
Research Article

Examining reaction time variability on the stop-signal task in the
ABCD study

Jeffery N. Epstein1,2 , Sarah L. Karalunas3, Leanne Tamm1,2, Jonathan A. Dudley4, James D. Lynch5 ,

Mekibib Altaye1,2, John O. Simon1, Thomas C. Maloney2 and Gowtham Atluri6
1Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, USA, 2University of Cincinnati, College of Medicine, Cincinnati, USA,
3Department of Psychological Sciences, Purdue University, West Lafayette, USA, 4Department of Radiology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, USA, 5Department of Psychology, University of Cincinnati, Cincinnati, USA and 6Department of Electrical Engineering and Computer Science,
University of Cincinnati, Cincinnati, USA

Abstract

Objective: Reaction time variability (RTV) has been estimated using Gaussian, ex-Gaussian, and diffusion model (DM) indices. Rarely have studies
examined interrelationships among these performance indices in childhood, and the use of reaction time (RT) computationalmodels has been slow to
take hold in the developmental psychopathology literature. Here, we extend prior work in adults by examining the interrelationships among different
model parameters in the ABCD sample and demonstrate how computational models of RT can clarify mechanisms of time-on-task effects and sex
differences in RTs.Method:This study utilized trial-level data from the stop signal task from 8916 children (9–10 years old) to examineGaussian, ex-
Gaussian, andDM indicators of RTV. In addition to describing RTVpatterns, we examined interrelations among these indicators, temporal patterns,
and sex differences. Results: There was no one-to-one correspondence between DM and ex-Gaussian parameters. Nonetheless, drift rate was most
strongly associated with standard deviation of RT and tau, while nondecisional processes were most strongly associated with RT, mu, and sigma.
Performance worsened across time with changes driven primarily by decreasing drift rate. Boys were faster and less variable than girls, likely attrib-
utable to girls’ wide boundary separation. Conclusions: Intercorrelations among model parameters are similar in children as has been observed in
adults. Computational approaches play a crucial role in understanding performance changes over time and can also clarify mechanisms of group
differences. For example, standard RT models may incorrectly suggest slowed processing speed in girls that is actually attributable to other factors.
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Attention is the set of processes that allow us to process certain
information to the relative exclusion of other information
(Racer & Dishion, 2012). An attention system that fails to achieve
an adaptive balance between voluntary and involuntary attention is
likely to cause cascading effects on higher order cognitive and emo-
tional systems that may place an individual at risk for maladaptive
behavior (Racer &Dishion, 2012). For example, impaired attention
is associated with impairments in academic achievement (Barriga
et al., 2002; Rabiner et al., 2000; Tamm et al., 2014), school mal-
adjustment (Herman & Ostrander, 2007), and social functioning
(Andrade et al., 2009; Tamm et al., 2019).

Reaction time variability (RTV) is a marker for impaired atten-
tion. RTV has been suggested to reflect central nervous system
integrity and is associated with cognitive functions such as top-
down attention control (MacDonald et al., 2009). Numerous
hypotheses have been suggested to account for RTV (Kofler
et al., 2013), including that it reflects general inefficiency of infor-
mation processing speed (Weigard et al., 2021) or specific defects
in top-down effortful control or arousal (Aston-Jones & Cohen,

2005; Unsworth & Robison, 2020), which are both mechanisms
that may contribute to attentional lapses during information
processing (Killeen, 2019; Unsworth et al., 2010). Similar mecha-
nisms are implicated in a variety of psychiatric disorders, and RTV
may be a correlate of a wide range of maladaptive behavior.

Indeed, RTV is frequently elevated in multiple patient popula-
tions including ADHD (Epstein et al., 2011; Tamm et al., 2012),
schizophrenia and depression (Schwartz et al., 1989), mood disor-
ders (Bora et al., 2006), traumatic brain injury (Segalowitz et al.,
1997; Stuss et al., 1994; Tinius, 2003; Whyte et al., 1995), and
autism (Verte et al., 2005). Higher RTV is also associated with rat-
ings of attentional impulsiveness (Swick et al., 2013), behavioral
inattention (Antonini et al., 2013), impaired social processing
(Tamm et al., 2019), impaired reading decoding (Tamm et al.,
2014), academic underachievement (Sjowall et al., 2017), and
poorer overall functioning (van Lieshout et al., 2017).

