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On Hankel Forms of Higher Weights:
The Case of Hardy Spaces

Marcus Sundhäll and Edgar Tchoundja

Abstract. In this paper we study bilinear Hankel forms of higher weights on Hardy spaces in several

dimensions. (The Schatten class Hankel forms of higher weights on weighted Bergman spaces have

already been studied by Janson and Peetre for one dimension and by Sundhäll for several dimensions).

We get a full characterization of Schatten class Hankel forms in terms of conditions for the symbols to

be in certain Besov spaces. Also, the Hankel forms are bounded and compact if and only if the symbols

satisfy certain Carleson measure criteria and vanishing Carleson measure criteria, respectively.

1 Introduction and Main Results

The study of Hankel operators has played an important role in many areas in math-

ematics, such as approximation theory, the theory of Toeplitz operators, the Hilbert

transform and singular integral operators [9].

The Hankel operators on Hardy and Bergman spaces can be viewed as bilinear

forms; Janson–Peetre [6], and Peng–Zhang [10] discovered bilinear forms, gener-

alizing these Hankel forms, the so-called Hankel forms of higher weights, which are

defined below in (1.2) with nice invariance properties under the action of the Möbius

group.

Schatten–von Neumann class Hankel forms of higher weights on Bergman spaces

are characterized in [14, 15]. In the same way as for the case of Bergman spaces,

Hankel forms of higher weights on a Hardy space are explicit characterizations of

irreducible components in the tensor product of Hardy spaces under the Möbius

group (see [10]).

Recall from [14, 15] the case of weighted Bergman spaces L2
a(dιν) of holomorphic

functions, square integrable with respect to the measure

(1.1) dιν(z) = cν(1 − |z|2)ν−(d+1) dm(z),

where ν > d, cν is a normalization constant and dm(z) is the Lebesgue measure

on the unit ball B = {z ∈ C
d : |z| < 1}. The bilinear Hankel forms of weight

s = 0, 1, 2, . . . are given in [14] by

(1.2) Hs
F( f1, f2) =

∫

B

〈Ts( f1, f2), F〉z (1 − |z|2)2ν−(d+1) dm(z).
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The transvectant Ts is given by

Ts( f1, f2)(z) =

s
∑

k=0

(

s

k

)

(−1)s−k ∂k f1(z) ⊙ ∂s−k f2(z)

(ν)k(ν)s−k

,

where

∂s f (z) =

d
∑

j1,..., js=0

∂ j1
· · · ∂ js

f (z) dz j1
⊗ · · · ⊗ dz js

,

and (ν)k = ν(ν + 1) · · · (ν + k − 1) is the Pochammer symbol. Also, the Möbius

invariant inner product 〈 · , · 〉z is given in the following way; for u, v ∈ ⊙s
(

C
d
) ′

,

where the tangent space at z is identified with C
d,

〈u, v〉z = 〈⊗sBt (z, z)u, v〉⊗s(Cd) ′

where B(z, z) = (1 − |z|2)(I − 〈 · , z〉z) is the Bergman operator on C
d and Bt (z, z)

is the dual operator acting on the dual space of C
d. The tensor-valued holomorphic

function F is called the symbol corresponding to the Hankel form Hs
F .

Now let ∂B be the boundary of the unit ball B of C
d. The irreducible components

in the decomposition of tensor products of Hardy spaces H2(∂B) in [10] can be given

explicitly as bilinear Hankel forms of weight s on the Hardy space H2(∂B) by

(1.3) Hs
F( f1, f2) =

∫

B

〈Ts( f1, f2), F〉z (1 − |z|2)d−1 dm(z),

where the transvectant Ts is here given by

Ts( f1, f2)(z) =

s
∑

k=0

(

s

k

)

(−1)s−k ∂k f1(z) ⊙ ∂s−k f2(z)

(d)k(d)s−k

,

where, in fact, this is the limiting case ν = d of (1.2).

The main results for Hankel forms Hs
F defined by (1.3) are given below in Theo-

rems A and B.

Theorem A Hs
F is (compact) bounded if and only if

dµF(z) = ‖F‖2
z (1 − |z|2)2d−1 dm(z)

is a (vanishing) Carleson measure on H2(∂B), with equivalent norms.

Remark 1.1 Note that ‖F‖2
z = 〈F, F〉z.

Theorem B Hs
F is of Schatten class Sp, 2 ≤ p < ∞, if and only if

‖F‖pd,s,p =

(

∫

B

‖F‖p
z (1 − |z|2)pd−d−1 dm(z)

) 1/p

< ∞ ,

with equivalent norms.
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Remark 1.2 If s = 0, we rewrite the Schatten class criterion as

(1.4)

∫

B

|(RF)(z)|p(1 − |z|2)(p−1)(d+1) dm(z) < ∞,

where R =
∑d

i=1 zi
∂

∂zi
is the radial derivative. Theorem B is then extended to 1 ≤

p < ∞, where (1.4) is equivalent to ‖F‖pd,0,p < ∞ for 1 < p < ∞.

Remark 1.3 Janson and Peetre obtained Theorem A and Theorem B in the case

d = 1 by using paracommutator arguments (see [6]). Our approach extends their

results and provides a different proof of the case d = 1 they have treated.

