}\right) \quad[x, y \mid z]=\frac{1}{4}\left(\|x+y, z\|^{2}-\|x-y, z\|^{2}+i\|x+i y, z\|^{2}-i\|x-i y, z\|^{2}\right)$,
and the 2 -norm in X satisfies the relation in (h).
Proof: (I) \Rightarrow (II). With the 2 -norm in (f^{\prime}) it follows easily that X is a complex 2 -normed space (here, we use the aforementioned inequality $|[x, y \mid z]| \leqslant[x, x \mid z]^{\frac{1}{2}}\left[y,\left.y\right|^{z}\right]^{\frac{1}{2}}$ to show the inequality (4)). That (f^{\prime}) implies (g^{\prime}) is straightforward. The relation (h) holds exactly as in Corollary 4 except replacing (., |.) by [., .|.].
$(\mathrm{II}) \Rightarrow(\mathrm{I})$. That $\left(\mathrm{g}^{\prime}\right)$ implies $\left(\mathrm{f}^{\prime}\right)$ is immediate, and hence conditions ($1^{\prime \prime}$) and ($2^{\prime \prime}$) hold. We shall use Corollary 4 and adapt the device developed in [1, p.176] to verify the other three conditions, and proceed as follows: we may regard X as a real 2-inner product space; in view of Corolary 4 , (g) defines a real-bilinear form with $\|x, y\|=(x, x \mid y)^{\frac{1}{2}}$ and $(y, x \mid z)=(x, y \mid z)$. Rewriting ($\left.\mathrm{g}^{\prime}\right)$ in the form

$$
[x, y \mid z]=(x, y \mid z)+i(x, i y \mid z)
$$

then $[x, y \mid z]$ is also real-bilinear, and hence ($5^{\prime \prime}$) holds.
Using (g) in Corollary 4, that is, $(x, y \mid z)=(i x, i y \mid z),\left(3^{\prime \prime}\right)$ follows from

$$
\begin{aligned}
{[y, x \mid z]^{\star} } & =(y, x \mid z)-i(y, i x \mid z)=(x, y \mid z)+i(i x,-y \mid z) \\
& =(x, y \mid z)+i(x, i y \mid z)=[x, y \mid z] .
\end{aligned}
$$

To show (4") at last, in view of real-bilinearity it will be sufficient if we prove that $[i x, y \mid z]=i[x, y \mid z] ;$ indeed

$$
\begin{aligned}
{[i x, y \mid z] } & =(i x, y \mid z)+i(i x, i y \mid z)=-(x, i y \mid z)+i(x, y \mid z) \\
& =i((x, y \mid z)+i(x, i y \mid z))=i[x, y \mid z]
\end{aligned}
$$

Corresponding to Corollary 2, we have
Corollary 6. The following two statements are equivalent:
(I) X is a real (complex) 2-inner product space and (f) holds (respectively, (f^{\prime}) holds);
(II) X is a real (complex) 2-normed space and (g) holds (respectively, $\left(g^{\prime}\right)$ holds), and the 2 -norm in X satisfies the relation

$$
\begin{gathered}
4\|x, z\|^{2}=\|y+z, x\|^{2}+\|y-z, x\|^{2}+\|x+y, z\|^{2}+\|x-y, z\|^{2} \\
-\|x+z, y\|^{2}-\|x-z, y\|^{2}
\end{gathered}
$$

for any vectors x, y and z in X.
In conclusion, it should be noted that when $c=1$ and $n=2$ in particular, (h) becomes

$$
\left\|v_{1}+v_{2}, s\right\|^{2}+\left\|v_{1}-v_{2}, s\right\|^{2}=2\left(\left\|v_{1}, s\right\|^{2}+\left\|v_{2}, s\right\|^{2}\right)
$$

Thus, Theorem 4 and 5 in [2] are special cases of our Corollary 4 . When $c=1$ we can show that

$$
\left(\sum_{i=1}^{n} x_{i}, z \mid s\right)=\sum_{i=1}^{n}\left(x_{i}, z \mid s\right) .
$$

References

[1] S.K. Berberian, Lectures in Functional Analysis and Operator Theory (Springer-Verlag, New York, 1974).
[2] C. Diminnie, S. Gähler and A. White, '2-inner product spaces', Demonstratio Math. 6 (1973), 525-536.
[3] S. Gähler, 'Lineare 2-normiente Räume', Math. Nachr. 28 (1965), 1-43.
[4] S. Kurepa, 'The Cauchy functional equation and scalar product in vector spaces', Glas. Mat. Fiz.-Astr. 18 (1964), 23-35.
[5] S. Kurepa, 'Quadratic and sesquilinear functionals', Glas. Mat. Fiz.-Astr 20 (1965), 79-92.
[6] J. Vukman, 'Some results concerning the Cauch functional equation in certain Banach algebra', Bull. Austral. Math. Soc. 31 (1985), 137-144.
[T] J. Vukman, 'Some functional equations in Banach algebras and an application', Proc. Amer. Math. Soc. 100 (1987), 133-136.

Mathematics Department, Bishop's University,
Lennoxville, Quebec
Cananda. J1M 127

[^0]: Received 6 March, 1987
 Dedicated to Professor Peter E. Wilson on his retirement from Bishop's University