One issue in clarifying how and why RTV is associated with
such a range of behaviors and disorders is that it provides a unitary
measure for a variety of partially distinct cognitive processes. There
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is currently little agreement about how to best measure and inter-
pret differences in RTV. While many studies rely on standard
deviation of reaction time (RTSD) to characterize RTV, such mea-
sures may not accurately capture the unimodal, positively skewed
shape of the RT distribution (Heathcote et al., 1991). A growing
number of researchers have begun to use mathematical models
that can better accommodate the shape of the RT distributions.
In addition, there is growing interest in neurobiologically informed
computational models that can support mechanistic interpretation
of group differences in RT and RTV metrics (Ferrante et al., 2019;
White et al., 2010; Wiecki et al., 2015). Primary models used to
characterize performance include the ex-Gaussian model (Leth-
Steenson et al., 2000) and Ratcliff’s diffusion model (DM)
(Ratcliff & Tuerlinckx, 2002; Voss et al., 2004).

Briefly, the ex-Gaussian model decomposes the RT distribution
into Gaussian and exponential components to better fit the actual
RT distribution (Leth-Steenson et al., 2000). The ex-Gaussian dis-
tribution is characterized by three parameters: mu and sigma,
reflecting the mean and SD of its Gaussian part, and tau, reflecting
the exponential part (Leth-Steenson et al., 2000). Cognitive inter-
pretations of these parameters remain uncertain (Matzke &
Wagenmakers, 2009); however, some interpret tau as reflecting
attentional lapses (Epstein et al., 2011; Leth-Steenson et al.,
2000; Tamm et al., 2012), and others suggest tau is indicative of
intentional cognitive processes (Kieffaber et al., 2006) or should
not be interpreted in terms of specific processes (Matzke &
Wagenmakers, 2009; Rieger & Miller, 2020).

The DM (Ratcliff & Tuerlinckx, 2002; Voss et al., 2004) pro-
vides additional information about cognitive processes that under-
lie performance as it simultaneouslymodels RTs and accuracy. The
DM assumes that information about a stimulus is accumulated via
an information accumulation process until a decision is made and
a response is initiated (Ratcliff &McKoon, 2008; Ratcliff & Rouder,
1998). DM parameters include (1) drift rate (how efficiently an
individual can accumulate information to inform their response
decision); (2) boundary separation (how “sure” a person needs
to be before committing to a response, i.e., speed–accuracy
trade-off); and (3) non-decision time (time it takes to complete
all other information processes, such as encoding, and motor
preparation and execution) (Ratcliff & McKoon, 2008; Ratcliff &
Rouder, 1998).

Most prior studies, particularly in children, have relied on a sin-
gle model to characterize task performance; however, simulation
studies and studies in typically-developing adults have examined
associations between ex-Gaussian and DM parameters. The gen-
eral conclusions are that ex-Gaussian parameters often correlate
broadly with multiple DM parameters (Matzke &
Wagenmakers, 2009), but the strength of these correlations varies
and, in some cases, specific associations are obtained (e.g., non-
decision time specifically associated with mu; drift most strongly
associated with tau (Fitousi, 2020)). Similar patterns have been
identified in at least one study of children with ADHD
(Karalunas & Huang-Pollock, 2013); however, the sample size
was modest. Clarifying these associations as they occur at various
stages of development will be critical in helping researchers inte-
grate previous findings to inform additional work.

Moreover, examining RT patterns with these models can clarify
cognitive mechanisms contributing to differences on choice RT
tasks. We highlight two examples here. First, we describe patterns
of change in both Gaussian and other RT parameters over time.
Time-on-task effects are well established for many cognitive tasks,
and they are typically interpreted as reflecting challenges to

sustained attention. However, other processes, such as increasing
impulsivity or adjustments to response strategy based on task dif-
ficulty, could also play a role.

Second, we present the issue of sex differences in RT – a topic
that has received much research attention but has primarily used
Gaussian indices. In adults, studies consistently find that males
have faster and less variable RTs than females (Deary & Der,
2005; Der & Deary, 2006; Reed et al., 2004; Silverman, 2006). In
children, some very early studies found similar patterns (Gilbert,
1894; Goodenough, 1935); however, more recent work has found
differences in speed but not variability of RTs (Bunce et al., 2008;
Kalb et al., 2004), albeit in samples that sometimes span large age
ranges.