1.1 Approach

In this paper we use different techniques to deal with the case of weight zero and the

case of weight s = 1, 2, . . . , and they are therefore treated separately in Section 3

and Section 4, respectively. In [14] the criteria for boundedness, compactness, and

Schatten–von Neumann class for higher weights on weighted Bergman spaces are

natural generalizations of the case of weight zero. For Hardy spaces, as Example 4.2

shows, the transvectant of various weights does not behave as in the case of Bergman

spaces where the boundedness properties for the transvectant were necessary in or-

der to generalize the weight zero case to arbitrary weights. This explains why we treat

the weight zero and nonzero cases separately. The Hankel forms of weight zero on

Hardy spaces can be rewritten, using the radial derivative, into the classical Hankel

forms in [16] and then we use results from [17–19] to get the right conditions for

the symbols. We have results for Carleson measures which together with invariance

properties give criteria for the boundedness and compactness for Hankel forms of

nonzero weights. The Schatten-class criteria are proved by using interpolation for

analytic families of operators. For this purpose we need results about Hankel forms

on Bergman–Sobolev-type spaces. The preliminaries in Section 2 give the prerequi-

sites we need.

1.2 Notation

If ‖ · ‖1 and ‖ · ‖2 are two equivalent norms on a vector space X, then we write ‖x‖1 ≃
‖x‖2, x ∈ X. Also, for two real-valued functions f and g on X we write f . g

if there is a constant C > 0, independent of the variables in question, such that

C f (x) ≤ g(x).

2 Preliminaries

For α > −d, let A2
α be the Bergman–Sobolev-type space of holomorphic functions

f : B → C with the property that

‖ f ‖2
α =

∑

m∈Nd

|c(m)|2 Γ(d + α)m!

Γ(d + |m| + α)
< ∞,
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where f (z) =
∑

m∈Nd c(m)zm is the Taylor expansion of f . Then A2
α is a Hilbert

space with the inner product

〈 f1, f2〉α =

∑

m∈Nd

c1(m)c2(m)
Γ(d + α)m!

Γ(d + |m| + α)
,

where fi(z) =
∑

m∈Nd ci(m)zm, i = 1, 2. Now has a reproducing kernel, Kα
w for

w ∈ B, given by

(2.1) Kα
w (z) =

1

(1 − 〈z, w〉)α+d
.

If α > 0, then A2
α is the weighted Bergman space L2

a(dια+d), where dια+d is given

by (1.1). Also, A2
0 is the Hardy space H2(∂B).

2.1 Decomposition of A2
α ⊗ A2

β

Let G be the group of biholomorphic self-maps on B. If g ∈ G with g(z) = 0, then

there is a linear fractional map ϕz on B and a unitary map U ∈ U(d) such that

g = Uϕz. The fractional linear map ϕz is given by

(2.2) ϕz(w) =
z − Pzw − (1 − |z|2)1/2Qzw

1 − 〈w, z〉 ,

where Pz = 〈 · , z〉z/‖z‖2 and Qz = I − Pz. The complex Jacobian is therefore given

by Jg = det U · Jϕz
, where

Jϕz
(w) = (−1)d (1 − |z|2)(d+1)/2

(1 − 〈z, w〉)d+1
.

The group G acts unitarily on A2
α via the following:

(2.3) πν(g) f (z) = f (g−1(z)) Jg−1 (z)ν/(d+1),

where ν = α + d, and it gives an irreducible unitary (projective) representation of

G. In addition, for β > −d, the group G acts on the Hilbert space tensor product

A2
α ⊗ A2

β by

πν1
(g) ⊗ πν2

(g)( f1(z), f2(w)) = f1(g−1(z)) f2(g−1(w)) Jg−1 (z)ν1/(d+1) Jg−1 (w)ν2/(d+1),

where ν1 = α + d, ν2 = β + d, and it gives a unitary (projective) representation of G.

However this is not irreducible, and the irreducible decomposition is given in [10].

In particular, if α + β > −d − s, then

(2.4) A
2
α ⊗ A

2
β ≃

∞
∑

s=0

H
2
α+β+2d,s,
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where H2
u,s, u > d − s is the space of holomorphic functions F : B → ⊙s(C

d) ′ with

the property that
∫

B
‖F‖2

z (1 − |z|2)u−d−1 dm(z) < ∞, where we recall that ‖F‖2
z =

〈F, F〉z = 〈⊗sBt (z, z)F(z), F(z)〉⊗s(Cd) ′ . The group G acts unitarily on H2
u,s by

(2.5) πu,s(g−1)F(z) = ⊗sdg(z)t F(g(z)) Jg(z)u/(d+1),

where dg(z) : Tz(B) → Tg(z)(B) is the differential map and gives an irreducible uni-

tary (projective) representation of G. Via the transvectant Tα,β
s defined on A2

α ⊗ A2
β

by

(2.6) T
α,β
s ( f1, f2) =

s
∑

k=0

(

s

k

)

(−1)s−k ∂k f1(z) ⊙ ∂s−k f2(z)

(α + d)k(β + d)s−k

,

the irreducible components in the decomposition (2.4) are realized in [10] as Hankel

forms of higher weights (order s):

(2.7) H
α,β,s
F ( f1, f2) = 〈Tα,β

s ( f1, f2), F〉α+β+2d,s,2,

where 〈 · , · 〉u,s,2 is the H2
u,s-pairing, and F ∈ H2

α+β+2d,s.

Remark 2.1 For α = β = 0 in (2.7) we get the Hankel forms of weight s on Hardy

spaces defined by (1.3).

The transvectant Tα,β
s : A2

α ⊗ A2
β → H2

α+β+2d,s is onto and has an intertwining

property

T
α,β
s

(

πα+d(g) f1, πβ+d(g) f2

)

= πα+β+2d,s(g)Tα,β
s ( f1, f2).

