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Abstract

An initial-boundary value problem for a time-fractional diffusion equation is discretized
in space, using continuous piecewise-linear finite elements on a domain with a re-entrant
corner. Known error bounds for the case of a convex domain break down, because
the associated Poisson equation is no longer H2-regular. In particular, the method is
no longer second-order accurate if quasi-uniform triangulations are used. We prove
that a suitable local mesh refinement about the re-entrant corner restores second-order
convergence. In this way, we generalize known results for the classical heat equation.
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65N30, 65N50.
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1. Introduction

In a standard model of subdiffusion [10], each particle undergoes a continuous-
time random walk with a common waiting-time distribution that obeys a power law.
Consequently, the expected waiting time is infinite and the mean-square displacement
of a particle is proportional to tα, with 0 < α < 1. Such behaviour has been observed
in many settings. For example, Drazer and Zanette [5] measured α = 0.63 in tracer-
dispersion experiments in a medium made of activated carbon porous grains, and Weiss
et al. [17, Table 1] observed values of α ranging from 0.59 to 0.84 in fluorescence
correlation spectroscopy experiments with inert tracer particles in the cytoplasm of
living cells.
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The macroscopic concentration u(x, t) of the particles satisfies the time-fractional
(sub)diffusion equation [10, equation (6.8)],

∂tu − ∂1−α
t K∇2u = f (x, t). (1.1)

Here, ∂t = ∂/∂t and ∇2 denotes the spatial Laplacian. The fractional time derivative is
of Riemann–Liouville type [14]:

∂1−α
t v(x, t) =

∂

∂t

∫ t

0
ωα(t − s)v(x, s) ds, ωα(t) =

tα−1

Γ(α)
for t > 0.

If no sources or sinks are present, then the inhomogeneous term f is identically zero.
We assume for simplicity that the generalized diffusivity K is a positive constant, and
that the fractional partial differential equation (PDE) (1.1) holds for x in a polygonal
domain, Ω ⊆ R2, subject to homogeneous Dirichlet boundary conditions, with the
initial condition

u(x, 0) = u0(x) for x ∈ Ω.

In the limiting case, when α→ 1, the fractional PDE (1.1) reduces to the classical heat
equation that arises when the diffusing particles instead undergo Brownian motion.

Consider a spatial discretization of the preceding initial-boundary value problem
using continuous piecewise-linear finite elements to obtain a semidiscrete solution uh,
and suppose that f ≡ 0. The behaviour of uh is well understood if Ω is convex [9, 12];
in this case, for general initial data u0 ∈ L2(Ω) and an appropriate choice of uh(0), we
have

‖uh(t) − u(t)‖ ≤ Ct−αh2‖u0‖, 0 < t ≤ T,

whereas for smoother initial data u0 ∈ H2(Ω),

‖uh(t) − u(t)‖ ≤ Ch2‖u0‖H2(Ω), 0 ≤ t ≤ T,

where ‖ · ‖ = ‖ · ‖L2(Ω). Throughout the paper, C denotes a generic constant,
independent of t, h and u. The error analysis establishing these bounds relies on the
H2-regularity property of the associated elliptic equation in Ω, namely, that if

−K∇2u = f in Ω, with u = 0 on ∂Ω, (1.2)

then u ∈ H2(Ω) with ‖u‖H2(Ω) ≤ C‖ f ‖.
In the present work, our aim is to study uh in the case where Ω has a re-entrant

corner, and, therefore, is not convex. Since the above H2-regularity breaks down,
we can no longer expect O(h2) convergence if the finite element mesh is quasi-
uniform. Our results generalize those of Chatzipantelidis et al. [3] for the heat equation
(the limiting case α = 1) to the fractional-order case (0 < α < 1). Our method of
analysis relies on the Laplace transformation, extending the approach of McLean and
Thomee [12] for the fractional-order problem on a convex domain.

To focus on the essential difficulty, we assume that Ω has only a single re-entrant
corner with angle π/β for 1/2 < β < 1. Without loss of generality, we assume that this
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Figure 1. A polygonal domain with a re-entrant corner; the region (1.3) is shaded.

corner is located at the origin and that, for some r0 > 0, the intersection of Ω with the
open disk |x| < r0 is described in polar coordinates by

0 < r < r0 and 0 < θ < π/β, (1.3)

as illustrated in Figure 1. We denote the vertices of Ω by p0 = (0,0), p1, p2, . . . , pJ = p0,
and the jth side by

Γ j = (p j, p j+1) = { (1 − σ)p j + σp j+1 : 0 < σ < 1 } for 0 ≤ j ≤ J − 1.

Section 2 summarizes some key facts about the singular behaviour of the solution
to the elliptic problem (1.2). In Section 3, we describe a family of shape-regular
triangulations Th (indexed by the mesh parameter h) that depend on a local refinement
parameter γ ≥ 1. The elements near the origin have sizes of order hγ, so the Th are
quasi-uniform if γ = 1, but become more highly refined with increasing γ. Our error
bounds will be stated in terms of the quantity

ε(h, γ) =


hγβ/

√
γ−1 − β, 1 ≤ γ < 1/β,

h
√

log(1 + h−1), γ = 1/β,
h/

√
β − γ−1, γ > 1/β,

(1.4)

which ranges in size from O(hβ) when γ = 1 (the quasi-uniform case) down to O(h)
when γ > 1/β. We briefly review results for the finite element approximation of the
elliptic problem, needed for our subsequent analysis: the error in H1(Ω) is of order
ε(h, γ), and the error in L2(Ω) is of order ε(h, γ)2, assuming f ∈ L2(Ω).
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Section 4 gathers together some pertinent facts about the solution of the time-
dependent problem (1.1) and its Laplace transform. Next, in Section 5, we introduce
the semidiscrete finite element solution uh(t) of the time-dependent problem, and
see that its stability properties mimic those of u(t). In Section 6 we study first the
homogeneous equation (that is, the case f ≡ 0), showing that the error in L2(Ω) is of
order t−αε(h, γ)2 when u0 ∈ L2(Ω). For smoother initial data, the L2-error is of order
ε(h, γ)2 uniformly for 0 ≤ t ≤ T . We also prove that for the inhomogeneous equation
( f . 0) with vanishing initial data (u0 ≡ 0), the error in L2(Ω) is of order t1−αε(h, γ)2.
Thus, by choosing the mesh refinement parameter γ > 1/β we can restore second-
order convergence in L2(Ω). Section 7 outlines briefly how these results are affected
by different choices of the boundary conditions, and Section 8 discusses two numerical
examples that illustrate our theoretical error bounds. Finally, we offer some concluding
remarks in Section 9.