Sex differences in the cognitive processes contributing to mean
level RT and RTV performance are only just being explored via
computational modeling. There is some evidence for differential
strategy use between the sexes during choice RT tasks (Adam
et al., 1999), and studies in both adults (Era et al., 2011;
Landauer et al., 1980) and children (Lynn & Ja-Song, 1993) suggest
that females may have faster decision times but slower motor
responses than males. In a recent study of adolescents, sex
differences were observed in the way response caution changes
with pubertal development (Castagna & Crowley, 2021), sug-
gesting that the processes accounting for RT differences (or lack
thereof) may differ in younger children as compared to adolescents
and adults. Indeed, school-age females demonstrated more effec-
tive evidence accumulation but higher response caution thanmales
on an emotional decision-making task (Xu et al., 2021).

Overall, there is continued interest in cognitive performance
measures and particularly computational performance parameters
as potential transdiagnostic risk markers for psychopathology
(Ferrante et al., 2019; Karalunas et al., 2018; Wiecki et al., 2015).
However, our understanding of (1) how parameters from different
models relate to one another and (2) sex differences in the proc-
esses contributing to overall RT and RTV metrics comes largely
from adult populations. Characterizing the associations between
model parameters in childhood will be critical for integrating find-
ings from prior studies of child psychopathology and informing
model selection in future studies of childhood risk. In addition,
clarifying sex differences in the mechanisms contributing to RT
performance may ultimately help explain sex-specific cognitive
and neural risk markers for psychopathology (e.g., Arnett
et al., 2015).

This study utilized trial-level stop-signal task (SST) data from
the Adolescent Brain Cognitive Development (ABCD) study to
examine Gaussian, ex-Gaussian, and DM indicators of RTV.
The sample provides an unprecedented opportunity to examine
RTV patterns in a large pediatric sample. The sample is homo-
geneous developmentally (all participants were 9–10 years old)
yet heterogeneous in terms of sex, race, and psychological diagno-
ses. In addition to examining interrelations among RTV indicators
and how these relate to task accuracy, we describe changes in RTV
with time on task. Finally, we examine sex differences across com-
putational model parameters to illustrate how these indicators can
illuminate processes contributing to documented sex differences in
RT speed and variability.

Methods

Participants

The ABCD Study recruited youth aged 9–10 years of age across 21
geographically diverse US sites. Informed consent/assent was

Journal of the International Neuropsychological Society 493

https://doi.org/10.1017/S1355617722000431 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617722000431


obtained, and all procedures were approved by a central
Institutional Review Board ensuring research was completed in
accordance with the Helsinki Declaration. The present study
accessed publicly available ABCD data through the National
Data Archive. In release 3.0, baseline trial-level SST data for
10,179 participants were available. Children were excluded if their
accuracy on the SST was <66% on non-stop trials (n= 1199) or
their mean stop probability was <25% or >75% (n= 196).
Hence, the sample size for the current study was 8,916 children
(mean age = 9.9, SD = .62; 49.1% female; 77.4% White, 19.8%
Hispanic, 18.1% African American, 7.2% Asian, 3.3% American
Indian, 0.2% Native Alaskan/Hawaiian, 0.5% Pacific Islander).

Measures

The SST is a computerizedmeasure of response inhibition with two
180 trial runs with a brief (median= 43 s) break between runs
(Casey et al., 2018). On every trial, the participant views a horizon-
tal arrow pointing either right or left. Participants indicate the
direction of the arrow via a two-button response panel within
1000 ms after which a fixation cross appears with an intertrial
interval that lasts from 700 to 2000ms. Thirty (16.6%) trials in each
run were stop trials on which the horizontal arrow is followed by an
upward arrow (i.e., the stop signal) for 300 ms. Participants inhibit
their response when they see the stop signal. The delay between
presentation of the horizontal target arrow and the upward arrow
(SSD) begins at 50ms and varies according to the participant’s per-
formance. Successful inhibition results in increases of 50 ms and
unsuccessful inhibition results in decreases of 50ms so that the rate
of inhibition is approximately 50%. This SSD resets to 50 ms at the
start of the second run.

RTs <150 ms were excluded in our computational models.
Stop-signal reaction time (SSRT) was computed using the integra-
tion method in accordance with current consensus best-practice
for measuring inhibitory control on this task (Verbruggen et al.,
2019). In the integration method, the time required to stop is esti-
mated by integrating the RT distribution and identifying the point
at which the integral equals the probability of responding. SSRT is
then calculated by subtracting SSD from the finishing time1.
Consistent with best practice recommendations, Go RT omissions
were replaced with the longest Go RT for that participant and pre-
mature responses on stop trials (i.e., responses before stop-signal
presentation) were included when calculating the participant’s
probability of successful stopping and the SSD’s.

