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Abstract

In this paper we consider the stationary PH/M/c queue with deterministic impatience
times (PH/M/c+D). We show that the probability density function of the virtual waiting
time takes the form of a matrix exponential whose exponent is given explicitly by system
parameters.
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1. Introduction

In this paper we consider a stationary PH/M/c queue with deterministic impatience times
(i.e. the PH/M/c+D queue). Customers arrive according to a phase-type renewal process whose
renewal intervals follow a phase-type distribution with representation (α, C), where α and C

denote a 1 × m vector and an m × m matrix. We assume that αe = 1 and C + (−C)eα is
irreducible, where e denotes an m × 1 vector with 1s. All customers have a deterministic
waiting time limit τ > 0, which we call the impatience time, and if their waiting times
exceed τ , customers leave the system without receiving their services. There are c servers and
customers are served on a first-come–first-served (FCFS) basis. Service times of customers
are independent and identically distributed according to an exponential distribution with mean
c/μ. We assume that the system is stationary.

Multi-server queues with non-Poisson arrivals and deterministic impatience times were
studied in [1] and [3]. In [3], the Cox/M/c+D queue was studied and the spectral analysis of the
joint distribution of workload assigned to each server was carried out. In [1], the MAP/M/c+D
queue was studied, where customers arrive according to a Markovian arrival process (MAP)
characterized by (C, D). Note that the phase-type renewal arrival process is a special case of a
MAP, where D = (−C)eα and, therefore, the results for the MAP/M/c+D queue are directly
applicable to our model. We thus summarize the results of [1].

Let L, V , and S denote the number of customers, the virtual waiting time, and the state of
the phase-type distribution, respectively, in steady state. Note that the virtual waiting time is
regarded as the actual waiting time of a randomly arriving (virtual) customer with no waiting
time limit. Let qk (k = 0, 1, . . . , c − 1) denote a 1 × m vector whose j th (j = 1, 2, . . . , m)
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element represents P(L = k, S = j). We define v(x) (x > 0) as the probability density
function (PDF) of V .

Let Bk (k = 0, 1, . . . , c − 1) denote an m × m matrix determined recursively by B0 = C

and

Bk = C − kμ

c
I + kμ

c
(−Bk−1)

−1D for k = 1, 2, . . . , c − 1, (1)

where I denotes a unit matrix. Note that Bk (k = 0, 1, . . . , c−1) can be regarded as a defective
generator of a Markov chain (cf. Lemma 1 in Section 2) and, therefore, it is nonsingular. From
(2.8), (2.14), and (2.15), and Theorems 1 and 2 of [1], it follows that

v(x) = v(τ−) exp[−μ(x − τ)] for x ≥ τ, (2)

d2

dx2 v(x) + d

dx
v(x)(μI + C) + μv(x)(C + D) = 0 for 0 < x < τ, (3)

d

dx
v(x)

∣∣∣∣
x=0+

= −v(0+)(C + μ(−Bc−1)
−1D), (4)

d

dx
v(x)

∣∣∣∣
x=τ−

= v(τ−)(D − μI ), (5)

qk = 1

μ
v(0+)Ac−1Ac−2 · · · Ak for k = 0, 1, . . . , c − 1, (6)

where Ak for k = 0, 1, . . . , c − 1 is given by

Ak = (k + 1)μ

c
(−Bk)

−1.

In [1], the authors carefully examine the second-order differential equation (3) and obtain
its solution, which takes the form of a linear combination of two matrix exponentials whose
exponents are given by solutions of matrix quadratic equations.

The purpose of this paper is to show that for the special case of phase-type renewal arrivals,
i.e. D = (−C)eα, the PDF v(x) for 0 < x < τ of the stationary virtual waiting time takes a
matrix-exponential form whose exponent is given explicitly by system parameters.

Theorem 1. In the PH/M/c+D queue, v(x) for 0 < x < τ is given by

v(x) = pv̂ exp[(μeα + C)(τ − x)] for 0 < x < τ, (7)

where the 1 × m positive boundary vector v̂ := v(τ−)/(v(τ−)e) is given by

v̂ = α(μI − C)−1

α(μI − C)−1e
, (8)

and with q̂k := qk/(v(τ−)e) for k = 0, 1, . . . , c − 1 defined as

q̂k = 1

μ
v̂ exp[(μeα + C)τ ]Ac−1Ac−2 · · · Ak. (9)

The normalizing constant p := v(τ−)e is given by

p =
[c−1∑

k=0

q̂ke + 1

μ
+ (

1 0
)

exp

[(
0 v̂

0 μeα + C

)
τ

] (
0
e

)]−1

. (10)

We prove Theorem 1 in Section 2 and concluding remarks are provided in Section 3.
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2. Proof of Theorem 1

We start with the following lemma.

Lemma 1. It holds that Bk in (1) satisfies

(−Bk)
−1(−C)e = e for k = 0, 1, . . . , c − 1. (11)

Remark 1. Lemma 1 implies that (1) for the PH/M/c+D queue with D = (−C)eα can be
written as

Bk = C + kμ

c
(eα − I ) for k = 1, 2, . . . , c − 1.