Hence,

(2.8) H
α,β,s
F (πα+d(g) f1, πβ+d(g) f2) = H

α,β,s
πα+β+2d,s(g−1)F

( f1, f2).

2.2 Spaces of Symbols and Schatten Class Hankel Forms

For 1 ≤ p < ∞ and u > d − ps
2

, let H
p
u,s be the space of all holomorphic functions

F : B → ⊙s(C
d) ′ such that

‖F‖p
u,s,p =

∫

B

‖F‖p
z (1 − |z|2)u−d−1 dm(z) < ∞.

Also, for u ≥ − s
2
, let H∞

u,s be the space of holomorphic functions F : B → ⊙s(C
d) ′

such that ‖F‖u,s,∞ = supz∈B
‖F‖z(1 − |z|2)u < ∞. Then H

p
u,s for 1 ≤ p ≤ ∞ are

Banach spaces.

In [14, 15] there are several results about H
p
pν,s for ν > d and we can use these

same arguments to generalize these results to H
p
u,s. Hence, the results below will be

stated without proofs. The reader is referred to [14, 15] for more details.
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Lemma 2.2 Let u + s > d. Then the reproducing kernel of H2
u,s is, up to a nonzero

constant c, given by Ku,s(w, z) = (1 − 〈w, z〉)−u ⊗s Bt (w, z)−1. Namely, for any x ∈
⊙s(C

d) ′ and any F ∈ H2
u,s,

〈F(z), x〉⊗s(Cd) ′ = c〈F, Ku,s(·, z)x〉u,s,2

= c

∫

B

〈F, Ku,s( · , z)x〉w(1 − |w|2)u−d−1 dm(w).

Lemma 2.3 Let 1 < p < ∞ and 1/p + 1/q = 1. For u > d − ps
2

and v > d − qs
2

the

following duality (H
p
u,s)

′
= H

q
v,s holds, with respect to the H2

(u/p)+(v/q),s-pairing. That

is, for any bounded linear functional l on H
p
u,s there exists an element G ∈ H

q
v,s such

that l(F) = 〈F, G〉u/p+v/q,s,2 for all F ∈ H
p
u,s, and ‖l‖ ≃ ‖G‖v,s,q.

Lemma 2.4 Let u > −d − s and v ≥ −d − s
2
. If 2 < p < ∞, then

(H2
u+2d,s,H

∞
v+d,s)[1− 2

p
] = H

p
(p−2)v+u+pd,s.

Lemma 2.5 Let α, β > −d with α + β > −d − s. Then there is a constant

C(α, β, s, d) > 0 such that

‖H
α,β,s
F ‖S2(A2

α,A2
β) = C(α, β, s, d)‖F‖α+β+2d,s,2,

for all holomorphic F : B → ⊙s(C
d) ′.

Remark 2.6 By computing the norms for F = ⊗sdz1, we can see that C(α, β, s, d)

is continuous in α and β, since for some C(d, s) > 0 we have

(2.9) C(α, β, s, d)2
= C(s, d)2

s
∑

k=0

(

s

k

)

1

(α + d)k(β + d)s−k

.

Lemma 2.7 Let α, β > 0. Then H
α,β,s
F is bounded on A2

α × A2
β if and only if F ∈

H∞
1
2

(α+β)+d,s
, with equivalent norms.

For α, β ≥ 0 define an operator T̃α,β
s on S∞(A2

α,A2
β) by

T̃
α,β
s (A)(z) =

s
∑

k=0

(

s

k

)

(−1)s−k

(

∂k
w ⊙ ∂s−k

ζ A(Kα
w , K

β
ζ )

)

(z, z)

(α + d)k(β + d)s−k

,

where Kα
w is the reproducing kernel for A2

α given by (2.1).

Remark 2.8 If A has rank one, then T̃α,β
s is the transvectant given by (2.6).

In the following next two results in this subsection we make use of Lemma 2.4.

Namely, to get the results we need to interpolate the spaces H2
α+β+2d,s and H∞

1
2

(α+β)+d,s
,

where α, β > 0. In fact, by Lemma 2.4,

(2.10) (H2
α+β+2d,s,H

∞
1
2

(α+β)+d,s)[1− 2
p

] = H
p
1
2

p(α+β)+pd,s
.
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Lemma 2.9 Let α, β ≥ 0 and 2 ≤ p ≤ ∞. Then T̃α,β
s maps Sp(A2

α,A2
β) into

H
p
1
2

p(α+β)+pd,s
boundedly, and if H

α,β,s
F ∈ Sp(A2

α,A2
β), for α, β > 0 and 2 ≤ p < ∞ or

α = β = 0 and p = 2, then T̃α,β
s (H

α,β,s
F ) = F.

Using Lemma 2.5, Lemma 2.7 with (2.10) on one hand and Lemma 2.9 on the

other hand, we get the following theorem.

Theorem 2.10 Let α, β > 0 and 2 ≤ p ≤ ∞. Then H
α,β,s
F is in Sp(A2

α,A2
β) if and

only if F ∈ H
p
1
2

p(α+β)+pd,s
, with equivalent norms.

Remark 2.11 We want to extend this result to α, β > −1/p, to include the Hardy

case, and need therefore the theory for families of analytic operators. We use the

approach by Bergh, Janson, et al. found in [8] and Theorem 2.12, given below.