2. Singular behaviour in the elliptic problem

In the weak formulation of the elliptic boundary-value problem (1.2) we introduce
the Sobolev space

V = H̃1(Ω) = H1
0(Ω),

and seek u ∈ V such that

a(u, v) = 〈 f , v〉 for all v ∈ V ,

where
a(u, v) = K

∫
Ω

∇u · ∇v dx and 〈 f , v〉 =

∫
Ω

f v dx. (2.1)

Here, f may belong to the dual space V∗ = H−1(Ω), if 〈 f , v〉 is interpreted as the
duality pairing on V∗ × V . Since a(u, v) is bounded and coercive on H̃1(Ω), the Lax–
Milgram theorem [4, Theorem 1.1.3] ensures the existence of a unique weak solution
u satisfying

‖u‖H̃1(Ω) ≤ C‖ f ‖H−1(Ω). (2.2)

To understand the difficulty created by the re-entrant corner, we separate variables
in polar coordinates and construct the functions

u±n (x) = r±nβ sin(nβθ) for x = (r cos θ, r sin θ) and n = 1, 2, 3, . . . ,

which satisfy
∇2u±n = 0 for 0 < r <∞ and 0 < θ < π/β (2.3)

with u±n = 0, if θ = 0 or θ = π/β. Introducing a C∞ cutoff function η with

η(x) = 1 for |x| ≤ r0/2 and η(x) = 0 for |x| ≥ r0,

we find that
ηu+

n ∈ H̃1(Ω), but ηu−n < H̃1(Ω) for all n ≥ 1,
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and that
ηu+

n ∈ H2(Ω) for all n ≥ 2, but ηu+
1 < H2(Ω).

Now consider the function f = −K∇2(ηu+
1 ). The choice of η means that f (x) = 0

for |x| ≤ r0/2, and consequently f is C∞ on Ω. Nevertheless, the (unique weak) solution
of (1.2), namely u = ηu+

1 , fails to belong to H2(Ω).
Let A = −K∇2 and

V2 = H2(Ω) ∩ H̃1(Ω) = { v ∈ H2(Ω) | v = 0 on ∂Ω }. (2.4)

Theorem 2.1. The bounded linear operator defined by the restriction

A|V2 : V2 → L2(Ω),

is one-to-one and has a closed range.

Proof. See Grisvard [8, Section 2.3]. �

Our task now is to identify the orthogonal complement in L2(Ω) of the range

R = { f ∈ L2(Ω) | f = Au for some u ∈ V2 }.

To this end, we define in the usual way the Hilbert space

L2(Ω, A) = { φ ∈ L2(Ω) | Aφ ∈ L2(Ω) }

with the graph norm ‖φ‖2L2(Ω,A) = ‖φ‖2 + ‖Aφ‖2. Let ∂n denote the outward normal
derivative operator. It can be shown [8, Theorems 1.4.2 and 1.5.2] that the trace map
φ 7→

(
φ|Γ j , ∂nφ|Γ j

)
has unique extensions from C1(Ω) to bounded linear operators

H2(Ω)→ H3/2(Γ j) × H1/2(Γ j) and L2(Ω, A)→ H̃−1/2(Γ j) × H̃−3/2(Γ j),

and that the second Green identity holds in the form [8, Theorem 1.5.3]∫
Ω

[
(Au)v − u(Av)

]
dx =

J−1∑
j=0

K
[
〈u, ∂nv〉Γ j − 〈∂nu, v〉Γ j

]
for u ∈ H2(Ω) and v ∈ L2(Ω, A). Hence,

〈Au, φ〉 = 〈u, Aφ〉 if u ∈ V2, φ ∈ L2(Ω, A) and φ|Γ j = 0 for all j,

implying that R is orthogonal in L2(Ω) to the closed subspace

N = {φ ∈ L2(Ω, A) | Aφ = 0 in Ω, and φ|Γ j = 0 for every j}.

Notice that N ∩ H̃1(Ω) = {0}, because if f = 0, then the unique weak solution of (1.2)
in H̃1(Ω) is u = 0.

Theorem 2.2. The Hilbert space L2(Ω) is the orthogonal direct sum of R and N , and
dimN = 1 (assuming that Ω has only a single re-entrant corner).
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Proof. See Grisvard [8, Theorem 2.3.7]. �

Thus, given any f ∈ L2(Ω), the solution u ∈ H̃1(Ω) of (1.2) belongs to H2(Ω) if and
only if f ⊥ N . Consequently, the following holds for f in general.

Theorem 2.3. There exists q ∈ N (depending only on Ω and η) such that if f ∈ L2(Ω)
then the weak solution u of (1.2) satisfies u − 〈 f , q〉ηu+

1 ∈ V2 with

‖u − 〈 f , q〉ηu+
1 ‖H2(Ω) ≤ C‖ f ‖.

Proof. Choose any nonzero φ ∈ N . Since ηu+
1 ∈ L2(Ω, A) but ηu+

1 < V2, we have
〈A(ηu+

1 ), φ〉 , 0 and may therefore define q = cφ ∈ N by letting c = 1/〈A(ηu+
1 ), φ〉, so

that 〈A(ηu+
1 ), q〉 = 1. Define

u1 = u − 〈 f , q〉ηu+
1 ∈ H̃1(Ω),

and observe that u1 satisfies Au1 = f1 where f1 = f − 〈 f , q〉A(ηu+
1 ). We deduce that

u1 ∈ H2(Ω) because 〈 f1, q〉 = 0, with

‖u1‖H2(Ω) ≤ C‖ f1‖ ≤ C‖ f ‖ + C|〈 f , q〉| ≤ C‖ f ‖,

since A(ηu+
1 ) ∈ C∞(Ω) and q ∈ L2(Ω). �

3. Finite element approximation

Consider a familyTh of shape-regular triangulations of Ω, indexed by the maximum
element diameter h. For each element 4 ∈ Th, let

h4 = diam(4) and r4 = dist(0,4),

and suppose that for some γ ≥ 1,

chr1−1/γ
4 ≤ h4 ≤ Chr1−1/γ

4 , whenever hγ ≤ r4 ≤ 1, (3.1)

with
chγ ≤ h4 ≤ Chγ, whenever r4 ≤ hγ. (3.2)

Thus, if γ = 1 then the mesh is globally quasi-uniform, but for γ > 1 the element
diameter decreases from order h, when r4 ≥ 1, to order hγ, when r4 ≤ hγ. Such
triangulations are widely used for elliptic problems on domains with re-entrant corners
(see, for instance, Apel et al. [1, Section 3]).

