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Abstract
Faced with risky yields and returns, risk-averse farmers require a premium to take risks. In this
paper, we estimate individual farmers’ degrees of risk aversion to adjust for the risk premium in returns
and to replace the farmers’ realized returns with their certainty equivalent returns in the production
function. In that way, the effect of the inputs on returns will automatically be risk-adjusted, i.e., we obtain
risk-adjusted marginal effects of inputs, which can be used in decision-making support of farmers’
input choices in production. Using farm-level data from organic basmati rice smallholders in India,
we illustrate this method using nonparametric production functions. The results show that the input
elasticities and returns-to-scale estimates change when the farmers’ degree of risk aversion is taken into
consideration.
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1. Introduction
The production function is a technological relationship between inputs and output. In the
standard neoclassical production function approach, it is assumed that producers do not face any
uncertainty (Chambers, 1988). However, certainty is rarely the case in reality because risk and
uncertainty are inescapable factors in production.1 Hence, they affect input use decisions, which in
turn affect the production of outputs.2

Many approaches have relaxed the perfect certainty assumption. A frequently used approach,
which has been applied for many decades, is the Just–Pope production function approach, which,
for a given set of inputs, allows inputs to increase or decrease production risk, measured by the
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Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

1In several studies, risk and uncertainty are used interchangeably. In this paper, we, as far as possible, follow the definitions
used by Hardaker et al. (2015, p. 4), where uncertainty is defined as imperfect knowledge and risk as uncertain consequences,
particularly possible exposure to unfavorable consequences. A review of research on agricultural production risk in
agriculture, in general, is given by Moschini and Hennessy (2001), and a review of the developing world is given by Hurley
(2010).

2Note, we are simplifying in the text above, and in fact, the reality of a farmer is often rather complicated. Before our
production function is specified, farmers have many decisions to make. For example, which crops to grow, which varieties of
those crops to plant, when to plant, whether to plant a monocrop or to interplant, what fertilizer to apply and when, also what
pesticides to use and when, when to harvest, etc. Any model, including a production function model, is necessarily a
simplification of reality.
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variance of output (Just and Pope, 1978, Just and Pope, 1979).3 From an econometric point of
view, the Just and Pope approach is a heteroskedastic model in which heteroskedasticity (variance
of the production error) is a function of inputs (e.g., Asche and Tveterås, 1999). Conditional
output variance does not affect production decisions based on expected profit or expected utility
of profit; it simply makes the error term heteroskedastic.4 This consequence is counterintuitive
because the presence of risk is likely to affect input use and, therefore, output. Herein, the
Just–Pope production function formulation is extended to include technical inefficiency, which
affects mean output (Battese et al., 1997; Kumbhakar, 2002).5 A limitation of the Just–Pope
production function formulation is that it does not take into account producers’ behavior toward
risk (Kumbhakar, 2002). Thus, input elasticities and returns to scale, among other things, are
treated as not affected by producers’ risk perceptions, which is not realistic.6

The state-contingent production framework, advocated by Chambers and Quiggin (2000),
drawing on the work of Arrow and Debreu (1954), allows input choices to have different
consequences in different states of nature. The consequences of risky choices are analyzed as
depending upon which of the possible uncertain states of the world occurs. This is not a property
of conventional production theory, in which inputs are assumed to play the same role regardless of
which state occurs. Although the theory of a state-contingent production function is well
established, applications in agriculture are somewhat limited because empirical implementation is
very data demanding.7

In a recent study, Lien et al. (2017) accounted for risk in productivity analysis by including risk
indices (a group of risk-related variables) in a translog (TL) production function (or input distance
function). Through the functional form, with interactions between the input variables and the
risk-related variables, the effects of risk-related variables on productivity were investigated.
As with the Just–Pope approach, a problem with this approach is that the risk-related variables are
different from the input variables because they are not standard inputs. Moreover, mathematically
speaking, one cannot simply identify the input variables from the risk-related variables by using
different names.

Another framework to address farmers’ risk and risk attitudes and how these affect their risk
management decision-making and diversification strategies is a system approach consisting of a
production function and the first-order conditions of the expected utility-of-profit maximization.
In such a framework, it is possible to jointly estimate both the technology, producers’ risk attitude,
and effects of production risk. For example, Kumbhakar and Tveterås (2003) introduced a
parametric econometric model that estimates technology, production risk, and risk attitude
simultaneously. Kumbhakar (2002) extended that model to simultaneously estimate technical
efficiency. Kumbhakar and Tsionas (2010) introduced a nonparametric model that simulta-
neously estimated technology, production risk, and producers’ risk attitudes without making any
distributional assumptions. Ballivian and Sickles (1994) estimated a system of input demand and
output supply functions using a quadratic profit function. Without prices and variability in the
price data, which is the case for our study, it is not possible to use the approaches mentioned in
this paragraph. Furthermore, in the framework discussed here, the production function is

3It should be noted that Just and Pope suggested a flexible, functional form for the production functions. Their approach
allows us to separate an input effect of the mean of the production from its effect on the variance risk.