Let X0, X1 be Banach spaces continuously imbedded into a Banach space X and

respectively, Y0, Y1 and Y .

Theorem 2.12 Let Γ be a bounded holomorphic function on the strip 0 < ℜ(z) < 1,

continuous on 0 ≤ ℜ(z) ≤ 1 and taking values in the space of operators from X0 ∩ X1

to Y0 + Y1. Suppose that

(i) for any y ∈ R the operator Γ(i y) can be extended to a bounded operator from X0

to Y0 and supy∈R
‖Γ(i y)‖X0→Y0

= M0 < ∞;

(ii) for any y ∈ R the operator Γ(1 + i y) can be extended to a bounded operator from

X1 to Y1 and supy∈R
‖Γ(1 + i y)‖X1→Y1

= M1 < ∞.

Then for any θ ∈ (0, 1) the operator Γ(θ) can be extended to a bounded operator from

X[θ] = (X0, X1)[θ] to Y[θ] = (Y0,Y1)[θ] and ‖Γ(θ)‖X[θ]→Y[θ]
≤ M1−θ

0 Mθ
1 .

3 Hankel Forms of Weight Zero

To find the Schatten–von Neumann class Hankel forms of weight zero on Hardy

spaces we shall rewrite H0
F in terms of the small Hankel operators studied in [16].

The problem then boils down to finding the relationship between the corresponding

symbols.

The Hankel form HG in [16] is given by

(3.1) HG( f1, f2) =

∫

∂B

f1(w) f2(w)G(w) dσ(w),

where dσ is the normalized Lebesgue measure on ∂B. Denote by R the radial deriva-

tive, defined as

R f (z) =

d
∑

i=1

zi
∂ f

∂zi

(z),

where f : B → C is holomorphic. If Rd := (R + 2d − 1)(R + 2d − 2) · · · (R + d), then

for holomorphic functions f1 and f2 we have, by means of Taylor expansion,

(3.2)

∫

∂B

f1(w) f2(w) dσ(w) = c(d)

∫

B

f1(z)Rd f2(z)(1 − |z|2)d−1 dm(z).

https://doi.org/10.4153/CJM-2010-027-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-027-8


446 M. Sundhäll and E. Tchoundja

Lemma 3.1 Let H0
F be given by (1.3) and HG by (3.1). Then H0

F = HG if and only if

RdG(z) = c(d)F(z).

Proof Since

H0
F( f1, f2) =

∫

B

f1(z) f2(z)F(z)(1 − |z|2)d−1 dm(z)

and

HG( f1, f2) =

∫

∂B

f1(w) f2(w)G(w) dσ(w),

then the result follows by applying (3.2) on f̃1 = f1 f2 and f̃2 = G.

3.1 Schatten-von Neumann Class Sp Hankel Forms

In this subsection we present sufficient and necessary conditions for Hankel forms of

weight zero to be in Schatten–von Neumann class Sp, 1 ≤ p < ∞.

Theorem 3.2 The Hankel form H0
F is of Schatten–von Neumann class Sp, for 1 ≤

p < ∞, if and only

∫

B

|RF(z)|p(1 − |z|2)(p−1)(d+1) dm(z) < ∞.

This theorem is a direct consequence of Lemma 3.1 and Theorem 1 in [16] (see

also [5, Theorem C]).

Theorem 3.3 Let α > −1 and 1 ≤ p < ∞. Then the Hankel form HG, defined

by (3.1), is of Schatten–von Neumann class Sp if and only if

∫

B

|Rd+1G(z)|p(1 − |z|2)(p−1)(d+1) dm(z) < ∞.

3.2 Bounded and Compact Hankel Forms

In this subsection we present necessary and sufficient conditions for Hankel forms

of weight zero to be bounded and compact (see Theorem 3.6). The definitions and

results on Carleson measures and BMOA spaces used in this subsection can be found

in [17,18]. We remark that the one-dimensional case of Lemma 3.4 is already proved

(see [19, Corollary 15]), but since we have not been able to find an explicit version of

this result in several variables we prove this result.

Lemma 3.4 Let t > −1 and a ≥ 0. For any holomorphic function g : B → C,

dµ1(z) = |g(z)|2(1 − |z|2)t dm(z) is a (vanishing) Carleson measure if and only if

dµ2(z) = |((R + a)g)(z)|2(1 − |z|2)t+2 dm(z) is a (vanishing) Carleson measure.
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Proof We only prove equivalence for the Carleson measure case, the vanishing Car-

leson measure case then follows by using the same techniques. Also, we may assume

that a > 0. Then

(3.3) ‖(R + a) f ‖L2((1−|z|2)t+2 dm) ≃ ‖ f ‖L2((1−|z|2)t dm),

for all holomorphic f : B → C.

Assume first that dµ1 is a Carleson measure. Then there is a constant C1 > 0 such

that

(3.4)
(

∫

B

|
(

(R + a) f
)

(z)|2(1 − |z|2)2 dµ1(z)
) 1/2

≤ C1‖ f ‖H2(∂B)

for all f ∈ H2(∂B). Observing f (R + a)g = (R + a)( f g) − ((R + a) f )g and apply-

ing (3.3) on (R + a)( f g) and (3.4) on ((R + a) f )g, it follows that dµ2 is a Carleson

measure.