For each triangulation Th, we let Vh denote the corresponding space of continuous
piecewise-linear functions that vanish on ∂Ω, so that Vh ⊆ V = H̃1(Ω). Since the
bilinear form (2.1) is bounded and coercive on V , there exists a unique finite element
solution uh ∈ Vh defined by

a(uh, v) = 〈 f , v〉 for all v ∈ Vh. (3.3)

This solution is stable in H̃1(Ω),

‖uh‖H̃1(Ω) ≤ C‖ f ‖H−1(Ω), (3.4)
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and Céa’s lemma [4, Theorem 2.4.1] gives the quasi-optimal error bound

‖uh − u‖H̃1(Ω) ≤ C min
v∈Vh
‖v − u‖H̃1(Ω). (3.5)

Let Πh : C(Ω)→ Vh denote the nodal interpolation operator, define the seminorm

|v|m,Ω =

( ∑
j1+ j2=m

∫
Ω

|∂ jv(x)|2 dx
)1/2

,

where ∂ j = ∂
j1
x1∂

j2
x2 , and recall the standard interpolation error bounds [4]

|v − Πhv|m,4 ≤ Ch2−m
4 |v|2,4, m ∈ {0, 1}. (3.6)

The next theorem reflects the influence of the singular behaviour of u and the local
mesh refinement parameter γ on the accuracy of the approximation u ≈ Πhu.

Theorem 3.1. If f ∈ L2(Ω), then the solution u ∈ V of the elliptic problem (1.2) satisfies

‖u − Πhu‖ ≤ Chε(γ, h)‖ f ‖ and ‖u − Πhu‖H̃1(Ω) ≤ Cε(γ, h)‖ f ‖,

where ε(h, γ) is given by (1.4).

Proof. We use Theorem 2.3 to split u into singular and regular parts:

u = us + ur, us = 〈 f , q〉ηu+
1 , ur ∈ H2(Ω),

with ‖ur‖H2(Ω) ≤ C‖ f ‖, leading to a corresponding decomposition of the interpolation
error,

u − Πhu = (us − Πhus) + (ur − Πhur).

We see from (3.6) that

‖ur − Πhur‖ ≤ Ch2|ur|2,Ω ≤ Ch2‖ f ‖ ≤ Chε(h, γ)‖ f ‖

and
|ur − Πhur|1,Ω ≤ Ch|ur|2,Ω ≤ Ch‖ f ‖ ≤ Cε(h, γ)‖ f ‖,

so it suffices to consider us − Πhus. Note that |∂ jus(x)| ≤ C‖ f ‖ |x|β−| j| for any multi-
index j, because u+

1 is homogeneous of degree β.
We partition the triangulation into three subsets,

T 1
h = { 4 ∈ Th | r4 < hγ}, T 2

h = { 4 ∈ Th | hγ ≤ r4 < 1}, T 3
h = { 4 ∈ Th | r4 ≥ 1},

and write

|us − Πhus|
2
1,Ω = S 1 + S 2 + S 3 where S p =

∑
4∈T

p
h

|us − Πhus|
2
1,4 for p = 1, 2, 3.

If r4 < hγ, then |us − Πhus|1,4 ≤ |us|1,4 + |Πhus|1,4, and we estimate separately

|us|
2
1,4 ≤ C‖ f ‖2

∫
4

|x|2(β−1)dx
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and, using (3.2),

|Πhus|
2
1,4 ≤ Ch−2

4 |Πhus|
2
0,4 ≤ Ch−2γ‖ f ‖2

∫
4

|x|2β dx.

Since |x| ≤ r4 + h4 ≤ Chγ for x ∈ 4, we have

S 1 ≤ C‖ f ‖2
∫
|x|≤Chγ

|x|2(β−1) dx + Ch−2γ‖ f ‖2
∫
|x|≤Chγ

|x|2β dx ≤ Ch2γβ‖ f ‖2. (3.7)

If hγ ≤ r4 < 1, then (3.6) gives

|us − Πhus|
2
1,4 ≤ Ch2

4‖ f ‖
2
∫
4

|x|2(β−2) dx,

and our assumption (3.1) on the mesh implies that for x ∈ 4,

h4|x|β−2 ≤ Chr1−1/γ
4 |x|β−2 = Ch

( r4
|x|

)1−1/γ
|x|β−1−1/γ ≤ Ch|x|β−1−1/γ,

so

S 2 ≤ Ch2‖ f ‖2
∫

hγ≤|x|≤1+h
|x|2(β−1−1/γ) dx

≤ Ch2‖ f ‖2
∫ 1+h

hγ
r2(β−1/γ)−1 dr ≤ Cε(h, γ)2‖ f ‖2.

(3.8)

In the remaining case, r4 ≥ 1, putting R = sup{|x| | x ∈ Ω}, we have 1 ≤ |x| ≤ R for
x ∈ 4, and thus,

S 3 ≤
∑
4∈T 3

h

Ch2
4‖ f ‖

2
∫
4

dx ≤ Ch2‖ f ‖2
∫

1≤|x|≤R
dx ≤ Ch2‖ f ‖2. (3.9)

Together, (3.7)–(3.9) show that |us − Πhus|1,Ω ≤ Cε(h, γ)‖ f ‖.
A similar argument shows that∑

4∈T 1
h

|us − Ihus|
2
0,4 ≤ C‖ f ‖2

∫ Chγ

0
h2γβr dr ≤ Ch2γ(β+1)‖ f ‖2

and ∑
4∈T 2

h ∪T
3
h

|us − Ihus|
2
0,4 ≤ Ch4‖ f ‖2

∫ R

hγ
r2(β−1/γ)−1r2(1−1/γ) dr

≤ Ch2ε(h, γ)2‖ f ‖2.

Hence, ‖us − Πhus‖ ≤ Chε(h, γ) ‖ f ‖ and the desired bounds follow. �

We are now able to estimate the finite element error.
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Theorem 3.2. If f ∈ L2(Ω), then the finite element solution uh ∈ Vh of the elliptic
problem (1.2) satisfies

‖uh − u‖ ≤ Cε(γ, h)2‖ f ‖ and ‖uh − u‖H̃1(Ω) ≤ Cε(γ, h)‖ f ‖,

where ε(h, γ) is given by (1.4).