Proof of Lemma 1. We prove Lemma 1 by induction. By definition (−B0)
−1(−C)e = e.

Suppose that (11) holds for some k − 1 for k = 1, . . . , c − 1. Post-multiplying both sides of
(1) by e and noting that De = (−C)e yields

Bke = Ce − kμ

c
[e − (−Bk−1)

−1(−C)e] = Ce,

from which we obtain (−Bk)
−1(−C)e = e.

Proof of Theorem 1. We define f (x) as

f (x) = d

dx
v(x) + v(x)(μeα + C) for 0 < x < τ. (12)

From (3), (12), and αe = 1, it follows that

d

dx
f (x) = d2

dx2 v(x) + d

dx
v(x)(μeα + C)

= −
[

d

dx
v(x)(μI + C) + μv(x)(C + (−C)eα)

]
+ d

dx
v(x)(μeα + C)

= μ
d

dx
v(x)(eα − I ) − μv(x)(C + (−C)eα)

= μ[f (x) − v(x)(μeα + C)](eα − I ) − μv(x)[C + (−C)eα]
= μf (x)(eα − I )

and, therefore,
f (x) = f (0+) exp[μ(eα − I )x] for 0 < x < τ.

Next we consider f (0+). From (4) and (12), it follows that

f (0+) = d

dx
v(x)

∣∣∣∣
x=0+

+v(0+)(μeα + C) = v(0+)[μe − μ(−Bc−1)
−1(−C)e]α.

Therefore, Lemma 1 implies that f (0+) = 0, so f (x) = 0, i.e.

d

dx
v(x) = −v(x)(μeα + C) for 0 < x < τ

or, equivalently,

v(x) = v(0+) exp[−(μeα + C)x] = v(τ−) exp[(μeα + C)(τ − x)] for 0 < x < τ. (13)

We thus have (7).
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Finally, we determine v(τ−). From (13), it follows that

d

dx
v(x)

∣∣∣∣
x=τ−

= −v(τ−)(μeα + C). (14)

Therefore, from (5) and (14), we obtain

v(τ−)[μ(eα − I ) + C + (−C)eα] = 0. (15)

Note that A := μ(eα−I )+C + (−C)eα can be regarded as a generator of a Markov chain.
Furthermore, C + (−C)eα is irreducible, so is A. Therefore, (15) uniquely determines v(τ−)

up to a multiplicative constant. Because A can be factored to be A := (μI − C)(eα − I ) and
μI − C is nonsingular, we obtain (8).

It remains to show (10). Noting that v(0+) = v(τ−) exp[(μeα + C)τ ] and v(τ−) = p · v̂,
we write (6) as

qk = 1

μ
pv̂ exp[(μeα + C)τ ]Ac−1Ac−2 · · · Ak. (16)

On the other hand, due to the law of total probability, we have

c−1∑
k=0

qke +
∫ ∞

0
v(x)e dx = 1. (17)

Thus, from (2), (9), (16), and (17), we obtain

p

c−1∑
k=0

q̂ke +
∫ τ

0
v(x)e dx + pv̂e

1

μ
= 1.

Then (10) now follows from v̂e = 1 and
∫ τ

0
v(x)e dx = p

∫ τ

0
v̂ exp[(μeα + C)(τ − x)] dxe

= p

∫ τ

0
e0×x v̂ exp[(μeα + C)(τ − x)] dxe

= p
(
1 0

)
exp

[(
0 v̂

0 μeα + C

)
τ

] (
0
I

)
e,

where the last equality follows from [5, Theorem 1].

3. Concluding remarks

We derived a simple formula for the PDF v(x) of the virtual waiting time in the PH/M/c+D
queue. In [1], the authors studied the MAP/M/c+D queue, which includes the PH/M/c+D
queue as a special case. Therefore, the general formula for v(x) in the MAP/M/c+D queue is
applicable to the PH/M/c+D queue. Note that the general formula in [1] is given by a linear
combination of two matrix exponentials whose coefficient vectors may have negative elements.
Therefore, it may not be suitable for numerical computation.

On the other hand, our formula is numerically feasible. In computing v(x) in Theorem 1, we
have to compute matrix exponentials. Note that their exponents are ML-matrices, i.e. matrices
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whose off-diagonal elements are nonnegative. Matrix exponential exp[Ax] with an m × m

ML-matrix A can be computed as follows; see [2]. Let θ denote θ = max1≤i≤m([Ae]i ). If
θ ≤ 0, A can be regarded as a (defective) generator of a Markov chain and, therefore, the
uniformization technique [4] is directly applicable. On the other hand, if θ > 0, we write
exp[Ax] to be exp(θx) exp[(A − θI )x]. Note that A − θI can be regarded as a (defective)
generator of a Markov chain, so that the uniformization technique is applicable to it. This is
the reason why we chose the boundary vector at x = τ−, rather than x = 0+ (cf. (13)).
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