For the sufficiency, assuming dµ2 is a Carleson measure, we observe that there is a

constant s > 0 such that

sup
w∈B

∫

B

(1 − |w|2)s

|1 − 〈z, w〉|d+2+s
dµ ′(z) < +∞,

where dµ ′(z) = |g(z)|2(1 − |z|2)t+2 dm(z). Then there is a constant C2 > 0 such that

(3.5)
(

∫

B

|
(

(R + a) f
)

|2|g(z)|2(1 − |z|2)t+2 dm(z)
) 1/2

≤ C2‖ f ‖H2(∂B),

for all f ∈ H2(∂B). Now the result follows in the same way as for the necessity,

using (3.5) instead of (3.4).

As a direct consequence of Lemma 3.4 we get a generalized version of Theorem

5.14 in [18].

Lemma 3.5 Let k be a positive integer a1, . . . , ak ≥ 0 and f holomorphic on B. Then

the following properties are equivalent:

(i) f ∈ (VMOA) BMOA.

(ii) |((R + a1) · · · (R + ak) f )(z)|2(1 − |z|2)2k−1 dm(z) is a (vanishing) Carleson mea-

sure.

The classical Hankel form (small Hankel operator) HG on the Hardy space H2(∂B)

as in [16] is bounded if and only if G ∈ BMOA and HG is compact if and only if

G ∈ VMOA (see [3, 4]). Then as a consequence of Lemma 3.5 and Lemma 3.1, we

have the following theorem.

Theorem 3.6 The Hankel form H0
F is (compact) bounded if and only if

|F(z)|2(1 − |z|2)2d−1 dm(z)

is a (vanishing) Carleson measure.

https://doi.org/10.4153/CJM-2010-027-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-027-8


448 M. Sundhäll and E. Tchoundja

4 The Case s = 1, 2, 3, . . .

In this section we study boundedness, compactness, and the class Sp properties 2 ≤
p < ∞ for the case s ≥ 1.

As in [14] we have the following Besov characterization. However, this lemma

does not hold for s = 0.

Lemma 4.1 For any positive integer s,

| f (0)|2 + · · · + ‖∂s−1 f (0)‖2 +

∫

B

‖∂s f ‖2
z

dm(z)

1 − |z|2 ∼ ‖ f ‖2
H2 ,

for all f ∈ H2(∂B).

The difficulty for the Hardy spaces is explained by this example, where it is shown

that we can find f1, f2 ∈ H2(∂B) such that Ts( f1, f2) /∈ H1
d,s.

Example 4.2 This example is based on the proof of Theorem II in [12]. First con-

sider the case when s = 1 and d = 1. Let

f1(z) =

∞
∑

k=1

1

k
z2k

and f2(z) = 1.

Then f1, f2 ∈ H2(∂D), and since the series f1(z) is lacunary, then

‖T1( f1, f2)‖1,1,1 =

∫

D

| f ′
1 (z)| dm(z) = ∞.

This is a consequence of a result about lacunary series by Zygmund (see [12]).

Namely, if nk+1/nk > λ for some λ > 1, and if h(z) =
∑∞

k=0 ckznk satisfies
∫ 1

0
|h ′(reiθ)| dr < ∞ for some θ, then

∑∞
k=0 |ck| < ∞.

In the general case, d ≥ 1 and s = 1, 2, . . . , we just change f1 into

f1(z) =

∞
∑

k=1

1

k
z2k

1 ,

and still let f2(z) = 1. Then

‖Ts( f1, f2)‖d,s,1 =

∫

B

(1 − |z1|2)s/2(1 − |z|2)s/2−1
∣

∣

∣

∂s f1

∂zs
1

(z)
∣

∣

∣
dm(z)

≥
∫

B

(1 − |z|2)s−1
∣

∣

∣

∂s f1

∂zs
1

(z)
∣

∣

∣
dm(z).

By Theorem 2.17 in [18] there is a constant C > 0 such that

∫

B

(1 − |z|2)s−1

∣

∣

∣

∣

∂s f1

∂zs
1

(z)

∣

∣

∣

∣

dm(z) ≥ C

∫

B

∣

∣

∣

∣

∂ f1

∂z1

(z)

∣

∣

∣

∣

dm(z)

and the right-hand side of the inequality above is infinite, as we can see in the initial

case (s = 1, d = 1).
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4.1 Boundedness and Compactness

Criteria for boundedness and compactness are given in Theorem 4.5 and Theo-

rem 4.7, respectively. To prove these theorems we need some lemmas.

For holomorphic F : B → ⊙s(C
d) ′ we consider the norm ‖F‖CM given by

‖F‖2
CM = sup

w∈B

∫

B

(1 − |w|2)d

|1 − 〈z, w〉|2d
dµF(z),

where dµF(z) = ‖F‖2
z (1 − |z|2)2d−1 dm(z).

Lemma 4.3 Let F : B → ⊙s(C
d) ′ be holomorphic and let k be a nonnegative integer.

If the measure dµF(z) = ‖F‖2
z (1 − |z|2)2d−1 dm(z) is a Carleson measure, then there is

a constant Ck > 0 such that

∫

B

‖∂k f ‖2
z dµF(z) ≤ Ck‖F‖2

CM‖ f ‖2
H2 ,

for all f ∈ H2(∂B).

Proof This is clear if k = 0. Assume k is a positive integer. If f ∈ H2(∂B), then

∂k f ∈ H2
d,s by Lemma 4.1. Hence, by the reproducing property in Lemma 2.2 and by

Lemma 7.1 in [14],

‖∂k f ‖z .

∫

B

(1 − |z|2)s/2(1 − |w|2)s/2−1

|1 − 〈z, w〉|d+s
‖∂k f ‖w dm(w).