Gaussian estimation

The SST RT trial data from Go-trials were utilized to compute
mean RT (MRT), RTSD, and coefficient of variation (CV). MRT
was computed by averaging RTs on correct response trials.
RTSD was derived by computing the SD of each individual’s
RTs. CV was computed by dividing RTSD by the MRT, providing
a measure of RTV controlling for speed.

Ex-Gaussian estimation

Correct RTs on Go-trials were used to compute ex-Gaussian
indicators using retimes (Massidda, 2013; Van Zandt, 2000). A
mean (mu) and SD (sigma) for the Gaussian distribution are

estimated along with the exponential distribution (tau) which
reflects the tail or positive skew of the RT distribution.

DM estimation

Fast-DM (Voss & Voss, 2007), which uses an iterative distribution
fitting approach to compare the observed RT distribution to the
distribution predicted to occur with specific parameter values,
was used to estimate DM parameters. We allowed drift rate (v),
boundary separation (a), non-decision time (t0), and the variability
of non-decision time (st0) to vary between individuals. The relative
starting point (z) was held constant at .5 indicating the absence of
decisional bias. st0 was modeled with the other parameters because
it may improve overall model fits when fast guesses are present
(Ratcliff & Tuerlinckx, 2002). Other parameters (i.e., differences
in speed of response execution, intertrial variability of starting
point, intertrial variability of drift, and percentage of contami-
nants) were fixed at 0 given that they were unlikely to be reliably
modeled with the number of trials available (Lerche et al., 2017).
Because both speed and accuracy are accounted for in DM, both
correct and error RTs on Go-trials were used, reflecting the upper
and lower boundaries of the model, respectively. Smaller absolute
values of v indicate slower drift rates. Smaller values of a indicate
greater speed-accuracy trade off. t0 and st0 are reported in seconds.
Despite legitimate concerns with p-value cutoffs for participant
exclusion there is currently no other consensus method, particu-
larly in very large samples. Here, similar to others (Arnold et al.,
2015; Klatt et al., 2020; Lerche et al., 2018), we relied on p-values
and excluded participants (n= 4) based on a Kolmogorov–
Smirnov fit statistic <.05 (see Supplemental Figure S1 for cumula-
tive distribution plots).

Parameter recovery

Prior simulation studies have suggested that ex-Gaussian
(Galloway-Long & Huang-Pollock, 2018), and DM parameters
can be estimated with the number of trials available here, albeit
with loss of precision for some parameters in the context of either
slow or fast contaminants (Lerche et al., 2017). Nonetheless, we
conducted parameter recovery studies (Voss et al., 2013). To assess
parameter recovery with trial numbers available in the full task,
1,000 sets of values for (1) ex-Gaussian and (2) DM parameters
were simulated using the mvrnorm function from the R MASS
package. Simulated values were based on the observed means
and covariance structure in the observed ABCD sample. Next,
trial-level RT data for each of the 1,000 parameter sets was simu-
lated using the rexgauss function from the R retimes package (ex-
Gaussian) and the construct-samples tool from fast-dm (DM).
Data sets included n= 261 (ex-Gaussian where only correct go-tri-
als are used) or n= 300 Go-trials (DM where correct and incorrect
trials are used). Parameter estimates were recovered from the
simulated trial-level data using retimes or fast-dm. Bias was com-
puted as the difference between the simulated and recovered
parameters. Mean percent error, which indicates the signed aver-
age difference between simulated and recovered values as a func-
tion of the simulated parameter value, ranged from –1.1% to 0.2%
for ex-Gaussian parameters and from –1.7 to 4.4% for DM param-
eters. Raw bias and mean percent error for all parameters are
reported in Table S1 in the Supplement. We also considered cor-
relations between simulated and recovered parameters, which we
interpreted based on guidelines fromWhite et al. (2018): r below .5
poor, 0.5< r< 0.75 fair, 0.75< r< 0.9 good, and r> 0.9 excellent.
Parameter recovery was good to excellent for all parameters (see

1Note that the SSRT values in the ABCD study may be biased due to a violation in the
assumption of context independence (Bissett et al., 2021), and othermethods of computing
SSRT may eventually be implemented (Weigard, Matzke et al., 2021).

494 Jeffery N. Epstein et al.

https://doi.org/10.1017/S1355617722000431 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617722000431
https://doi.org/10.1017/S1355617722000431
https://doi.org/10.1017/S1355617722000431


Table S2 and Figures S2–S5 in the Supplement for correlations
and Q-Q plots of simulated and recovered parameters).