Proof. The bound in H̃1(Ω) follows at once from (3.5) and Theorem 3.1. The error
bound in L2(Ω) is proved via the usual Aubin–Nitsche method [4, Theorem 3.2.4]. In
fact, given any φ ∈ L2(Ω), the dual variational problem

a(w, ψ) = 〈w, φ〉 for all w ∈ H̃1(Ω)

has a unique solution ψ ∈ H̃1(Ω). Since the bilinear form a is symmetric, the preceding
estimate for u −Πhu carries over, with φ playing the role of f to yield ‖ψ −Πhψ‖H̃1(Ω) ≤

Cε(h, γ)‖φ‖. Thus,

|〈uh − u, φ〉| = |a(uh − u, ψ)| = |a(uh − u, ψ − Πhψ)|
≤ C‖uh − u‖H̃1(Ω)‖ψ − Πhψ‖H̃1(Ω)

≤ Cε(h, γ)2‖ f ‖ ‖φ‖,

implying that ‖uh − u‖ ≤ Cε(h, γ)2‖ f ‖. �

4. The time-dependent problem

We may view A = −K∇2 as an unbounded operator on L2(Ω) with domain V2 given
by (2.4). Since the associated bilinear form (2.1) is symmetric and coercive, and since
the inclusion H̃1(Ω) ⊆ L2(Ω) is compact, there exists a complete orthonormal sequence
of eigenfunctions φ1, φ2, φ3, . . . and corresponding real eigenvalues λ1, λ2, λ3, . . . with
λ j →∞ as j→∞. Thus,

Aφn = λnφn and 〈φm, φn〉 = δmn for all m, n ∈ {1, 2, 3, . . .}, (4.1)

and we may assume that 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · . Moreover,

(zI − A)−1 : L2(Ω)→ L2(Ω)

is a bounded linear operator for each complex number z not in the spectrum, spec(A) =

{λ1, λ2, λ3, . . .}, and, given any θ0 ∈ (0, π), we have a resolvent estimate in the induced
operator norm [7, Lemma 1],

‖(zI − A)−1‖ ≤
1 + 2/λ1

sin θ0

1
1 + |z|

for |arg z| > θ0. (4.2)

Define the Laplace transform f̂ = L f of a suitable f : [0,∞)→ L2(Ω) by

f̂ (z) = (L f )(z) = L{ f (t)}t→z =

∫ ∞

0
e−zt f (t) dt,
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for <z sufficiently large. Since L{∂1−α
t f }t→z = z1−α f̂ (z), a formal calculation implies

that the fractional diffusion equation (1.1) transforms into an elliptic problem (with
complex coefficients) for û(z),

zû(z) + z1−αAû(z) = u0 + f̂ (z),

and so
û(z) = zα−1(zαI + A)−1(u0 + f̂ (z)

)
. (4.3)

The boundary condition u(t) = 0 on ∂Ω transforms to give û(z) = 0 on ∂Ω. Using
L{tpα/Γ(1 + pα)}t→z = z−1−pα, we find that for λ > 0 and |z| > λ1/α,

zα−1(zα + λ)−1 = z−1
∞∑

p=0

(
−λz−α

)p

= L

{ ∞∑
p=0

(−λtα)p

Γ(1 + pα)

}
t→z

= L{Eα(−λtα)},

where Eα(y) =
∑∞

p=0 yp/Γ(1 + pα) denotes the Mittag–Leffler function. The
inequalities 0 ≤ Eα(−t) ≤ 1, for 0 ≤ t <∞ [11, (2.8)], imply that the sum

E(t)v =

∞∑
n=1

Eα(−λntα)〈v, φn〉φn (4.4)

defines a bounded linear operator E(t) : L2(Ω)→ L2(Ω), satisfying

‖E(t)v‖ ≤ ‖v‖ for 0 ≤ t <∞. (4.5)

Thus, for each eigenfunction φn,

zα−1(zαI + A)−1φn = zα−1(zα + λn)−1φn = L{Eα(−λntα)φn}t→z,

and we conclude that
Ê(z) = zα−1(zαI + A)−1.

Writing (4.3) as û(z) = Ê(z)u0 + Ê(z) f̂ (z) yields the Duhamel formula,

u(t) = E(t)u0 +

∫ t

0
E(t − s) f (s) ds for t > 0 (4.6)

that serves to define the mild solution of the initial-boundary value problem for (1.1).
In particular, E(t) is the solution operator for the homogeneous problem ( f ≡ 0) with
initial data u0 ∈ L2(Ω). Also, the bound (4.5) immediately implies a stability estimate
in L2(Ω) for a general, locally integrable f : [0,∞)→ L2(Ω), namely

‖u(t)‖ ≤ ‖u0‖ +

∫ t

0
‖ f (s)‖ ds for t > 0.
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5. The semidiscrete finite element solution

Let Ph denote the orthoprojector L2(Ω)→ Vh, that is, Phv ∈ Vh satisfies

〈Phv,w〉 = 〈v,w〉 for all v ∈ L2(Ω) and w ∈ Vh.

There exists a unique linear operator Ah : Vh → Vh such that

〈Ahv,w〉 = a(v,w) for all v, w ∈ Vh,

and the operator equation Ahuh = Ph f is equivalent to the variational equation (3.3)
used to define the finite element solution uh ∈ Vh of the elliptic problem (1.2). Denote
the number of degrees of freedom by N = dim Vh, and equip Vh with the norm induced
from L2(Ω). The finite element space Vh has an orthonormal basis of eigenfunctions
Φ1,Φ2, . . . ,ΦN with corresponding real eigenvalues Λ1,Λ2, . . . ,ΛN . Thus,

AhΦn = ΛnΦn and 〈Φm,Φn〉 = δmn for m, n ∈ {1, 2, . . . ,N},

and we assume that 0 < Λ1 ≤ Λ2 ≤ · · · ≤ ΛN . Moreover, the resolvent

(zI − Ah)−1 : Vh → Vh

exists for every z < spec(Ah) = {Λ1,Λ2, . . . ,ΛN}, and we have the following estimate
corresponding to (4.2):

‖(zI − Ah)−1‖ ≤
1 + 2/Λ1

sin θ0

1
1 + |z|

for |arg z| > θ0. (5.1)