Let 0 < ε < 1. Then by Proposition 1.4.10 in [13]

‖∂k f ‖2
z .

∫

B

(1 − |w|2)ε−1

|1 − 〈z, w〉|d+ε
‖∂k f ‖2

w dm(w),

and hence, by Lemma 4.1

∫

B

‖∂k f ‖2
z dµF(z) .

∫

B

(1 − |w|2)ε−1‖∂k f ‖2
w

(

∫

B

dµF(z)

|1 − 〈z, w〉|d+ε

)

dm(w)

. ‖F‖2
CM

∫

B

‖∂k f ‖2
w

dm(w)

1 − |w|2 ∼ ‖F‖2
CM‖ f ‖2

H2 .

We need to consider subspaces of H2
u,s, u > d − s, namely B2

u,s which consists of

elements F = ∂s f , where f : B → C is holomorphic and ‖F‖u,s,2 < ∞.

Lemma 4.4 Let

X =
{

S ∈ H
2
3d,s : ‖S‖3d,s,2 = sup

‖∂s f‖d,s,2=1

|〈∂s f , S〉2d,s,2|
}

.

Then (B2
d,s)

′ ≃ X with respect to the pairing 〈∂s f , S〉2d,s,2. That is, for any bounded

linear functional l on B2
d,s there is an element S ∈ X such that l(∂s f ) = 〈∂s f , S〉2d,s,2

and ‖l‖ ≃ ‖S‖3d,s,2.
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Proof Let l ∈ (B2
d,s)

′. Extend l to l̃ ∈ (H2
d,s)

′ with ‖l̃‖ = ‖l‖ and l̃(∂s f ) = l(∂s f ) by

the Hahn–Banach Theorem. Then by Lemma 2.3 there is an element S ∈ H2
3d,s with

‖l̃‖ ≃ ‖S‖3d,s,2 so ‖l‖ ≃ ‖S‖3d,s,2. In this sense (B2
d,s)

′ can be embedded continuously

in H2
3d,s and can therefore be viewed as a subspace of H2

3d,s. Hence,

(B2
d,s)

′ ≃
{

S ∈ H
2
3d,s : ‖S‖3d,s,2 = sup

‖∂s f‖d,s,2=1

|〈∂s f , S〉2d,s,2|
}

with respect to the pairing 〈∂s f , S〉2d,s,2.

Now we can prove the criterion for boundedness.

Theorem 4.5 The Hankel form Hs
F is bounded if and only if

dµF(z) = ‖F‖2
z (1 − |z|2)2d−1 dm(z)

is a Carleson measure with equivalent norms.

Proof First assume that dµF is a Carleson measure. It suffices to prove that for k > 0

∣

∣

∣

∫

B

〈∂k f1 ⊗ ∂s−k f2, F〉z(1 − |z|2)d−1 dm(z)
∣

∣

∣
. ‖F‖CM‖ f1‖H2‖ f2‖H2 .

This is a direct consequence of Lemma 4.1 and Lemma 4.3, since

∣

∣

∣

∫

B

〈∂k f1 ⊗ ∂s−k f2, F〉z(1 − |z|2)d−1 dm(z)
∣

∣

∣

≤
∫

B

‖∂k f1‖z‖∂s−k f2‖z‖F‖z(1 − |z|2)d−1 dm(z)

≤
(

∫

B

‖∂k f1‖2
z

dm(z)

1 − |z|2
) 1/2

·
(

∫

B

‖∂s−k f2‖2
z dµF(z)

) 1/2

≤ Cs,k‖F‖CM‖ f1‖H2‖ f2‖H2

for some constant Cs,k > 0.

Now assume that Hs
F is bounded. Let Gw = π2d,s(ϕw)F where the action

g → π2d,s(g) is defined in (2.5), and the fractional linear map is defined in (2.2).

Since ϕ−1
w = ϕw, then by (2.8)

(4.1) Hs
Gw

( f1, f2) = Hs
F

(

πd(ϕw) f1, πd(ϕw) f2

)

,

where g → πd(g) is the unitary action on H2(∂B) defined in (2.3).

Since π2d,s(ϕw) is unitary on H2
2d,s (or even on L2

2d,s, the space of measurable F

with ‖F‖2d,s,2 < ∞), then

‖π2d,s(ϕw)F‖2
3d,s,2 =

∫

B

‖F‖2
z (1 − |ϕw(z)|2)d(1 − |z|2)d−1 dm(z)

=

∫

B

(1 − |w|2)d

|1 − 〈z, w〉|2d
‖F‖2

z (1 − |z|2)2d−1 dm(z).
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Hence we can make the following reformulation of ‖F‖CM :

(4.2) ‖F‖CM = sup
w∈B

‖Gw‖3d,s,2.

It follows from (4.1) that ‖Hs
Gw
‖ = ‖Hs

F‖ and hence Hs
Gw

is bounded for any

w ∈ B. Define TGw
(∂s f ) = 〈∂s f , Gw〉2d,s,2 on B2

d,s. Then TGw
(∂s f ) = Hs

Gw
( f , 1), and

by Lemma 4.1,

|TGw
(∂s f )| ≤ ‖Hs

Gw
‖ · ‖ f ‖H2 . ‖Hs

Gw
‖ · ‖∂s f ‖d,s,2,

so TGw
: B2

d,s → C is a bounded linear functional on B2
d,s. Hence, by Lemma 4.4 and

Lemma 4.1,

‖Gw‖3d,s,2 ≃ sup
‖∂s f‖d,s,2=1

|〈∂s f , Gw〉2d,s,2|

= sup
‖∂s f‖d,s,2=1

|Hs
Gw

( f , 1)|

≤ sup
‖∂s f‖d,s,2=1

‖Hs
Gw
‖ · ‖ f ‖H2

. ‖Hs
Gw
‖ = ‖Hs

F‖.