We repeated parameter recovery studies for: (1) run level and
(2) block-level data to assess whether parameters could be
adequately recovered at these lower trial numbers. Parameter
recovery was good to excellent for ex-Gaussian parameters at both
the run and block level (range r = .84–.97). Parameter recovery
was good to excellent for diffusion model parameters at the
run level (range r = .77–.90) and fair to good at the block level
(range r = .63–.80). Additional details, Q-Q plots, and simu-
lated-recovered parameter correlations are all available in the
Supplement.

Analyses

Descriptive statistics for performance indices and their intercor-
relations (Pearson) were estimated. To explore task performance
over time, each of the SST indices was estimated for each of the
two runs, and paired t-tests were run testing for differential per-
formance across runs. Next, each SST run was divided into two
equal blocks, and performance across the four blocks was tested
for linear and quadratic trends. Note that SSRT was only com-
puted for the whole task since the SSD algorithm adjusts across
the whole task precluding unbiased SSRT computation across
runs/blocks. To examine sex differences, t-tests were conducted
comparing performance outcomes between males and females.
Cohen’s d (Cohen, 1992) was calculated to estimate effect size.

Results

Overall performance

The mean accuracy on nonstop trials (i.e., correct discrimination
of arrow directionality) was 87.8% (SD= 7.7%; range: 0.661–
1.000). The mean SSRT for the sample was 985.87 ms
(SD= 484.10; range: 2–2577). RT performance indices are pre-
sented in Table 1 (see Supplemental Figure S6 for distributions).

Intercorrelations

The large sample size resulted in statistically significant correla-
tions between most of the accuracy, SSRT, and RT performance
indices (Table 2; see Supplemental Figure S6 for scatterplots).
Accuracy was moderately correlated with SSRT (r = -.46). Of
the RT indices, CV (r = -.65) and v (r = .77) were most highly
correlated with accuracy. v was most highly correlated with
SSRT (r = -.41).

Table 1. Descriptive statistics

n Mean SD Range

Gaussian
RT (ms) 8916 555.377 90.071 297.398–1037.655
RTSD (ms) 8916 178.406 39.923 70.881–408.075
CV (ms) 8916 32.269 5.533 16.076–56.337
ex-Gaussian
Mu (ms) 8916 392.726 81.467 179.916–961.181
Sigma (ms) 8916 75.052 29.095 .0002–399.829
Tau (ms) 8916 162.652 43.409 5.142–404.597
DM
Boundary separation (a) 8912 1.262 .263 .589–3.765
Drift rate (v) 8912 2.448 .637 .646–7.837
Non-decision (t0) 8912 .315 .071 .100–.872
Intertrial variability (st0) 8912 .247 .104 .000–1.502

Note. RT= reaction time, RTSD= standard deviation of RT, CV= coefficient of variation, DM
= diffusion model.
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Parameters derived from the same models showed varying pat-
terns of correlation. As would be expected, RTSD was correlated
with RT (r = .62) and CV (r = .66). For ex-Gaussian parameters,
sigma was highly correlated with mu (r = .73), but the magnitude
of correlation between other parameters was small (all rs < .1).
Although the DM indices were significantly intercorrelated, the
magnitude of these correlations was modest (r = .35 for v and t0
and all other rs < .18).

There were also strong intercorrelations among parameters
across models. Mu correlated most highly with t0 (r= .91), but also
correlated moderately with st0 (r = .45) and a (r = .50). Sigma cor-
related strongly with t0 (r = .60) and st0 (r = .81) and moderately
with a (r= .31). Tau correlated strongly with v (r= -.68) and mod-
erately with a (r = .41).

Finally, we considered relationships between Gaussian metrics
and parameters from the other models. Ex-Gaussian parameters
describing the normal part of the RT distribution (mu, sigma) cor-
related strongly with RT (rs = .67–.88) and moderately with RTSD
(rs = .21-.41), whereas tau showed the opposite pattern (i.e.,
strongly correlated with RTSD, r = .88, and moderately with
RT, r = .43). For DM parameters, v was strongly correlated with
RTSD (r = -.64) but only weakly correlated with RT (r = -.10).
In contrast, t0 was strongly correlated with RT (r = .71) but uncor-
related with RTSD (r = .001). a was moderately correlated with
both RT and RTSD (rs = .42–.67).

Performance across time

While performance indices were significantly correlated across
runs (r=.45–.86), there were also significant performance decre-
ments between the runs (Table 3). Accuracy worsened, MRT
slowed, and both RTSD and CV increased on the second run com-
pared to the first. On ex-Gaussian indicators, the largest effect was
an increase in tau from run 1 to run 2. Mu decreased and sigma
increased from run 1 to 2 but with small effects. On DM indicators,
the largest effect was for slower v from run 1 to run 2, but faster t0
and larger st0 were also observed on the second run, compared to
the first run.