4Production function modeling with output price risk was first proposed by Sandmo (1971).
5Two strands of research on output variation (given inputs) are proposed in the literature. The first strand considers output

variation because of inefficiency, and in the second strand, it is because of exogenous shocks/production risk. A thorough
discussion of these different approaches is given by Saastamoinen (2015).

6Note, Just and Pope did not suggest the production function as a decision-making model; rather, it was viewed as one
element in the expected utility model to account for the farmers’ attitudes to risk.

7The limited number of state-contingent production function studies in agriculture includes Chavas (2008), O’Donnell
et al. (2010), Nauges et al. (2011), Shankar (2013), and Holden and Quiggin (2017).
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included in the model framework to derive the risk attitude function. Therefore, the estimated
production function is not risk adjusted.

Chavas and Shi (2015) used conditional quantile regression to assess production risk in
agriculture, or more precisely, the distribution of the yield and the effects that different input
variables have on the conditional distribution. They also placed the estimates from the conditional
quantile regression into an expected utility model, and then they assumed the degree of farmers’
risk aversion. Using the estimated parameters from a quantile regression and the assumed degree
of risk aversion in a simulation study, they were able to calculate the certainty equivalent output,
which they used as a risk-adjusted output measure in the production function, to assess whether or
not to use genetically modified (GM) seed agricultural technology. With their approach, Chavas
and Shi (2015) were also able to disentangle the certainty equivalent into mean effects and a risk
premium (measuring the cost of risk).

In this paper, we introduce an alternative approach to modeling the effects of the input choices
(or how elasticities change) in the presence of risky production conditions. In the first step, to
account for farmers’ risk aversion, we used data from an experiment to estimate individual
farmers’ degrees of risk aversion and their risk premium and to calculate their certainty equivalent
(CE) gross revenues. In the second step, we use the CE of gross revenue as output (adjusted for
output risk), instead of observed gross revenue (Y), in specifying the production function. In that
way, we obtain a certainty equivalent-adjusted or risk-adjusted production function.8 Thus, the
effect of the inputs on returns will automatically be risk adjusted, i.e., we obtain risk-adjusted
marginal effects and risk-adjusted input elasticities for each farmer. In that way, we obtain a
decision support model that accounts for the individual farmer’s risk attitude.

Note that under our approach, we are not modeling directly the production risk of inputs used,
as the expected utility-of-profit framework does. Still, we do it indirectly (through the estimated
risk-adjusted marginal effect of inputs), by accounting for producers’ risk behavior in our
production function. To the best of our knowledge, our approach of including risk attitude in the
production function framework and then also estimating risk-adjusted elasticities has not been
examined in the literature.

We illustrate our method using farm-level data from organic basmati rice (OBR) smallholders
in India. A survey completed in 2015 collected data from 880 smallholder households in the states
of Punjab, Haryana, and Uttarakhand in the northern part of India. The data set includes various
aspects of the farming business and also data from a gamble-choice elicitation method to elicit an
individual farmer’s risk attitude.

2. Modeling Approaches
2.1. Modeling Framework

For a crop farmer, the input decisions are made before the harvest. Consequently, the yield and
returns that a crop farmer obtains will always be risky for several reasons, such as weather risks,
pest and disease risk, and market risks. The realized postharvest output (Y) the farmer obtains is
seldom the same as the anticipated output at planting/sowing. For every farmer (or decision-
maker in general) faced with risky payoffs, e.g., the payoff from farming, there is a sum of money
‘for sure’ that would make her indifferent between facing the risk or accepting the sure sum. In the
case of farming, this sure sum is the lowest sure gross revenue that the farmer would be willing to
accept to sell a desirable risky prospect or the highest sure gross revenue the farmer would pay to
avoid an undesirable risky prospect. This sure sum is CE and is the guaranteed amount of cash
that a farmer would consider as having the same amount of desirability as a risky payoff/gross

8Note, Chavas and Shi (2015) assumed the degree of farmers’ risk aversion, whereas we draw on data from an experiment to
estimate the degree of risk aversion for each farmer, then use the estimates to define the CE, or risk-adjusted output, which is
used to estimate the CE-adjusted nonparametric production function.
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revenue. The difference between the CE and the expected value of a risky prospect, known as the
risk premium, is a measure of the cost of the combined effects of risk and risk aversion (Chavas
and Shi, 2015; Hardaker et al., 2015). If we have measures of risk and risk aversion, we are able to
convert farmers’ observed gross revenue to the CE of gross revenue. Using the CE of gross revenue
as the output in the production function, we are then able to estimate a CE-adjusted or risk-
adjusted production function and obtain risk-adjusted marginal effects, elasticities, and economies
of scale measures. In general, CEs will vary among farmers, even for the same risky prospect,
because farmers seldom have identical attitudes to risk (utility functions), and they may also hold
different views about the chances of better or worse outcomes occurring (Pennings and Garcia,
2001; Hardaker et al., 2015). The advantage of working with the CE output is that it will avoid the
complicated procedure of estimating the input demand system based on maximizing the expected
utility of profit, assuming a parametric form of the utility function (Ballivian and Sickles, 1994) or
approximating it (Kumbhakar, 2002; Kumbhakar and Tveterås, 2003).