Note that λ1 ≤ Λ1, so this bound is uniform in h.
The first Green identity [4, equation (1.2.5)] yields the variational formulation for

(1.1),
〈∂tu, v〉 + a(∂1−α

t u, v) = 〈 f (t), v〉 for all v ∈ H̃1(Ω) and t > 0, (5.2)

so we define the finite element solution uh : [0,∞)→ Vh by

〈∂tuh, v〉 + a(∂1−α
t uh, v) = 〈 f (t), v〉 for all v ∈ Vh and t > 0, (5.3)

with uh(0) = u0h, where u0h ∈ Vh is a suitable approximation to the initial data u0. Thus,
the vector of nodal values U(t) satisfies a system of fractional ordinary differential
equations (ODEs) in RN ,

M∂tU + S∂1−α
t U = F(t), (5.4)

where M and S denote the N × N mass and stiffness matrices, respectively, and F(t)
denotes the load vector. In the limiting case as α→ 1, when (1.1) becomes the heat
equation, we see that equation (5.4) reduces to the usual system of (stiff) ODEs arising
in the method of lines.

The variational equation (5.3) is equivalent to

∂tuh + ∂1−α
t Ahuh = Ph f (t) for t > 0.
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Taking Laplace transforms as in Section 4, we find that

ûh(z) = zα−1(zαI + Ah)−1(u0h + Ph f̂ (z)
)
,

and thus,

uh(t) = Eh(t)u0h +

∫ t

0
Eh(t − s)Ph f (s) ds for t > 0,

where

Eh(t)v =

N∑
n=1

Eα(−Λntα)〈v,Φn〉Φn.

In the same way as (4.5) we have

‖Eh(t)v‖ ≤ ‖v‖ for t > 0 and v ∈ Vh, (5.5)

implying that the finite element solution is stable in L2(Ω), that is,

‖uh(t)‖ ≤ ‖u0h‖ +

∫ t

0
‖ f (s)‖ ds. (5.6)

For convenience, we put

B(z) = (zαI + A)−1 and Bh(z) = (zαI + Ah)−1,

which satisfy the following bounds.

Lemma 5.1. If |arg zα| < π − θ0, then:

(i) ‖B(z)v‖ ≤ C‖v‖/(1 + |z|α) and ‖B(z)v‖H̃1(Ω) ≤ C‖v‖ for v ∈ L2(Ω);
(ii) ‖Bh(z)v‖ ≤ C‖v‖/(1 + |z|α) and ‖Bh(z)v‖H̃1(Ω) ≤ C‖v‖ for v ∈ Vh.

Proof. First, let v ∈ L2(Ω). The resolvent estimate (4.2) immediately implies the
desired bounds for w(z) = B(z)v in L2(Ω). To estimate the norm of w(z) in H̃1(Ω),
observe that Aw(z) = v − zαw(z) so by (2.2),

‖w(z)‖H̃1(Ω) ≤ C‖v − zαw(z)‖H−1(Ω) ≤ C‖v − zαB(z)v‖ ≤ C‖v‖.

When v ∈ Vh, the estimates for Bh(z)v follow in the same way from (5.1) and (3.4). �
Since L{E(t)φn}t→z = zα−1(zα + λn)−1φn = zα−1B(z)φn, the Laplace inversion

formula implies that

E(t)φn = lim
M→∞

( 1
2πi

∫ 1+iM

1−iM
eztzα−1(zα + λn)−1 dz

)
φn

=
1

2πi

∫
Γ

eztzα−1B(z)φn dz,

for t > 0 and for a Hankel contour Γ that encircles the negative real axis counter-
clockwise. The factor ezt is exponentially small as<z→ −∞, so (4.5) and Lemma 5.1
ensure that

E(t)v =
1

2πi

∫
Γ

eztzα−1B(z)v dz for t > 0 and v ∈ L2(Ω), (5.7)

where the integral over Γ is absolutely convergent in L2(Ω).
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Likewise, L{Eh(t)Φn}t→z = zα−1(zα + Λn)−1Φn = zα−1Bh(z)Φn so we have a
corresponding integral representation

Eh(t)v =
1

2πi

∫
Γ

eztzα−1Bh(z)v dz for t > 0 and v ∈ Vh. (5.8)

6. Error bounds

Since the continuous and semidiscrete problems are both linear, for our error
analysis it suffices to consider separately the cases f ≡ 0 and u0 = u0h = 0.

6.1. The homogeneous equation To find the error bound for uh(t) − u(t) in the case
f ≡ 0, the main difficulty is to estimate the difference

Eh(t)Phu0 − E(t)u0 =
1

2πi

∫
Γ

eztzα−1Gh(z)u0 dz, (6.1)

where, by equations (5.7) and (5.8), Gh(z) = Bh(z)Ph − B(z). We begin by estimating
Gh(z)v.

Lemma 6.1. If v ∈ L2(Ω) and |arg zα| < π − θ0, then

‖Gh(z)v‖ ≤ Cε(h, γ)2‖v‖ and ‖Gh(z)v‖H̃1(Ω) ≤ C(1 + |z|α)ε(h, γ)‖v‖.

Proof. Given v ∈ L2(Ω), let w(z) = B(z)v ∈ V , so that Aw(z) = v − zαw(z), and let
wh(z) ∈ Vh be the solution of

Ahwh(z) = Ph[v − zαw(z)].

In this way, Phv = zαPhw(z) + Ahwh(z) = (zαI + Ah)wh(z) − zα[wh(z) − Phw(z)], and
thus Bh(z)Phv = wh(z) − zαBh(z)[wh(z) − Phw(z)], implying that

Gh(z)v = wh(z) − w(z) − zαBh(z)Ph[wh(z) − w(z)]. (6.2)

Lemma 5.1 shows that ‖w(z)‖ ≤ C‖v‖/(1 + |z|α) so ‖v − zαw(z)‖ ≤ C‖v‖. By applying
Theorem 3.2, with w(z) and v − zαw(z) playing the roles of u and f , respectively, we
deduce that

‖wh(z) − w(z)‖ ≤ Cε(h, γ)2‖v‖ and ‖wh(z) − w(z)‖H̃1(Ω) ≤ Cε(h, γ)‖v‖.