The two runs were further divided into 4 blocks (2 per run) to
more finely examine performance on the SST task. All perfor-
mance indices demonstrated significant linear and quadratic
trends across blocks (Table 4).

For most indicators, there was a distinct pattern of worsening
performance from the first half of run 1 to the second half of run 1.
This was followed by a pattern of fairly comparable performance in

the second half of run 1 to the first half of run 2 followed by a
repeated pattern of worsening performance between the first
and second half of run 2. Notably, performance during the first
block of run 1 and the second block of run 2 (i.e., first and fourth
blocks) was quite discrepant with mean estimates displaying more
than a .5 SD decrement between these blocks for some variables
(e.g., RTSD, CV, tau, v) (Figure 1). Indeed, it appears that the
RTV indicators (RTSD: t= 28.28, p < .0001; CV: t= 25.67, p <
.0001; tau: t= 21.33, p < .0001; and v: t= 20.79, p < .0001) were
most susceptible to this pattern, as evidenced by significant linear
and quadratic trends for these variables.

Sex differences

Females were more accurate than males on go-trials (d = .09), but
did not differ from males on SSRT (d = .01), see Table 5. Males
were faster (RT; d = .39) and less variable (RTSD; d = .31) than
females. However, for CV, which factors in the mean when esti-
mating variability, no sex differences emerged (d = .00).

Interrogating further with ex-Gaussian indicators, females had
higher mu (d = .28), sigma (d = .21), and tau (d = .28) than males,
though all effect sizes were relatively small. Analyses of the DM
indicators found a moderate effect size for higher a in females than
males (d= .42), and smaller but reliable effects for faster v (d= .09),
and slower, more variable t0 (d = .14) and st0 (d = .30) in females
than males.

Discussion

The ABCD sample is unprecedented including its large sample,
geographic, gender and racial/ethnic diversity, and comprehensive
assessment of behavioral, cognitive, and neurophysiological func-
tioning. While the SST is generally considered an inhibitory task,
the large number of RTs collected on “go” trials also makes it con-
ducive to characterizing individual’s RT distributions. Here, we
capitalize on the unique ABCD sample to demonstrate that asso-
ciations among RT parameters from common computational
modeling approaches in middle childhood are similar to findings
in adults. Such confirmation can guide integration of prior studies
using disparate approaches and inform model selection for addi-
tional studies. We also demonstrate how computational modeling
can clarify the processes contributing to change in performance
over time, and cognitive mechanisms contributing to sex
differences in RT and RTV in middle childhood.

This is one of the few studies applying multiple RTV
approaches to the same data set in middle childhood, when

Table 3. Performance across SST runs

Run 1 Run 2 Correlation across runs Difference between runs Effect size

Mean (SD) Mean (SD) r t (Pooled) Cohen’s d

Accuracy (proportion correct) .894 (.077) .862 (.097) .61**** 23.92**** .41
RT (ms) 548.974 (92.833) 561.803 (94.218) .86**** 9.14**** .25
RTSD (ms) 169.351 (39.655) 183.806 (43.059) .68**** 23.27**** .43
CV (ms) 30.991 (5.996) 32.840 (6.271) .62**** 20.08**** .35
Mu (ms) 396.892 (86.237) 393.445 (88.711) .77**** 2.63** .06
Sigma (ms) 72.595 (31.041) 74.751 (33.641) .50**** 4.44**** .07
Tau (ms) 152.082 (47.303) 168.358 (51.845) .53**** 21.86**** .34
Boundary separation (a) 1.292 (.279) 1.300 (.260) .69**** 1.93 .05
Drift rate (v) 2.670 (.743) 2.417 (.726) .66**** 22.98**** .41
Non-decision (t0) .316 (.070) .309 (.073) .72**** 7.23**** .13
Intertrial variability (st0) .242 (.100) .250 (.107) .45**** 5.21**** .09

Note. **p < .01; ****p < .0001; RT = reaction time, RTSD = standard deviation of RT, CV = coefficient of variation, DM = drift diffusion model.
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relationships among model parameters are largely unknown.
Correlations between DM and ex-Gaussian parameters are consis-
tent with prior simulation studies (Matzke &Wagenmakers, 2009).
Ex-Gaussian parameters correlated at least moderately with multi-
ple DM parameters, suggesting the ex-Gaussian measures cannot
be interpreted in terms of specific cognitive processes (Rieger &
Miller, 2020), or at least not in terms of the specific processes
reflected in DM parameters (Fitousi, 2020).