Based on these ideas, we introduce the CE-adjusted or risk-adjusted production function
below. Different specifications of that model will be presented after the description of how to
estimate the CE.

2.2. Estimating the Certainty Equivalent

To specify a CE- or risk-adjusted production function, we need to convert the dependent variable
from farmers’ observed monetary gross revenue to farmers’ risk-adjusted gross revenue. As
mentioned above, CE gross revenue is defined as CE � Y � RP, where Y is gross revenue from
outputs and RP is risk premium, which is the implicit cost of private risk-taking. RP is the amount
of money that makes the farmer indifferent between the risky gross revenue Y� � and the certain
risk-adjusted gross revenue CE� �.

One measure of risk premium is the Arrow–Pratt approximation, developed independently by
Arrow (1963) and Pratt (1964), and is defined as

RP � 1
2
× ARA × Var Y� �; (1)

where ARA is the degree of absolute risk aversion for the farmer (decision-maker) with respect to
wealth. Absolute risk aversion is a measure of farmer’s/decision-maker’s reaction to risk relating to
changes in their wealth. Var Y� � is the variance of gross revenue (Y).

Thus, the CE of gross revenue in a risky situation can be approximated by

CE � Y � 1
2
× ARA × Var Y� �: (2)

Var Y� � are environmental variables in the production. In other words, the CE in this study is
approximated by

CE � Y � 1
2
× ARA × Var�YjZ�: (3)

To make the CE approach operational, we need estimates of ARA and Var�YjZ�. The
conditional variance, Var�YjZ�, was estimated with a nonparametric estimator. We first estimated
the conditional mean for output, E�YjZ�, for each observation, by nonparametric regression.
Then, we calculated the conditional variance of output for each observation/farm using the
formula Var�YjZ� � �Y � E�YjZ��2.9

The absolute risk-aversion coefficient, ARA, often named the Arrow–Pratt coefficient of
absolute risk aversion, is determined by the curvature of a utility function, which is defined by
dividing the second derivative by the first derivative of a defined utility function (Arrow, 1963;

9We estimated Var�YjZ� using the package NP in the R software.
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Pratt, 1964). A utility function can be defined with different payoff measures (e.g., losses and gains,
income, and wealth). Any measure of risk aversion is specific to the particular payoff measure over
which the measure is defined (Meyer and Meyer, 2006). Following Arrow (1963) and Pratt (1964),
it is also quite common to maximize the expected utility of wealth (W), which defines the absolute
risk-aversion measure for a change in wealth. Furthermore, it is generally accepted that the
absolute risk-aversion coefficient (ARA) with respect to wealth will decrease with increases in
wealth because farmers/decision-makers can better afford to take risks as they get richer
(Hardaker et al., 2015, Ch. 5). In other words, an assumption about decreasing absolute risk
aversion (DARA) seems reasonable. Note also that the absolute risk-aversion measure depends on
the monetary units of wealth, and measures derived from different currency units are not
comparable. The currency problem is overcome using the relative risk-aversion (RRA) measure,
defined as RRA � ARA × W. A power utility function has the property of constant relative risk
aversion (CRRA), meaning that the relative risk-aversion measure is constant for all wealth levels.
And CRRA functions also feature DARA, which, as mentioned, is a reasonable property. We used
estimates of individual farmers’ degree of CRRA (ranked from 1 (hardly risk averse) to 4 (very risk
averse)), which we obtained from the survey used in this study (described below). With these
estimates, we simply converted the relative risk-aversion coefficient to the absolute risk-aversion
coefficient, (ARA), using the level of the farmers’ wealth W� � from a survey (see below) via the
formula ARA � RRA=W.

Finally, using the estimates of Var�YjZ� and ARA, we calculated the CE (equation (3) above)
and used it as the output variable (instead of Y, which is gross revenue) in the production function
(see below), to define the production function accounting for the decision-makers risk attitudes.

2.3. Empirical Models

Both parametric and nonparametric modeling frameworks can be used to estimate the CE
production function model. Below, we use the nonparametric specification, and so avoid making
explicit assumptions about the functional form (such as a linear model), as is required for a
parametric specification. In addition to the CE nonparametric function (where the risk-adjusted
gross revenue is output), we also include, as a benchmark, the standard nonparametric production
function (where the observed gross revenue is output). In the Appendix, we provide the
specification of, and results for, two parametric production functions; with observed gross revenue
as output and with CE gross revenue as output.