So by (4.2) ‖F‖CM . ‖Hs
F‖.

Before we can prove the criterion for compactness we need one more lemma.

Lemma 4.6 Let F : B → ⊙s
(C

d) ′ be holomorphic, and Fr(z) = F(rz) for 0 < r < 1.

If dµF(z) = ‖F‖2
z (1 − |z|2)2d−1 dm(z) is a vanishing Carleson measure, then

‖Fr − F‖CM → 0, as r → 1−.

Proof If dµF(z) is a vanishing Carleson measure, then

lim
|w|→1−

∫

B

(1 − |w|2)d

|1 − 〈z, w〉|2d
dµF(z) = 0.

Hence, this lemma is a direct consequence of the fact that

∫

B

(1 − |w|2)d

|1 − 〈z, w〉|2d
dµFr

(z) .

∫

B

(1 − |rw|2)d

|1 − 〈z, rw〉|2d
dµF(z)

and dominated convergence.

Theorem 4.7 The Hankel form Hs
F is compact if and only if

dµF(z) = ‖F‖2
z (1 − |z|2)2d−1 dm(z)

is a vanishing Carleson measure.
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Proof First, assume that dµF(z) is a vanishing Carleson measure. Then by Theo-

rem 4.5 and Lemma 4.6 ‖Hs
Fr
−Hs

F‖ . ‖Fr −F‖CM → 0 as r → 1−. Hence, it suffices

to prove that Hs
Fr

is compact. But since Fr can be approximated in Carleson norm by

its Taylor polynomials P(r)
N and Hs

P(r)
N

has finite rank, then Hs
Fr

is clearly compact (see

the proof of the sufficiency in [14, Theorem 1.1(b)]).

Now assume that Hs
F is compact. As in the proof of Theorem 4.5, let Gw =

π2d,s(ϕw)F. Then dµF(z) is a vanishing Carleson measure if and only if for any se-

quence {wn} ⊂ B such that |wn| → 1− as n → ∞

(4.3) lim
n→∞

‖Gwn
‖3d,s,2 = 0.

Again, as in the proof of Theorem 4.5, by Lemma 4.4

‖Gwn
‖3d,s,2 = sup

‖∂s f‖d,s,2=1

|Hs
Gwn

( f , 1)|

= sup
‖∂s f‖d,s,2=1

|Hs
F(πd(ϕwn

) f , πd(ϕwn
)1)|.

The action g → πd(g) is unitary on H2(∂B) and {πd(ϕwn
)1} is a sequence in H2(∂B)

converging weakly to 0. Since Hs
F is compact, there is a sequence {cn} of posi-

tive numbers converging to 0 such that |Hs
F(πd(ϕwn

) f , πd(ϕwn
)1)| ≤ cn‖ f ‖H2 . By

Lemma 4.1, ‖Gwn
‖3d,s,2 . cn → 0 as n → ∞, which proves (4.3).

4.2 Schatten–von Neumann Class

In this subsection we prove Theorem B for s ≥ 1. For this purpose we prove two

more general results: Theorem 4.12 (valid for s ≥ 1) and Theorem 4.14 (valid for

s ≥ 0). Then Theorem B follows by letting α = β = 0. The main idea is to use the

interpolation theorem for families of analytic operators. To do this we first need to

rewrite Hankel forms on Bergman–Sobolev-type spaces to forms on Hardy spaces.

For t ∈ C, we define the radial fractional derivative of order t by

(1 + R)t f (z) =

∑

m∈Nd

(1 + |m|)t c(m)zm,

where f (z) =
∑

m∈Nd c(m)zm is the Taylor expansion of f . Lemma 4.8 follows by

using Taylor expansion and Stirling’s formula.

Lemma 4.8 If 2ℜ(t) + α > −1, then

‖ f ‖2
α ≃

∫

B

|(1 + R)t f (z)|2(1 − |z|2)2ℜ(t)+α dm(z),

for all holomorphic functions f : B → C.

As a direct consequence of Lemma 4.8 we have the following lemma.
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Lemma 4.9 Let α > −d. Then ‖ f ‖H2 ≃ ‖(1 + R)α/2 f ‖α, for all holomorphic

functions f : B → C.

By Lemma 4.9 the Hankel forms H
α,β,s
F given by (2.7), defined on A2

α × A2
β , can

be regarded as forms defined on H2(∂B) × H2(∂B) via

(4.4) H̃
α,β,s
F ( f1, f2) := H

α,β,s
F

(

(1 + R)α/2 f1, (1 + R)β/2 f2

)

.

Namely, as a direct consequence of Lemma 4.9, using (4.4), we have the following

result.

Lemma 4.10 Let α, β > −d and p ∈ {2,∞}. Then

‖H̃
α,β,s
F ‖Sp(H2,H2) ≃ ‖H

α,β,s
F ‖Sp(A2

α,A2
β).

Remark 4.11 We can extend (4.4) to complex numbers α and β. In this case, if

ℜ(α),ℜ(β) > −d, then

‖H̃
α,β,s
F ‖Sp(H2,H2) = ‖H̃

ℜ(α),ℜ(β),s
F ‖Sp(H2,H2)

for p ∈ {2,∞}, by unitary operators.