The result now follows from (6.2) after another application of Lemma 5.1. �

Theorem 6.2. Assume that f ≡ 0. If u0 ∈ L2(Ω), then the mild solution u(t) = E(t)u0
and its finite element approximation uh(t) = Eh(t)u0h satisfy

‖uh(t) − u(t)‖ ≤ ‖u0h − Phu0‖ + Ct−αε(h, γ)2‖u0‖

and
‖uh(t) − u(t)‖H̃1(Ω) ≤ Ct−α‖u0h − Phu0‖ + C(t−2α + t−α)ε(h, γ)‖u0‖

for t > 0.
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Proof. We split the error into two terms,

uh(t) − u(t) =
[
Eh(t)

(
u0h − Phu0

)]
+

[
Eh(t)Phu0 − E(t)u0

]
. (6.3)

It follows from (5.5) that ‖Eh(t)
(
u0h − Phu0

)
‖ ≤ ‖u0h − Phu0‖. To estimate the second

term in equation (6.3), we use the integral representation (6.1) with Γ = Γ+ − Γ−, where
Γ± is the contour z = se±i3π/4 for 0 < s <∞. Applying Lemma 6.1 and then making the
substitution y = st, we find that

‖Eh(t)Phu0 − E(t)u0‖ ≤ Cε(h, γ)2‖u0‖

∫ ∞

0
e−st/

√
2sα

ds
s

= Cε(h, γ)2‖u0‖t−α
∫ ∞

0
e−y/

√
2yα

dy
y
,

which proves the first error bound of the theorem.
Choosing Γ = Γ+ − Γ− in the integral representation (5.8) of Eh(t)v, and using

Lemma 5.1, we have for v ∈ Vh,

‖Eh(t)v‖H̃1(Ω) ≤ C
∫ ∞

0
e−st/

√
2sα‖v‖

ds
s

= Ct−α‖v‖
∫ ∞

0
e−s/

√
2sα

ds
s
≤ Ct−α‖v‖,

so in particular, when v = u0h − Phu0,

‖Eh(t)
(
u0h − Phu0

)
‖H̃1(Ω) ≤ Ct−α‖u0h − Phu0‖.

Finally, using (6.1) and Lemma 6.1 again,

‖Eh(t)Phu0 − E(t)u0‖H̃1(Ω) ≤ Cε(h, γ)‖u0‖

∫ ∞

0
e−st/

√
2sα(1 + sα)

ds
s

= Cε(h, γ)‖u0‖t−2α
∫ ∞

0
e−s/

√
2sα(tα + sα)

ds
s

≤ Cε(h, γ)(t−α + t−2α)‖u0‖,

proving the second error estimate of the theorem. �

When u0 is sufficiently regular we obtain an error bound that is uniform in t. The
proof uses the Ritz projector Rh : H̃1(Ω)→ Vh, defined by

a(Rhu, v) = a(u, v) for all v ∈ Vh, (6.4)

and relies on the following decay property of Gh(z), as |z| → ∞.

Lemma 6.3. If Av ∈ L2(Ω) and |arg zα| < π − θ0, then

‖Gh(z)v‖ ≤ Cε(h, γ)2‖B(z)Av‖ ≤ C|z|−αε(h, γ)2‖Av‖.

Proof. First note that by Theorem 3.2,

‖v − Phv‖ ≤ ‖v − Rhv‖ ≤ Cε(h, γ)2‖Av‖.
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We use the splitting Gh(z) = Bh(z)Ph − B(z) = G1
h(z) + G2

h(z), where

G1
h(z) = (Ph − I)B(z) and G2

h(z) = Bh(z)Ph − PhB(z).

Since A commutes with B(z), it follows at once that

‖G1
h(z)v‖ ≤ Cε(h, γ)2‖AB(z)v‖ = Cε(h, γ)2‖B(z)Av‖.

The definitions of Ph, Ah and Rh imply that PhA = AhRh (see Thomée [15, page 10]),
so

G2
h(z) = Bh(z)

[
Ph(zαI + A) − (zαI + Ah)Ph

]
B(z) = Bh(z)[PhA − AhPh]B(z)

= Bh(z)[AhRh − AhPh]B(z) = −Bh(z)AhPh(I − Rh)B(z),

and therefore, because Bh(z)Ah = I − zαBh(z), it follows that

‖G2
h(z)v‖ ≤ C‖(I − Rh)B(z)v‖ ≤ Cε(h, γ)2‖AB(z)v‖ = Cε(h, γ)2‖B(z)Av‖,

as required. Finally, ‖B(z)Av‖ ≤ C‖Av‖/(1 + |z|α) ≤ C|z|−α‖Av‖ by Lemma 5.1. �

Notice that since B(z)A = I − zαB(z), Lemma 6.3 provides an alternative proof of
the first conclusion of Lemma 6.1.

Theorem 6.4. Assume that f ≡ 0. If Au0 ∈ L2(Ω), then

‖uh(t) − u(t)‖ ≤ ‖u0h − Phu0‖ + Cε(h, γ)2‖Au0‖ for t ≥ 0.

Proof. In view of equation (6.3), it is again sufficient to estimate the contour integral
(6.1). This time, we choose Γ = Γt

+ + Γt
0 − Γt

− where Γt
± is parameterized by z = se±i3π/4

for t−1 < s < ∞ and where Γt
0 is parameterized by z = t−1eiθ for −3π/4 ≤ θ ≤ 3π/4.

Lemma 6.3 implies that ‖zα−1Gh(z)u0‖ ≤ C|z|−1ε(h, γ)2‖Au0‖ so

‖Eh(t)Phu0 − E(t)u0‖ ≤ Cε(h, γ)2‖Au0‖

∫
Γ

|ezt |
|dz|
|z|
,

and it suffices to note that the integrals∫
Γt
±

|ezt |
|dz|
|z|

=

∫ ∞

t−1
e−st/

√
2 ds

s
=

∫ ∞

1
e−s/

√
2 ds

s

and ∫
Γt

0

|ezt |
|dz|
|z|

=

∫ 3π/4

−3π/4
e− cos θ dθ

are bounded independently of t. �

For intermediate regularity of u0, we have the following error bound in which the
fractional power of A is defined via the eigensystem (4.1):

Aθv =

∞∑
j=1

λθj〈v, φ j〉φ j.
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Corollary 6.5. Assume that f ≡ 0 and 0 < θ < 1. If Aθu0 ∈ L2(Ω) and u0h = Phu0, then

‖uh(t) − u(t)‖ ≤ Ct−α(1−θ)ε(h, γ)2‖Aθu0‖ for t > 0.