The nonparametric standard (risk-unadjusted) production function (4) [Model 1] and
nonparametric CE-adjusted production function (5) [Model 2] are specified as

Yi � f Xi� � � vi; (4)

CEi � fCE Xi� � � vCEi ; (5)

where Yi is the logarithm of output (gross revenue) for farm i i � 1; 	 	 	 ; n� �, CEi is the logarithm
of the CE output (gross revenue) for farm i, f Xi� � is the nonparametric functional form, and Xi is a
vector of inputs. Finally, vi is the random error term.

2.4. Specification of the Empirical Models

Model 1, the nonparametric production function, as described in equation (4), is estimated
by constructing a relationship between Y and Xj based on weighted averages, so that we do not
have to specify a specific functional form. A general class of local nonparametric regression
models of (4) can be written as
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em X� � �
XN
i�1

w Xi;X� �Yi; (6)

where w Xi;X� � represents the weight assigned to the ith observation Yi, with the weight depending
on the distance of the sample point Xi from the point X (Li and Racine, 2004). Different
nonparametric estimators can be defined using equation (6). One particular class of estimators is
the kernel estimator, as is used in our study, which defines the weighting function as

w Xi;X� � � K Xi�X
h

� �
P

N
i�1 K Xi�X

h

� � ; (7)

where K 	� � is a multivariate kernel, and h is a smoothness parameter called the bandwidth that
determines how many Xi around X are used in the kernel function. There are several ways to
specify the kernel function (for example, Gaussian, uniform, Epanechnikov, etc.) and several ways
to specify the bandwidth (for instance, least-squares cross-validation or likelihood cross-
validation). For details on these issues, see, for example, Li and Racine (2004) and Henderson and
Parmeter (2015). In our study, we chose Gaussian kernel functions and least-squares cross-
validation to select bandwidths.

For nonparametric models, there are no parameters, and even when they are approximated by
a higher order polynomial, the parameters do not have any direct interpretation. For these models,
the interest lies in the gradients, which are the input elasticities, @Y

@Xj
.10 These input elasticities are

observation-specific, and we can compute the mean and/or quantiles or provide density plots
of them.

For Model 2, the nonparametric CE-adjusted production function, Y, is replaced with CE in
equation (5), and everything else is exactly the same as for Model 1.

Although nonparametric models are very flexible, the price one must pay is a higher probability
of empirical violations of economic conditions. For example, one cannot guarantee positive input
elasticities for each variable at every data point. One way to mitigate this potential problem is to
consider constrained estimation. There is an extensive literature on constrained nonparametric
estimation (see Henderson and Parmeter, 2015, Chapter 12, for an overview). For the
nonparametric Models 1 and 2 (equations (4) and (5)), we imposed monotonically restricted
gradient estimates using the approach outlined in Parmeter et al. (2014). The idea with this
approach is to reweight the dependent variable as little as possible, but at the same time, to avoid
negative input elasticities.

3. Data for Application of the Models
We use a primary survey of smallholder households, conducted in 2015 in the states of Punjab,
Haryana, and Uttarakhand in the northern part of India. Farmers were chosen randomly from a
list of farmers engaged in OBR production. A total of 880 OBR farmers were included in our
analyzed sample (we omitted 69 observations because of missing data or outliers). Of these, 375
were located in Punjab (196 from the Amritsar District and 179 from the Patiala District), 334
were in Haryana (170 from the Karnal District and 164 from the Kaithal District), and 171 were
from Uttarakhand (from the Dehradun District). The survey included data on various aspects of
the farming business, such as assets, costs, income, the economics of cultivation, social network,
information on contract farming, adoption of best practices, risk perception, and risk aversion.

10One of the referees pointed that an alternative to estimating and discussing elasticities would be to estimate and discuss
marginal products. The reason why elasticities are reported almost universally is that elasticitues are unit free and have
percentage interpretation while marginal products are not.
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We specify the production function, with gross revenue as output, Y� �, and three inputs. The
following three inputs are used: land X1� �, measured in acres; labor X2� �, measured in man-years
equivalent; and other costs (X3), measured in rupees. Other costs include costs of fertilizer,
irrigation, weeding, pesticides, harvesting, marketing, etc.

In the literature, several techniques have been used to elicit decision-makers’ or farmers’ risk
attitudes (see Binswanger, 1980; Charness et al., 2013; Hellerstein et al., 2013; Saastamoinen, 2015;
Charness and Viceisza, 2016; Vollmer et al., 2017; Iyer et al., 2020; Bozzola and Finger, 2021). Iyer
et al. (2020) distinguished between three risk-attitude measurement methods: 1) econometric
estimates based on farm-level data; 2) methods based on self-reports of multi-item scales; and 3)
gamble-choice elicitation methods. As suggested by Just and Just (2011), in the present study, risk
attitude was measured using a gamble-choice elicitation method. More specifically, the last one of
these three above-mentioned alternatives was used in our survey to construct the variable to
measure attitude to risk Z1� �, based on the context-free ordered lottery selection approach (Eckel
and Grossman, 2008). The context-free ordered lottery selection approach has also been used to
elicit risk attitude among managers of natural resources (e.g., Reynaud and Couture, 2012;
Brunette et al., 2017).11 In the survey, the farmers had to select the preferred gamble from six
alternatives (see Table 1). For each farmer’s response, we calculated a coefficient of constant
relative risk aversion CRRA� �. For Z1 > 3:0, we used CRRA � 3:5; for the range �1:0 < Z1 < 3:0�,
we used CRRA � 2:0; for the range �0:6 < Z1 < 1:0�, we used CRRA � 0:8; for the range
�0:4 < Z1 < 0:6�, we used CRRA � 0:5; for the range �0:0 < Z1 < 0:4�, we used CRRA � 0:2;
and for Z1 � 0:0� �, we used CRRA � 0:0, i.e., risk neutral. Figure 1 shows the distribution of the
respondents. About 29% of the farmers chose the risk-neutral gamble.