Nonetheless, the strength of correlations among parameters
varied in consistent ways. In particular, v correlated most strongly
with tau, consistent with slowing drift rates having the greatest
effect on the tail of the RT distribution (Ratcliff, 2006; Ratcliff &
McKoon, 2008). In line with prior simulations (Fitousi, 2020;
Matzke & Wagenmakers, 2009) t0 was most strongly correlated
with mu. st0 was most strongly correlated with sigma. Taken
together, results suggest that differences in nondecisional process-
ing primarily affect the Gaussian portion of the RT distribution,
while differences in speed and efficiency of decision processes
are important contributors to the exponential features of RT dis-
tributions. Such associations support recent calls to use ex-
Gaussian and DM models in conjunction by designing experi-
ments where convergent patterns across models may help rule
in or out specific interpretations (Fitousi, 2020).

Relations between parameters and Gaussian measures were
also informative. In particular, v was strongly correlated with
RTSD but not RT, whereas t0 and st0 metrics were strongly cor-
related with RT but not RTSD. This suggests that higher RTSDs
observed in prior studies may best be understood in terms of
slow/inefficient information processing, whereas RT differences
may be more related to differences in nondecisional processes
such as encoding and motor response speed. Crucially, this inter-
pretation differs from that applied in many clinical studies where
slowMRTs are interpreted as reflecting primarily slow/inefficient
information processing rather than motor (or other nondeci-
sional) processing. Similarly, RTSD was most strongly correlated
with tau, consistent with long RTs being a primary driver of
RTSD (Tamm et al., 2012). Tau is often interpreted in terms of
attention lapses, but general slowing may result in similarly long
tails at the upper end of the distribution (Ratcliff, 2006; Ratcliff &
McKoon, 2008). Investigations to explore the roles of general
slowing and specific attention lapses in this developmental period
are needed (Killeen, 2019; Unsworth et al., 2010; Weigard
et al., 2018).

Questions about the role of general slowing in higher level exec-
utive processes, particularly in the context of developmental
psychopathology, remain relevant. Recent evidence suggests that
such task general processes may account for a wide range of
impairments on higher level executive tasks (Weigard et al.,
2021; Weigard & Sripada, 2021), and findings here support this
possibility. Overall, RT and RTV correlations with SSRT were
modest (r range = .04–.29), similar to prior SST studies (Lipszyc
& Schachar, 2010). However, SSRT and v were moderately corre-
lated, suggesting a unique relationship between this indicator of
general speed/efficiency of processing and inhibitory control. At
least one prior study has similarly found that slower v mediates
impairments in SSRT observed in some psychiatric disorders
(Karalunas & Huang-Pollock, 2013), and more recent studies also
suggest a general cognitive efficiency factor predicts top-down con-
trol in everyday life better than traditional lab-based measures of
top-down control (Weigard et al., 2021).

Large temporal within-task effects were observed across every
index of performance. Consistent with large bodies of priorTa
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research on sustained attention using a variety of tasks (Conners
et al., 2003; Fortenbaugh et al., 2018; Huang-Pollock et al., 2012;
Klein et al., 2006; Losier et al., 1996; Rosenberg et al., 2013;
Sykes et al., 1973), children demonstrated slower RTs, more vari-
able responding, and poorer accuracy with increasing time on task.
Decrements in performance, especially between the first and last
blocks, were substantial (i.e., >.5 SD in magnitude). Notably, chil-
dren did not demonstrate worsening performance between the sec-
ond block on run 1 and the first block of run 2, which may be
partially due to the short break between runs.

Examination of ex-Gaussian and DM parameters further clari-
fies the processes contributing to performance changes over time.
Mu decreased across time indicating faster responding (often asso-
ciated with better performance). However, when taken together
with the corresponding decreases in t0 (associated with faster
motor output), these changes in the RT distribution are likely
indicative of increases in motor impulsivity. The largest time
effects were increases in tau and decreases in v, suggesting worsen-
ing attention and slowed/less efficient information processing as
time on task increased. The changes in v, in particular, are consis-
tent with its association with arousal-related circuitry that includes
the locus coeruleus-norepinephrine system (Aston-Jones &
Cohen, 2005).