Proof. The choice of u0h means that the error bounds of Theorems 6.2 and 6.4 simplify
to

‖uh(t) − u(t)‖ ≤ Ct−αε(h, γ)2‖u0‖ and ‖uh(t) − u(t)‖ ≤ Cε(h, γ)2‖Au0‖.

Hence, by interpolation, ‖uh(t) − u(t)‖ ≤ C
(
t−αε(h, γ)2)1−θ(

ε(h, γ)2)θ‖Aθu0‖. �

6.2. The inhomogeneous equation When u0 ≡ 0 and f . 0, we use a different
approach [12, Lemma 4.1] that relies on the regularity result [11, Theorem 4.1]

‖AE(t)v‖ ≤ Ct−α‖v‖ for t > 0. (6.5)

The error bound requires no spatial regularity of the source term; it suffices that
f (0) ∈ L2(Ω) and ‖∂t f ‖ is integrable in time.

Theorem 6.6. If u0 = u0h = 0, then

‖uh(t) − u(t)‖ ≤ Ct1−αε(h, γ)2
(
‖ f (0)‖ +

∫ t

0
‖∂t f (s)‖ ds

)
for t > 0.

Proof. In the usual way, decompose the error as uh(t) − u(t) = ϑ(t) + %(t), where

ϑ(t) = uh(t) − Rhu(t) ∈ Vh and %(t) = Rhu(t) − u(t).

Notice that ϑ(0) = %(0) = 0 and, since %(t) =
∫ t

0 ∂t%(s) ds,

‖%(t)‖ ≤
∫ t

0
‖∂t%(s)‖ ds.

By (5.3), if v ∈ Vh then

〈∂tϑ, v〉 + a(∂1−α
t ϑ, v) = 〈 f , v〉 − 〈∂tRhu, v〉 − a(∂1−α

t Rhu, v),

and using the definition of the Ritz projector (6.4) followed by (5.2),

a(∂1−α
t Rhu, v) = a(∂1−α

t u, v) = 〈 f , v〉 − 〈∂tu, v〉.

Thus,
〈∂tϑ, v〉 + a(∂1−α

t ϑ, v) = −〈∂t%, v〉,

which means that ϑ : [0,∞) → Vh is the finite element solution of the fractional
diffusion problem with source term −∂t%(t) and zero initial data. The stability estimate
(5.6) gives

‖ϑ(t)‖ ≤
∫ t

0
‖∂t%(s)‖ ds,

and Theorem 3.2 implies that ‖∂tρ(t)‖ = ‖(Rh − I)∂tu(t)‖ ≤ Cε(h, γ)2‖A∂tu(t)‖, so

‖uh(t) − u(t)‖ ≤ 2
∫ t

0
‖∂t%(s)‖ ds ≤ Cε(h, γ)2

∫ t

0
‖A∂tu(s)‖ ds.
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Since

Au(s) = A
∫ s

0
E(s − τ) f (τ) dτ =

∫ s

0
AE(τ) f (s − τ) dτ,

we have

A∂tu(s) = AE(s) f (0) +

∫ s

0
AE(τ)∂t f (s − τ) dτ,

and therefore, using (6.5),

‖A∂tu(s)‖ ≤ Cs−α‖ f (0)‖ +

∫ s

0
τ−α‖∂t f (s − τ)‖ dτ.

Thus, ∫ t

0
‖A∂tu(s)‖ ds ≤ Ct1−α‖ f (0)‖ +

∫ t

0

∫ s

0
τ−α‖∂t f (s − τ)‖ dτ ds,

and the double integral equals∫ t

0

∫ s

0
(s − τ)−α‖∂t f (τ)‖ dτ ds =

∫ t

0
‖∂t f (τ)‖(t − τ)1−α dτ,

yielding the desired estimate. �

7. Alternative boundary conditions

7.1. Neumann boundary conditions Separation of variables in polar coordinates
yields the functions

u±n = r±nβ cos(nβθ) for n = 1, 2, 3, . . . ,

satisfying (2.3) with ∂θu±n = 0, if θ = 0 or θ = π/β. In addition, for n = 0 we find
u+

0 = 1 and u−0 = log r, and can readily check that

ηu+
n ∈ H1(Ω) but ηu−n < H1(Ω) for all n ≥ 0 (7.1)

with ηu+
n ∈ H2(Ω) if and only if n , 1. If we impose a homogeneous Neumann

boundary condition ∂nu = 0 on ∂Ω, then our results are essentially unchanged, but
the fact that A = −K∇2 now possesses a zero eigenvalue complicates the analysis [13,
Section 4].

7.2. Mixed boundary conditions For n = 1, 2, 3, . . . , the functions

u±n = r(n−1/2)β sin(n − 1
2 )βθ

satisfy (2.3) with u±n = 0 if θ = 0 and ∂θu±n = 0 if θ = π/β. Once again, (7.1) holds for
all n ≥ 1; however, we now have

ηu+
n ∈ H2(Ω) for all n ≥ 3, but ηu+

1 , ηu+
2 < H2(Ω),

assuming 1/2 < β < 1. Moreover, a new feature is that ηu+
1 < H2(Ω) when 1 ≤ β < 2,

that is, for an interior angle between π/2 and π, in which case Ω is in fact convex.

https://doi.org/10.1017/S1446181116000365 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181116000365


78 K. N. Le, W. McLean and B. Lamichhane [18]

Figure 2. Meshes with h∗ = 2−3 (left) and h∗ = 2−4 (right) from a sequence satisfying (3.1) and (3.2)
for γ = 3/2.

The proof of Theorem 3.1 must be modified by replacing β with β/2, and replacing
ε(h, γ) with

εmix(h, γ) =


hγβ/2/

√
γ−1 − β/2, 1 ≤ γ < 2/β,

h
√

log(1 + h−1), γ = 2/β,
h/

√
β/2 − γ−1, γ > 2/β,

(7.2)

provided the interior angles at the other vertices p1, p2, . . . , pJ−1 are all less than or
equal to π/2. We may then proceed as for Dirichlet boundary conditions (since all the
eigenvalues of A are strictly positive), with ε(h, γ) replaced by εmix(h, γ) in our error
estimates.