Table 2 presents the descriptive statistics of the variables used in the analysis. The average farm
size is about nine acres, but there is significant variability in farm size. Gross revenue from OBR
farming averages INR 165:112, while CE gross revenue (CE) at the mean is INR 154.4. In other
words, there is an average risk premium of INR 10:7 (165:1 � 154:4), or 6.9% of the observed

Table 1. Eliciting risk preferences gamble

Choice Low High Expected Standard Implied

(50/50 gamble) Payoff Payoff Return Deviation CRRA range

Gamble 1 30 30 30.0 0.0 r> 3.0

Gamble 2 25 40 32.5 7.5 1.0< r< 3.0

Gamble 3 20 50 35.0 15.0 0.6< r< 1.0

Gamble 4 15 60 37.5 22.5 0.4< r< 0.6

Gamble 5 10 70 40.0 30.0 0.0< r< 0.4

Gamble 6 0 80 40.0 40.0 r< 0.0

Notes: i� � The constant relative risk-aversion (CRRA) range is estimated with the CRRA function U � payoff 1�r� �� �
1 � r� � . The CRRA limit is the value

of r that produces the same utility for Gamble X and Gamble X � 1.
(ii) Source: Authors’ calculation.

11Note, there has been, and still is, a debate about the use of survey experiment lotteries, and lotteries in general, to infer
decision-makers’/farmers’ risk preferences. One aspect is whether respondents are able to understand and respond to lotteries
in a consistent way. Furthermore, several studies have shown that it is difficult to infer anything about specific risk decisions in
agricultural contexts from context-free lotteries (e.g., Rommel et al., 2019). Moreover, we know from earlier studies that the
choice of the elicitation method influences the consistency of findings regarding risk preferences (e.g., Pedroni et al., 2017).
Thus, the results should be viewed with caution, but we did the best we could.

12Indian rupees; the exchange rate was 1 USD � 65 Indian rupees at the time of the survey.
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gross revenue.13 Additionally, other costs show significant variability among OBR farmers.
Other costs for OBR smallholders’ average is INR 38:1. Finally, the estimates of attitude toward
risk (CRRA) reveal that OBR smallholders are slightly risk averse, on average, with a CRRA
of 1:03.14

Figure 1. Distribution of the respondents/farmers on reported risk attitude.

Table 2. Descriptive statistics N � 880� �
Variable Label Obs Mean Std. Dev. Min Max

Gross revenue (GR) (1000 Rupees (Rs)) Y 880 165.1 223.23 5.2 2565

Certainty equivalent GR (1000 Rs) CE 880 154.4 195.3 0.2 1892

Land (acre) X1 880 8.98 9.84 .25 80

Labor (man-years) X2 880 .41 .43 .02 3.42

Other costs (1000 Rs) X3 880 38.07 50.36 1.23 480.86

Attitude to risk CRRA 880 1.03 1.3 .01 3.5

Wealth W 880 3870 18707 1 493102

Risk-attitude variable Z1 880 3.94 1.86 1 6

Own land (acre) Z2 880 6.59 6.6 0 45

Size (cows and buffaloes) Z3 880 3.96 2.92 0 20

13In CE (equation 3), the component Var�YjZ� was estimated using the package NP in the R software. In this
nonparametric estimation, own land (Z2) and sizes (cows and buffaloes, Z3) were used for the conditioning vector Z.

14Our results are somewhat in contrast to the earlier study by Binswanger (1980), who found that farmers in India were
moderately risk averse. It is likely that the economic environment, as well as the attitude of farmers, has changed since the 1980
study. In Harrison et al. (2010), the coefficient of CRRAwas estimated to be 0.54 for small-scale farmers in Ethiopia, India, and
Uganda. Vollmer et al. (2017), in their study of German farmers, found an average CRRA value of 0.35 using the lottery-choice
experiment by Holt and Laury (2002).
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4. Results
As mentioned in Subsection 2.4, nonparametric models are flexible, but they have a high
probability of violating economic restrictions for the estimated function. With the unconstrained
nonparametric estimator, both Model 1 and Model 2 had negative input elasticities for land, labor,
and other costs.15 These negative values are counterintuitive and are not consistent with
production theory. Hence, we present below the results based on the constrained nonparametric
estimator for both Models 1 and 2. In the constrained models, we imposed restrictions to make all
the input elasticities nonnegative at every point. Table 3 shows the estimated input elasticities,
while Figure 2 shows the distribution of the elasticities and RTS.