Cognitively, decrements in both tau and v over time are also
consistent with attention depletion models. Such models suggest
that sustaining attention is an effortful process and thus the like-
lihood of an attention lapse increases as time in an attentive state
increases (Killeen, 2013). This may be particularly true when the
attentional state must be endogenously maintained (e.g., when
the participant must actively work to maintain attention to things

that are not inherently interesting). Events that exogenously cap-
ture attention (e.g., novel stimuli) or provide breaks to endoge-
nously maintain attentional states (e.g., breaks between runs)
may serve to attenuate attention depletion (Killeen, 2013). Such
effects would help explain why participants’ performances
declined nonlinearly across blocks with performance levels
remaining similar before and after the provided break.

We also used the broad range of RT and performance indices to
examine sex differences in RT. Consistent with most previous
research, males had faster RTs than females and females had more
variable RTs than males. Notably, the effect sizes for both of these
effects were small (RT: d = .39; RTSD: d = .31) but were still nearly
double those observed in a prior meta-analysis (d = .17 across the
lifespan; Silverman, 2006) and other large-scale studies of both SST
(d = .23 across the lifespan; Williams et al., 1999) and other tasks
(e.g., Dykiert et al., 2012). In general, sex differences in RT and
RTSD have been less consistently found in children than adults
(Dykiert et al., 2012; Ghisletta et al., 2018). This pattern of findings
has led some investigators to propose that variability in RTsmay be
related to the effects of post-pubertal levels of estrogen in brain
areas involved in the regulation of variability in information
processing and attention (Deary &Der, 2005). However, the effects
at young ages in the ABCD sample argue against such a possibility.
Additional studies directly considering puberty will be important.
The difference in size of effects here versus in prior studies may be
related to differences in task demands between studies, geographic
regions in which participants were recruited, or other factors.
Regardless, in the largest sample of children to-date (larger than
even the total samples available in meta-analytic studies), there
appear to be small but reliable sex differences in RT.

Figure 1. Performance across SST blocks. Shaded areas reflect 95% confidence interval. Note. RTSD = standard deviation of reaction time, CV = coefficient of variation.
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An additional question is what may be causing these
differences. It is notable that the observed sex differences in RT
occurred in the context of females having higher accuracy than
males, which suggests a slower speed for higher accuracy trade-
off among females. Indeed, DM parameters confirm this conclu-
sion. The largest effect size for sex differences across all of the per-
formance measures was for a (d = .42), consistent with increased
response caution (i.e., decreased speed-accuracy trade-off) contrib-
uting to slower RTs in females. Results confirm that similar find-
ings on emotional decision-making tasks (Xu et al., 2021) may
reflect more general response strategy, rather than specific effects
of emotional context.

Females also had slower and more variable t0 than males, con-
firming a body of research suggesting that differences in motor
response speed may contribute to overall sex effects in RT (Era
et al., 2011; Landauer et al., 1980; Lynn & Ja-Song, 1993). While
both greater response caution and slower, more variable motor
output are likely driving the Gaussian findings of slower and more
variable RTs, these effects “hide” that females actually have equally
strong or slightly faster processing speed/efficiency than males
based on DM parameters. Similarly, ex-Gaussian parameters,
which bear nonspecific relationships to cognitive processes,
showed a consistent pattern of females performing more poorly
than males without identifying the equal or better cognitive effi-
ciency observed when using DM parameters. Thus, the analyses
here not only clarify the processes underlying observed sex effects
in RTs but also illustrate how important informationmay be lost in
using performance metrics that do not adequately distinguish dif-
ferent components of cognitive processing.

Here, we demonstrate in the largest sample of children to-date
that the patterns of correlations between different RT models are
similar in middle childhood to those observed in adults on a task
with integrated inhibitory control demands. Additional studies
using paradigms without inhibitory demands will be informative.
Understanding these patterns can guide integration of prior studies
using a single RT model, as well as parameter selection in future
studies. Further, we confirm the presence of small but reliable
sex differences in RT. We demonstrate that computational models
can be used to characterize the processes underlying these
differences—greater response caution and slower motor output
in females. Importantly, we also show that the use of parameters
that do not adequately differentiate cognitive processes may miss
important information, such as the equally strong or better cogni-
tive efficiency observed in females as compared to males, despite

slower and more variable RTs based on Gaussian indicators.
Similar models and approaches are likely to be informative for
future studies focused on the association of the various RTV met-
rics with behavioral correlates (e.g., ratings of emotion/behavior or
neurocognitive task performance) and within children diagnosed
with various disorders (e.g., ADHD). Relatedly, additional studies
examining the association of intrinsic brain activity with various
RTV metrics will be important for clarifying the functional and
clinical significance of RTV as a biomarker of attentional
functioning.
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