8. Numerical experiments

We consider two problems posed on a domain of the form

Ω = {(r cos θ, r sin θ) | 0 < r < 1 and 0 < θ < π/β}

with β = 2/3. Although Ω is not a polygon, the additional error in uh due to
approximation of the curved part of ∂Ω is of order h2 in L2(Ω), and hence our
error bounds should remain unchanged. To fix the time scale for the solutions of
the fractional diffusion equation (1.1), the generalized diffusitivity K was chosen so
that the smallest eigenvalue of A = −K∇2 equals one. Figure 2 shows two successive
meshes out of a sequence satisfying our assumptions (3.1) and (3.2) for γ = 1/β = 3/2;
notice that these meshes are not nested. The mesh generation code takes a specified
h∗ and γ and produces a triangulation with maximum element diameter h equivalent
to h∗. All source files were written in Julia 0.5 [2] with some calls to Gmsh 2.12.0 [6],
and all computations performed on a desktop PC with 8 GB of RAM and an AMD
A10-7850K CPU.
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For the time integration, we use a technique [12, 16] based on a quadrature
approximation to the Laplace inversion formula

uh(t) =
1

2πi

∫
Γ

eztûh(z) dz =
1

2πi

∫ ∞

−∞

ez(ξ)tû
(
z(ξ)

)
z′(ξ) dξ,

where the contour Γ has the parametric representation

z(ξ) = µ
(
1 − sin(δ − iξ)

)
for −∞ < ξ <∞,

with δ = 1.172 104 23 and µ = 4.492 075 28 M/t for given t > 0 and a chosen
positive integer M. Therefore, the contour Γ is the left branch of a hyperbola with
asymptotes y = ±(x − µ) cot δ for z = x + iy. Putting

z j = z(ξ j), z′j = z′(ξ j), ξ j = j ∆ξ, ∆ξ =
1.081 792 14

M
,

we define

UM,h(t) =
∆ξ

2πi

M∑
j=−M

ez jtûh(z j)z′j ≈ uh(t).

To compute ûh(z j) we solve the (complex) finite element equations

zαj 〈ûh(z j), χ〉 + a
(
ûh(z j), χ

)
= zα−1

j 〈u0h + f̂ (z j), χ〉, χ ∈ Vh,

and since we choose real u0h and f , it follows that ûh(z− j) = ûh(z̄ j) = ûh(z j). Thus,
the number of elliptic solutions needed to evaluate UM,h(t) is only M + 1 rather
than 2M + 1. An error bound for the quadrature error ‖UM,h(t) − uh(t)‖ includes a
decay factor 10.1315−M , and we observe that the overall error ‖UM,h(t) − u(t)‖ is
dominated by the finite element error ‖uh(t) − u(t)‖ for some modest values of M.
In the computations reported below, we used M = 8 to compute UM,h(t) ≈ uh(t), and
chose u0h = Phu0 for the discrete initial data.

Example 8.1. In our first example, α = 1/2 and we chose u0 and f so that the solution
of the initial-boundary value problem for (1.1) was

u(x, y, t) =
(
1 + ωα+1(t)

)
rβ(1 − r) sin(βθ).

In view of (4.4) and (4.6), the singular behaviour of u as r→ 0 or t→ 0 is typical for
such problems. Figure 3 compares the L2-error at t = 1 for quasi-uniform (γ = 1) and
locally refined (γ = 1/β = 3/2) triangulations. From Theorems 6.2 and 6.6, we expect
errors of order ε(h, 1)2 = h2γβ = h4/3 and ε(h, 3/2)2 = h2 log2(1 + h−1), respectively.
The number of degrees of freedom is of order h−2 in both cases, so in Figure 3 we
expect the corresponding error curves to be straight lines with gradients −2/3 and −1,
which are in fact close to the observed values −0.7249 and −0.9707, respectively, as
determined by simple, linear least-squares fits.

Example 8.2. In our second example, we imposed mixed boundary conditions: a
homogeneous Dirichlet condition where θ = 0 or r = 1, and a homogeneous Neumann
condition where nθ = π/β. As the initial data we chose the first eigenfunction of the
linear operator A = −K∇2,

u0(x, y) = Jβ/2(ωr) sin( 1
2βθ),
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Figure 3. Behaviour of the L2-error ‖uh(t) − u(t)‖ for Example 8.1 when t = 1; quasi-uniform versus
locally refined triangulations.

Figure 4. The L2-error as a function of t for Example 8.2 with α = 1/2 and γ = 2/β.

where ω is the first positive zero of the Bessel function Jβ/2. We put f = 0 so (recalling
that our choice of K means that the corresponding eigenvalue equals one) the solution
is u(x, y, t) = E(t)u0 = Eα(−tα)u0(x, y), and chose γ = 2/β = 3, giving εmix(h, γ) of order
h log(1 + h−1); see (7.2). Since Aru0 ∝ u0 ∈ L2(Ω) for all r > 0, we conclude from
Theorem 6.4 that the L2-error ‖uh(t) − u(t)‖ is of order h2 log2(1 + h−1) uniformly for
0 ≤ t ≤ T . Figure 4 confirms this behaviour in the case α = 1/2. Finally, Table 1 shows
that at a fixed positive time t = 1 the L2-error does not vary much with α.
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Table 1. L2-Errors and empirical convergence rates (powers of h) for Example 8.2 when t = 1, with
γ = 2/β and different choices of α. (Recall that N denotes the number of degrees of freedom in the finite
element triangulation.)

α = 1/4 α = 1/2 α = 3/4
h∗ N error rate error rate error rate

2−4 1957 1.465e-03 1.485e-03 1.452e-03
2−5 7593 3.673e-04 1.996 3.723e-04 1.996 3.640e-04 1.997
2−6 29771 9.471e-05 1.955 9.597e-05 1.956 9.380e-05 1.956
2−7 117039 2.420e-05 1.969 2.451e-05 1.970 2.391e-05 1.972
2−8 466089 6.059e-06 1.998 6.119e-06 2.002 5.931e-06 2.011

9. Concluding remarks

A characteristic feature of two-dimensional elliptic boundary-value problems is
that the solution is typically singular in the neighbourhood of a re-entrant corner.
This behaviour carries over to the solution of the time-dependent diffusion and
fractional diffusion equations. Our analysis shows how the accuracy of finite element
approximations is compromised, unless a suitable local mesh refinement is employed
to handle the large gradients around a re-entrant corner. The overall approach could
be extended to treat three-dimensional problems, but it would depend on the more
complicated results for the possible singularities of the elliptic problem [1]. We
expect that a more promising direction for further research is to design adaptive mesh
refinement schemes based on suitable a posteriori error indicators.
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