The results for the nonparametric standard production function (Model 1) in Table 3 show
that, at the median, other costs (materials) have the highest input elasticity 0:61� �, labor the
second highest 0:36� �, and land the lowest 0:12� �. Furthermore, we find that OBR farms, at the
median, are operating under increasing RTS. In other words, a 1% increase in all inputs increases
rice output by about 1.11%. Therefore, the results confirm that most OBR producers can benefit
from an expansion of operated acreage, except for the farms that are in the bottom 10%. Although
theoretically true, the RTS results may not mean much practically because the land is a limiting
factor, and in most cases, cannot be increased like labor and materials can.

The results from the different quantiles show that the input elasticities and RTS vary depending
on at what point of the distribution each of the estimates are evaluated. For example, in Model 1,
the input elasticity of labor at the 10th percentile is 0:13, while at the 90th percentile, it is 0:59. The
results also suggest that the marginal impact of labor on rice output is heterogeneous and increases
monotonically across quantiles. We observe similar relationships for land and other inputs. The
distribution of RTS estimates also shows that farms in the 10th percentile have decreasing RTS
(0:96), while farms at the 90th percentile operate under increasing RTS (1:31).

Note that the results and relationships from Model 1 in Table 3, discussed above, assume
perfect knowledge of output at the time of harvest. In other words, farmers have certainty with
regard to output, and therefore, the elasticities estimated in Model 1 reflect this. However, this is a
strong and unrealistic assumption. The realized outputs of farmers postharvest are (typically) not
equal to the outputs they expected at planting/sowing.

Thus, in Model 2, the output variable Y is replaced with CE in the production function. The
estimates are reported in the right panel of Table 3. An important observation is that adjusting
output to CE to accommodate the farmers’ risk attitude clearly influences the estimates. For our
sample of OBR producers, the elasticities of land, labor, and other costs are higher than the
estimates in Model 1 at the mean, when accounting for the farmers’ risk attitude. However, the

Table 3. Input elasticities results for the nonparametric standard production function (Model 1) and nonparametric CE
production function (Model 2)

Model 1 Model 2

Land Labor OC RTS Land Labor OC RTS

Q10 0.022 0.127 0.412 0.962 0.011 0.203 0.360 0.985

Q25 0.053 0.257 0.482 1.042 0.052 0.266 0.489 1.080

Q50 0.118 0.361 0.607 1.112 0.160 0.345 0.636 1.246

Q75 0.184 0.484 0.753 1.195 0.331 0.434 0.871 1.382

Q90 0.286 0.588 0.850 1.310 0.620 0.534 0.997 1.605

Notes: OC = Other costs, RTS = Returns to scale.

15Appendix Figures 4 and 5 show the violations of the unconstrained estimates of the gradients, as well as the constrained
estimates.

332 Gudbrand Lien et al.

https://doi.org/10.1017/aae.2023.18 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2023.18


results are mixed, for some quantiles, the elasticities are lower with Model 2, while for others, the
opposite is true. Model 2 in Table 3 reveals that a 1% increase in all inputs increases rice output by
about 0.99% at the 10th percentile and by about 1.61% at the 90th percentile. Therefore, the results
confirm that most OBR producers can benefit from an expansion in operated acreage. Similarly to
Model 1, the estimates of the input elasticities and RTS vary across quantiles.

To obtain a better understanding of the results obtained from the nonparametric method, we
plot the input elasticities and RTS for Models 1 and 2 and report them in Figure 2. The plots are
overlaid so that the differences are easy to visualize. Density plots of the input elasticities for land,
labor, other costs, and RTS for Model 1 (2) are in red (blue).

The differences in elasticity estimates vary between Model 1 and Model 2. Figure 2 shows that
to some degree, the elasticity estimates for land and labor are similar regardless of a farmer’s risk
attitude. However, Figure 2 (bottom two graphs) shows that the elasticity estimates of other costs
and RTS are higher when accounting for a farmer’s risk attitude (Model 2). The adjustment of
risk-attitude results in higher RTS estimates, in general, implying that OBR producers will
benefit from an expansion in the scale of their operations. Figure 2 shows a larger variability for

Figure 2. Density plot of input elasticities for land, labor, other costs, and RTS for the nonparametric standard production
function (Model 1, in red) and nonparametric risk-adjusted (CE) production function (Model 2, in blue).