Theorem 4.12 Let 2 ≤ p < ∞ and α, β > −1/p. Then H̃
α,β,s
F ∈ Sp(H2, H2) if

F ∈ H
p
1
2

p(α+β)+pd,s
. Moreover, ‖H̃

α,β,s
F ‖Sp(H2,H2) . ‖F‖ 1

2
p(α+β)+pd,s,p.

Remark 4.13 The proof of this theorem is based on the techniques used to prove

Theorem 1 in [8].

Proof Put α1 = α − p−2
2p

, β1 = β − p−2
2p

, α2 = α + 1
p

, and β2 = β + 1
p

. Clearly

α1, β1 > −1/2 and α2, β2 > 0. We will use interpolation for the analytic families

of operators. For this purpose consider for 0 ≤ ℜ(z) ≤ 1 the forms H̃
αz ,βz ,s
F given

by (4.4), where αz = α1 +z(α2−α1) and βz = β1 +z(β2−β1). Now we can define the

analytic family of operators {Γ(z)} on the strip 0 ≤ ℜ(z) ≤ 1 into operators from the

intersection H2
α1+β1+2d,s∩H∞

1
2

(α2+β2)+d,s
into S2+S∞, where Γ(z)F = H̃

αz ,βz ,s
F . Consider

ℜ(z) = 0. By Remark 4.11, Lemma 4.10, and Lemma 2.5, if F ∈ H2
α1+β1+2d,s, then

‖H̃
αz ,βz ,s
F ‖S2

≃ ‖H
α1,β1,s
F ‖S2

≃ ‖F‖α1+β1+2d,s,2. Consider ℜ(z) = 1. By Remark 4.11,

Lemma 4.10, and Lemma 2.7, if F ∈ H∞
1
2

(α2+β2)+d,s
, then

‖H̃
αz ,βz ,s
F ‖S∞

≃ ‖H
α2,β2,s
F ‖S∞

. ‖F‖ 1
2

(α2+β2)+d,s,∞.

Now we claim that there is a constant C(d, s) such that

(4.5) ‖Γ(z)F‖S2
≤ C(d, s)‖F‖α1+β1+2d,s,2

for 0 ≤ ℜ(z) ≤ 1 and for all F ∈ H2
α1+β1+2d,s. Accepting temporarily the claim,

since S2 ⊂ S∞ continuously and since H2
α1+β1+2d,s ∩ H∞

1
2

(α2+β2)+d,s
⊂ H2

α1+β1+2d,s
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continuously, then Γ is bounded on the strip 0 ≤ ℜ(z) ≤ 1. Hence we can apply the

interpolation theorem for the analytic families of operators (see Theorem 2.12). We

obtain for fixed 0 < θ < 1 that Γ(θ) is bounded from (H2
α1+β1+2d,s,H

∞
1
2

(α2+β2)+d,s
)[θ]

into (S2, S∞)[θ]. Put θ = (p − 2)/p. Using Lemma 2.4, we get

(

H
2
α1+β1+2d,s,H

∞
1
2

(α2+β2)+d,s

)

[1− 2
p

]
= H

p
1
2

p(α+β)+pd,s
,

and hence ‖H
α,β,s
F ‖Sp

. ‖F‖ 1
2

p(α+β)+pd,s,p, since αθ = α and βθ = β when θ =

(p − 2)/p.

Now we go back to the claim (4.5). We may assume that z is real, and we therefore

put z = θ ∈ [0, 1]. By Lemma 4.10, ‖Γ(θ)F‖S2(H2,H2) ≃ ‖H
αθ ,βθ ,s
F ‖S2(A2

αθ
,A2

βθ
), and

since αθ > α1 > −1/2, βθ > β1 > −1/2, then

‖H
αθ ,βθ ,s
F ‖S2(A2

αθ
,A2

βθ
) ≤ C(d, s)

√
s!‖F‖αθ+βθ+2d,s,2

≤ C(d, s) ′‖F‖α1+β1+2d,s,2,

by Lemma 2.5, where C(d, s) is the constant in (2.9).

Theorem 4.14 Let 2 ≤ p < ∞ and α, β ≥ 0. Then F ∈ H
p
1
2

p(α+β)+pd,s
if

H
α,β,s
F ∈ Sp(H2, H2).

Moreover, ‖F‖ 1
2

p(α+β)+pd,s,p . ‖H
α,β,s
F ‖Sp(H2,H2).

Proof Consider T̃α,β
s defined by (2.6). By Lemma 2.9 it remains to prove that

T̃
0,0
s (H

0,0,s
F ) = F

if H
0,0,s
F ∈ Sp(H2, H2) for 2 ≤ p < ∞. Let H

0,0,s
F ∈ Sp and let Fr(z) = F(rz), for

r ∈ (0, 1). Since H
0,0,s
F is compact, then ‖F‖2

z (1 − |z|2)2d−1 dm(z) is a vanishing Car-

leson measure by Theorem 4.7, and hence ‖Fr −F‖CM → 0 as r → 1− by Lemma 4.6.

Then Fr → F pointwise and also by Theorem 4.5 we have ‖H
0,0,s
Fr

−H
0,0,s
F ‖S∞

→ 0 as

r → 1−. Hence, by Lemma 2.9,

T̃
0,0
s (H

0,0,s
F ) = lim

r→1−
T̃

0,0
s (H

0,0,s
Fr

) = lim
r→1−

Fr = F.
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