Journal of Agricultural and Applied Economics 333

https://doi.org/10.1017/aae.2023.18 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2023.18


the risk-adjusted elasticity estimates (Model 2) than for those from the unadjusted model
(Model 1). However, for labor input, the variability in elasticity decreases after accounting for the
farmers’ degree of risk aversion. As shown in Table 2, the elasticity of labor increases for farms
that are in the bottom 10% and 25% (10th and 25th percentiles) of the elasticity distribution.
Our findings may indicate that the share of labor increases when one accounts for the farmers’
degree of risk aversion. Finally, the land elasticity in Figure 2 is clearly truncated because the
unconstrained nonparametric model has a large number of negative land elasticities. In that
respect, our finding is consistent with other studies of developing countries that have estimated
negative land elasticities (Evenson et al., 1998; Kawagoe et al., 1985; Fulginiti and Perrin, 1998).
Our findings provide evidence of an inverse relationship between farm size and rice productivity,
which has been observed in many developing countries including those in Africa (see Barrett,
1996; Kimhi, 2006; Carletto et al., 2013) and South Asia (see Heltberg, 1998; Benjamin and Brandt,
2002; Gaurav and Mishra, 2015; Gautam and Ahmed, 2019).

In Figure 3, scatter plots for Models 1 and 2 graphically illustrate the differences between the
models’ elasticity estimates for the same farms. A perfect match between Model 1 and Model 2
would show up as a straight line in the graph, and not as a scatter of points. That is not the case,
however, as the results for Models 1 and 2 are in general quite different, and these two models also
show quite inconsistent elasticity estimates, meaning that standard input elasticities often vary
significantly from risk-adjusted/welfare-adjusted input elasticities. The trend lines show a roughly
linear relationship between the elasticity estimates for Models 1 and 2. The trend lines confirm the
visual inspections of the graphs and show a R2 between 0.69 and 0.92. From the trend lines, we
also observe estimated slope parameters above one for land, other costs, and RTS, meaning that, in
general, Model 2 estimates higher risk-adjusted/welfare-adjusted input elasticities than Model 1’s
standard input elasticity estimates, for the same farms. For labor, the opposite is true; the trend
line shows a slope parameter below one. This means that the risk-adjusted/welfare-adjusted input

Figure 3. Plots of input elasticities and RTS estimates for Model 1 and Model 2. The dotted trend line shows the linear
relationship (OLS regression) between elasticity estimates for Model 1 and Model 2.
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elasticity estimates for labor are, in general, lower than the standard input elasticity estimates for
labor for the same farms.

5. Concluding Remarks
In this study, we introduced an alternative approach to model production decisions under risky
production conditions. In particular, we extended the standard production function to account for
farmers’ risk attitude and used a certainty equivalent or risk-adjusted production function.
The objective of risk-adjusted production functions (Model 2) is not to illustrate that this model
provide “better” estimates than the standard production function model (Model 1). They simply
show different aspects of production; for example, the estimated elasticities from standard
production function models do not account for the farmers’ attitude to risk, while the estimated
elasticities from the risk-adjusted production function models do account for attitude to risk.

Our empirical results clearly show that the elasticity estimates of the unadjusted standard risk
model are different from those from the risk-adjusted model under the nonparametric models.
Even in the absence of concrete evidence for the correct specifications, it is evident that the degree
of risk aversion among farmers has a notable impact on the elasticities. The direction of the
changes is mixed, and they vary between farmers and between inputs. Our analysis of OBR
farmers showed further that the OBR farmers have increasing RTS, independent of risk
adjustment or no risk adjustment, implying that they can reduce their costs of production by
increasing farm size.

The findings also show that the results are sensitive to the use of the estimator. The results
change, as expected, depending on whether the less flexible parametric modeling framework (for
which the results are presented in the Appendix) or the more flexible nonparametric modeling
framework is used.

What will be used in practice is a choice of modeling complexity, access to relevant and reliable
data, transparency, and the goal or use of results of the production function. The more flexible
nonparametric framework should potentially provide more reliable and correct estimates than the
parametric framework, but this will also depend on the functional form applied. The challenge to
implementing this risk-adjusted framework is the access to informative individual estimates of
farmers’/decision-makers’ degree of risk attitude. If those data are unavailable, one can still assume
the farmers’ degree of risk aversion16 and use that in the risk-adjusted analysis framework. The
drawback is that one then ignores individual differences in farmers’ degree of risk aversion. If the
results from the production function are used as a decision support model, and we know that
farming is a risky business and farmers typically are risk averse, the risk-adjusted framework
should, in our view, be the preferred one. It provides the most informative input elasticities and
marginal products for inputs, and in that sense, it gives the best decision support for “best
practices in farming.”
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Appendix A: Parametric Models
A.1 Model Specifications

For the parametric specifications, we use TL functions because they are flexible. The parametric TL production function (8)
[Model 3] and parametric risk-adjusted TL production function (9) [Model 4] are specified as

Yi � TL Xi� � � ui; (8)

CEi � TLCE Xi� � � uCEi ; (9)

where TL :� � stands for TL, Yi is the logarithm of output (gross revenue) for farm i i � 1; 	 	 	 ; n� �, CEi is the logarithm of the
CE output (risk-adjusted gross revenue) for farm i, Xi is a vector of inputs, and ui is the noise term that reflects the effect of
unobserved productivity shocks. Note that although TL and TLCE in (8) and (9) are functions of the same X variables, their
parameters will be different because the outcome variables are different.
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A.2. Specification of Parametric Models

Model 3, the standard TL production function, is specified as follows:

Y � β0 �
XJ

j�1

βjXj �
1
2

XJ

j�1

XK
k�1

βjkXjXk � u; (10)

where Y and Xj; j � 1; . . . ; J are in logarithms. The βjk parameters satisfy the symmetry condition. The input elasticities (εj)
and returns to scale (RTS) are defined as follows:

εj �
@Y
@Xj

� βj �
XK
k�1

βjkXk; (11)

RTS �
X
j

εj: (12)

For Model 4, the parametric risk-adjusted TL production function, Y, is replaced with CE in (10), and everything else is
exactly the same as for Model 3. OLS can be used to estimate Models 3 and 4.

A.3. Results from Parametric Models

The results from the parametric TL production function (Model 3) are presented in Table 4. They show that, at the median,
other costs (materials) have the highest input elasticity 0:66� �, labor the second highest 0:33� �, and land the lowest 0:10� �.
Furthermore, we find that OBR farms, at the median, are operating under increasing RTS (1:08). The elasticities of labor and
other costs are higher than those in Model 1 at all quantiles when accounting for the farmers’ risk attitude (Model 4). Although
the estimates of the elasticities and RTS obtained from the parametric models are quite similar to those obtained from the
nonparametric models, the estimates show less variability. This is also expected because the nonparametric models do not
impose a functional form, and therefore, they are unstructured.

Appendix B: Estimates of Gradients for the Nonparametric Models

To examine the differences in the estimated elasticities and RTS with and without constraints in the nonparametric models
(Models 1 and 2), we plot each of them in separate figures where the vertical (horizontal) axis measures objects of interest
(elasticities and RTS) for the constrained (unconstrained) model. We draw a 45º line in each figure (Appendix, Figure 4 and
Figure 5). Note that the observations will be on the 45º line if the measures of interest (elasticities or RTS) obtained from the
constrained and unconstrained models are identical. Thus, a departure from the 45º line indicates differences in the estimated
elasticities and RTS between the constrained and unconstrained models. Points below (above) the 45º line indicate that the
measures from the unconstrained model are larger (smaller) than those obtained from the constrained model. Appendix
Figure 4 plots the input elasticities and RTS for the standard case where the farmer uses observed output Y in the

Table 4. Input elasticities from the parametric TL production function (Model 3) and parametric CE-adjusted production
function (Model 4)

Model 3 Model 4

Land Labor OC RTS Land Labor OC RTS

Q10 −0.057 0.144 0.534 0.951 −0.075 0.212 0.568 1.027

Q25 0.012 0.241 0.604 1.009 −0.005 0.291 0.647 1.105

Q50 0.101 0.333 0.662 1.079 0.091 0.364 0.729 1.175

Q75 0.153 0.418 0.723 1.143 0.173 0.438 0.810 1.254

Q90 0.207 0.512 0.773 1.183 0.251 0.516 0.891 1.331

Notes: OC = Other costs, RTS = Returns to scale.
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nonparametric models with and without constraints. The purpose of this plot is twofold. First, it is to investigate how close the
estimates of different elasticities and RTS are from the constrained and unconstrained estimates for Models 1 and 2. Second,
the plots will also reveal the negative input elasticities for the unconstrained Model 1. Figure 4 shows many negative elasticities
obtained from Model 1. A plausible explanation could be the current lack of data on land quality, technology, and labor
effectiveness in farm production. The negative values are also reflected in the RTS, which are negative for a few observations.
Model 4 (Figure 4) imposes constraints that make the input elasticities nonnegative at each point. The figure reveals that the
estimates, indicated by triangles, are close to the zero line. Thus, the estimates from the constrained and unconstrained models
are identical. Consequently, there are no negative values for the RTS.

We perform a similar exercise in Appendix Table 5. In this case, Model 2, the output observed by the smallholder rice
farmer is replaced with risk-adjusted output (CE output). The estimated elasticities for land, labor, other costs, and RTS are
presented in Appendix Figure 5. Indeed, similarly to Appendix Figure 4, the unconstrained model shows some negative
elasticities for land, labor, and other costs, and subsequently, the RTS estimates are negative. However, the negative elasticities
are avoided in the constrained model (shown by triangles in Figure 5). Finally, Figures 4 and 5 show differences in the
estimated elasticities between the constrained and unconstrained nonparametric models.

Figure 4. Restricted and unrestricted elasticity estimates for land, labor, other costs inputs, and RTS in Model 1.
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Figure 5. Restricted and unrestricted elasticity estimates for land, labor, other costs inputs, and RTS in Model 2.
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